Improve isqrt tests and add benchmarks

* Choose test inputs more thoroughly and systematically.
* Check that `isqrt` and `checked_isqrt` have equivalent results for
  signed types, either equivalent numerically or equivalent as a panic
  and a `None`.
* Check that `isqrt` has numerically-equivalent results for unsigned
  types and their `NonZero` counterparts.
* Reuse `ilog10` benchmarks, plus benchmarks that use a uniform
  distribution.
This commit is contained in:
Chai T. Rex 2024-08-26 01:34:25 -04:00
parent bf662eb808
commit 0cac915211
6 changed files with 313 additions and 32 deletions

View File

@ -8,6 +8,7 @@
#![feature(iter_array_chunks)]
#![feature(iter_next_chunk)]
#![feature(iter_advance_by)]
#![feature(isqrt)]
extern crate test;

View File

@ -0,0 +1,62 @@
use rand::Rng;
use test::{black_box, Bencher};
macro_rules! int_sqrt_bench {
($t:ty, $predictable:ident, $random:ident, $random_small:ident, $random_uniform:ident) => {
#[bench]
fn $predictable(bench: &mut Bencher) {
bench.iter(|| {
for n in 0..(<$t>::BITS / 8) {
for i in 1..=(100 as $t) {
let x = black_box(i << (n * 8));
black_box(x.isqrt());
}
}
});
}
#[bench]
fn $random(bench: &mut Bencher) {
let mut rng = crate::bench_rng();
/* Exponentially distributed random numbers from the whole range of the type. */
let numbers: Vec<$t> =
(0..256).map(|_| rng.gen::<$t>() >> rng.gen_range(0..<$t>::BITS)).collect();
bench.iter(|| {
for x in &numbers {
black_box(black_box(x).isqrt());
}
});
}
#[bench]
fn $random_small(bench: &mut Bencher) {
let mut rng = crate::bench_rng();
/* Exponentially distributed random numbers from the range 0..256. */
let numbers: Vec<$t> =
(0..256).map(|_| (rng.gen::<u8>() >> rng.gen_range(0..u8::BITS)) as $t).collect();
bench.iter(|| {
for x in &numbers {
black_box(black_box(x).isqrt());
}
});
}
#[bench]
fn $random_uniform(bench: &mut Bencher) {
let mut rng = crate::bench_rng();
/* Exponentially distributed random numbers from the whole range of the type. */
let numbers: Vec<$t> = (0..256).map(|_| rng.gen::<$t>()).collect();
bench.iter(|| {
for x in &numbers {
black_box(black_box(x).isqrt());
}
});
}
};
}
int_sqrt_bench! {u8, u8_sqrt_predictable, u8_sqrt_random, u8_sqrt_random_small, u8_sqrt_uniform}
int_sqrt_bench! {u16, u16_sqrt_predictable, u16_sqrt_random, u16_sqrt_random_small, u16_sqrt_uniform}
int_sqrt_bench! {u32, u32_sqrt_predictable, u32_sqrt_random, u32_sqrt_random_small, u32_sqrt_uniform}
int_sqrt_bench! {u64, u64_sqrt_predictable, u64_sqrt_random, u64_sqrt_random_small, u64_sqrt_uniform}
int_sqrt_bench! {u128, u128_sqrt_predictable, u128_sqrt_random, u128_sqrt_random_small, u128_sqrt_uniform}

View File

@ -2,6 +2,7 @@ mod dec2flt;
mod flt2dec;
mod int_log;
mod int_pow;
mod int_sqrt;
use std::str::FromStr;

View File

@ -288,38 +288,6 @@ macro_rules! int_module {
assert_eq!(r.saturating_pow(0), 1 as $T);
}
#[test]
fn test_isqrt() {
assert_eq!($T::MIN.checked_isqrt(), None);
assert_eq!((-1 as $T).checked_isqrt(), None);
assert_eq!((0 as $T).isqrt(), 0 as $T);
assert_eq!((1 as $T).isqrt(), 1 as $T);
assert_eq!((2 as $T).isqrt(), 1 as $T);
assert_eq!((99 as $T).isqrt(), 9 as $T);
assert_eq!((100 as $T).isqrt(), 10 as $T);
}
#[cfg(not(miri))] // Miri is too slow
#[test]
fn test_lots_of_isqrt() {
let n_max: $T = (1024 * 1024).min($T::MAX as u128) as $T;
for n in 0..=n_max {
let isqrt: $T = n.isqrt();
assert!(isqrt.pow(2) <= n);
let (square, overflow) = (isqrt + 1).overflowing_pow(2);
assert!(overflow || square > n);
}
for n in ($T::MAX - 127)..=$T::MAX {
let isqrt: $T = n.isqrt();
assert!(isqrt.pow(2) <= n);
let (square, overflow) = (isqrt + 1).overflowing_pow(2);
assert!(overflow || square > n);
}
}
#[test]
fn test_div_floor() {
let a: $T = 8;

View File

@ -0,0 +1,248 @@
macro_rules! tests {
($isqrt_consistency_check_fn_macro:ident : $($T:ident)+) => {
$(
mod $T {
$isqrt_consistency_check_fn_macro!($T);
// Check that the following produce the correct values from
// `isqrt`:
//
// * the first and last 128 nonnegative values
// * powers of two, minus one
// * powers of two
//
// For signed types, check that `checked_isqrt` and `isqrt`
// either produce the same numeric value or respectively
// produce `None` and a panic. Make sure to do a consistency
// check for `<$T>::MIN` as well, as no nonnegative values
// negate to it.
//
// For unsigned types check that `isqrt` produces the same
// numeric value for `$T` and `NonZero<$T>`.
#[test]
fn isqrt() {
isqrt_consistency_check(<$T>::MIN);
for n in (0..=127)
.chain(<$T>::MAX - 127..=<$T>::MAX)
.chain((0..<$T>::MAX.count_ones()).map(|exponent| (1 << exponent) - 1))
.chain((0..<$T>::MAX.count_ones()).map(|exponent| 1 << exponent))
{
isqrt_consistency_check(n);
let isqrt_n = n.isqrt();
assert!(
isqrt_n
.checked_mul(isqrt_n)
.map(|isqrt_n_squared| isqrt_n_squared <= n)
.unwrap_or(false),
"`{n}.isqrt()` should be lower than {isqrt_n}."
);
assert!(
(isqrt_n + 1)
.checked_mul(isqrt_n + 1)
.map(|isqrt_n_plus_1_squared| n < isqrt_n_plus_1_squared)
.unwrap_or(true),
"`{n}.isqrt()` should be higher than {isqrt_n})."
);
}
}
// Check the square roots of:
//
// * the first 1,024 perfect squares
// * halfway between each of the first 1,024 perfect squares
// and the next perfect square
// * the next perfect square after the each of the first 1,024
// perfect squares, minus one
// * the last 1,024 perfect squares
// * the last 1,024 perfect squares, minus one
// * halfway between each of the last 1,024 perfect squares
// and the previous perfect square
#[test]
// Skip this test on Miri, as it takes too long to run.
#[cfg(not(miri))]
fn isqrt_extended() {
// The correct value is worked out by using the fact that
// the nth nonzero perfect square is the sum of the first n
// odd numbers:
//
// 1 = 1
// 4 = 1 + 3
// 9 = 1 + 3 + 5
// 16 = 1 + 3 + 5 + 7
//
// Note also that the last odd number added in is two times
// the square root of the previous perfect square, plus
// one:
//
// 1 = 2*0 + 1
// 3 = 2*1 + 1
// 5 = 2*2 + 1
// 7 = 2*3 + 1
//
// That means we can add the square root of this perfect
// square once to get about halfway to the next perfect
// square, then we can add the square root of this perfect
// square again to get to the next perfect square, minus
// one, then we can add one to get to the next perfect
// square.
//
// This allows us to, for each of the first 1,024 perfect
// squares, test that the square roots of the following are
// all correct and equal to each other:
//
// * the current perfect square
// * about halfway to the next perfect square
// * the next perfect square, minus one
let mut n: $T = 0;
for sqrt_n in 0..1_024.min((1_u128 << (<$T>::MAX.count_ones()/2)) - 1) as $T {
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"`{sqrt_n}.pow(2).isqrt()` should be {sqrt_n}."
);
n += sqrt_n;
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"{n} is about halfway between `{sqrt_n}.pow(2)` and `{}.pow(2)`, so `{n}.isqrt()` should be {sqrt_n}.",
sqrt_n + 1
);
n += sqrt_n;
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"`({}.pow(2) - 1).isqrt()` should be {sqrt_n}.",
sqrt_n + 1
);
n += 1;
}
// Similarly, for each of the last 1,024 perfect squares,
// check:
//
// * the current perfect square
// * the current perfect square, minus one
// * about halfway to the previous perfect square
//
// `MAX`'s `isqrt` return value is verified in the `isqrt`
// test function above.
let maximum_sqrt = <$T>::MAX.isqrt();
let mut n = maximum_sqrt * maximum_sqrt;
for sqrt_n in (maximum_sqrt - 1_024.min((1_u128 << (<$T>::MAX.count_ones()/2)) - 1) as $T..maximum_sqrt).rev() {
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n + 1,
"`{0}.pow(2).isqrt()` should be {0}.",
sqrt_n + 1
);
n -= 1;
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"`({}.pow(2) - 1).isqrt()` should be {sqrt_n}.",
sqrt_n + 1
);
n -= sqrt_n;
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"{n} is about halfway between `{sqrt_n}.pow(2)` and `{}.pow(2)`, so `{n}.isqrt()` should be {sqrt_n}.",
sqrt_n + 1
);
n -= sqrt_n;
}
}
}
)*
};
}
macro_rules! signed_check {
($T:ident) => {
/// This takes an input and, if it's nonnegative or
#[doc = concat!("`", stringify!($T), "::MIN`,")]
/// checks that `isqrt` and `checked_isqrt` produce equivalent results
/// for that input and for the negative of that input.
///
/// # Note
///
/// This cannot check that negative inputs to `isqrt` cause panics if
/// panics abort instead of unwind.
fn isqrt_consistency_check(n: $T) {
// `<$T>::MIN` will be negative, so ignore it in this nonnegative
// section.
if n >= 0 {
assert_eq!(
Some(n.isqrt()),
n.checked_isqrt(),
"`{n}.checked_isqrt()` should match `Some({n}.isqrt())`.",
);
}
// `wrapping_neg` so that `<$T>::MIN` will negate to itself rather
// than panicking.
let negative_n = n.wrapping_neg();
// Zero negated will still be nonnegative, so ignore it in this
// negative section.
if negative_n < 0 {
assert_eq!(
negative_n.checked_isqrt(),
None,
"`({negative_n}).checked_isqrt()` should be `None`, as {negative_n} is negative.",
);
// `catch_unwind` only works when panics unwind rather than abort.
#[cfg(panic = "unwind")]
{
std::panic::catch_unwind(core::panic::AssertUnwindSafe(|| (-n).isqrt())).expect_err(
&format!("`({negative_n}).isqrt()` should have panicked, as {negative_n} is negative.")
);
}
}
}
};
}
macro_rules! unsigned_check {
($T:ident) => {
/// This takes an input and, if it's nonzero, checks that `isqrt`
/// produces the same numeric value for both
#[doc = concat!("`", stringify!($T), "` and ")]
#[doc = concat!("`NonZero<", stringify!($T), ">`.")]
fn isqrt_consistency_check(n: $T) {
// Zero cannot be turned into a `NonZero` value, so ignore it in
// this nonzero section.
if n > 0 {
assert_eq!(
n.isqrt(),
core::num::NonZero::<$T>::new(n)
.expect(
"Was not able to create a new `NonZero` value from a nonzero number."
)
.isqrt()
.get(),
"`{n}.isqrt` should match `NonZero`'s `{n}.isqrt().get()`.",
);
}
}
};
}
tests!(signed_check: i8 i16 i32 i64 i128);
tests!(unsigned_check: u8 u16 u32 u64 u128);

View File

@ -27,6 +27,7 @@ mod const_from;
mod dec2flt;
mod flt2dec;
mod int_log;
mod int_sqrt;
mod ops;
mod wrapping;