Canonicalize before doing method resolution

This commit is contained in:
Florian Diebold 2019-05-01 17:57:56 +02:00
parent ef77d83751
commit 0ad7317b24
7 changed files with 186 additions and 154 deletions

View File

@ -350,7 +350,16 @@ impl SourceAnalyzer {
name: Option<&Name>,
callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
ty.iterate_method_candidates(db, &self.resolver, name, callback)
// There should be no inference vars in types passed here
// TODO check that?
let canonical = crate::ty::Canonical { value: ty, num_vars: 0 };
crate::ty::method_resolution::iterate_method_candidates(
&canonical,
db,
&self.resolver,
name,
callback,
)
}
#[cfg(test)]

View File

@ -234,6 +234,17 @@ impl TraitRef {
}
}
/// Basically a claim (currently not validated / checked) that the contained
/// type / trait ref contains no inference variables; any inference variables it
/// contained have been replaced by bound variables, and `num_vars` tells us how
/// many there are. This is used to erase irrelevant differences between types
/// before using them in queries.
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub(crate) struct Canonical<T> {
pub value: T,
pub num_vars: usize,
}
/// A function signature as seen by type inference: Several parameter types and
/// one return type.
#[derive(Clone, PartialEq, Eq, Debug)]

View File

@ -45,12 +45,11 @@ use crate::{
use super::{
Ty, TypableDef, Substs, primitive, op, ApplicationTy, TypeCtor, CallableDef, TraitRef,
traits::{Solution, Obligation, Guidance},
method_resolution,
};
mod unify;
pub(super) use unify::Canonical;
/// The entry point of type inference.
pub fn infer(db: &impl HirDatabase, def: DefWithBody) -> Arc<InferenceResult> {
db.check_canceled();
@ -878,9 +877,17 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
generic_args: Option<&GenericArgs>,
) -> Ty {
let receiver_ty = self.infer_expr(receiver, &Expectation::none());
let resolved = receiver_ty.clone().lookup_method(self.db, method_name, &self.resolver);
let mut canonicalizer = self.canonicalizer();
let canonical_receiver = canonicalizer.canonicalize_ty(receiver_ty.clone());
let resolved = method_resolution::lookup_method(
&canonical_receiver,
canonicalizer.ctx.db,
method_name,
&canonicalizer.ctx.resolver,
);
let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
Some((ty, func)) => {
let ty = canonicalizer.decanonicalize_ty(ty);
self.write_method_resolution(tgt_expr, func);
(
ty,

View File

@ -1,6 +1,8 @@
//! Unification and canonicalization logic.
use super::{InferenceContext, Ty, TraitRef, InferTy, HirDatabase};
use crate::db::HirDatabase;
use crate::ty::{Ty, Canonical, TraitRef, InferTy};
use super::InferenceContext;
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
pub(super) fn canonicalizer<'b>(&'b mut self) -> Canonicalizer<'a, 'b, D>
@ -13,13 +15,6 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
// TODO improve the interface of this
// TODO move further up?
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub(crate) struct Canonical<T> {
pub value: T,
pub num_vars: usize,
}
pub(super) struct Canonicalizer<'a, 'b, D: HirDatabase>
where
'a: 'b,
@ -68,6 +63,19 @@ where
Canonical { value, num_vars: self.free_vars.len() }
}
pub fn decanonicalize_ty(&self, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty {
Ty::Bound(idx) => {
if (idx as usize) < self.free_vars.len() {
Ty::Infer(self.free_vars[idx as usize].clone())
} else {
Ty::Bound(idx)
}
}
ty => ty,
})
}
pub fn apply_solution(&mut self, solution: Canonical<Vec<Ty>>) {
// the solution may contain new variables, which we need to convert to new inference vars
let new_vars =

View File

@ -16,7 +16,7 @@ use crate::{
generics::HasGenericParams,
ty::primitive::{UncertainIntTy, UncertainFloatTy}
};
use super::{TraitRef, infer::Canonical, Substs};
use super::{TraitRef, Canonical};
/// This is used as a key for indexing impls.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
@ -130,132 +130,123 @@ fn def_crate(db: &impl HirDatabase, cur_crate: Crate, ty: &Ty) -> Option<Crate>
}
}
/// Look up the method with the given name, returning the actual autoderefed
/// receiver type (but without autoref applied yet).
pub(crate) fn lookup_method(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
name: &Name,
resolver: &Resolver,
) -> Option<(Ty, Function)> {
iterate_method_candidates(ty, db, resolver, Some(name), |ty, f| Some((ty.clone(), f)))
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub(crate) fn iterate_method_candidates<T>(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
resolver: &Resolver,
name: Option<&Name>,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
// For method calls, rust first does any number of autoderef, and then one
// autoref (i.e. when the method takes &self or &mut self). We just ignore
// the autoref currently -- when we find a method matching the given name,
// we assume it fits.
// Also note that when we've got a receiver like &S, even if the method we
// find in the end takes &self, we still do the autoderef step (just as
// rustc does an autoderef and then autoref again).
let krate = resolver.krate()?;
for derefed_ty in ty.value.clone().autoderef(db) {
let derefed_ty = Canonical { value: derefed_ty, num_vars: ty.num_vars };
if let Some(result) = iterate_inherent_methods(&derefed_ty, db, name, krate, &mut callback)
{
return Some(result);
}
if let Some(result) =
iterate_trait_method_candidates(&derefed_ty, db, resolver, name, &mut callback)
{
return Some(result);
}
}
None
}
fn iterate_trait_method_candidates<T>(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
resolver: &Resolver,
name: Option<&Name>,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
let krate = resolver.krate()?;
'traits: for t in resolver.traits_in_scope() {
let data = t.trait_data(db);
// we'll be lazy about checking whether the type implements the
// trait, but if we find out it doesn't, we'll skip the rest of the
// iteration
let mut known_implemented = false;
for item in data.items() {
match item {
&TraitItem::Function(m) => {
let sig = m.signature(db);
if name.map_or(true, |name| sig.name() == name) && sig.has_self_param() {
if !known_implemented {
let trait_ref = canonical_trait_ref(db, t, ty.clone());
// FIXME cache this implements check (without solution) in a query?
if super::traits::implements(db, krate, trait_ref).is_none() {
continue 'traits;
}
}
known_implemented = true;
// TODO the self type is now canonicalized...
if let Some(result) = callback(&ty.value, m) {
return Some(result);
}
}
}
_ => {}
}
}
}
None
}
fn iterate_inherent_methods<T>(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
name: Option<&Name>,
krate: Crate,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
let krate = match def_crate(db, krate, &ty.value) {
Some(krate) => krate,
None => return None,
};
let impls = db.impls_in_crate(krate);
for impl_block in impls.lookup_impl_blocks(&ty.value) {
for item in impl_block.items(db) {
match item {
ImplItem::Method(f) => {
let sig = f.signature(db);
if name.map_or(true, |name| sig.name() == name) && sig.has_self_param() {
if let Some(result) = callback(&ty.value, f) {
return Some(result);
}
}
}
_ => {}
}
}
}
None
}
impl Ty {
/// Look up the method with the given name, returning the actual autoderefed
/// receiver type (but without autoref applied yet).
pub(crate) fn lookup_method(
self,
db: &impl HirDatabase,
name: &Name,
resolver: &Resolver,
) -> Option<(Ty, Function)> {
self.iterate_method_candidates(db, resolver, Some(name), |ty, f| Some((ty.clone(), f)))
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub(crate) fn iterate_method_candidates<T>(
self,
db: &impl HirDatabase,
resolver: &Resolver,
name: Option<&Name>,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
// For method calls, rust first does any number of autoderef, and then one
// autoref (i.e. when the method takes &self or &mut self). We just ignore
// the autoref currently -- when we find a method matching the given name,
// we assume it fits.
// Also note that when we've got a receiver like &S, even if the method we
// find in the end takes &self, we still do the autoderef step (just as
// rustc does an autoderef and then autoref again).
let krate = resolver.krate()?;
for derefed_ty in self.autoderef(db) {
if let Some(result) =
derefed_ty.iterate_inherent_methods(db, name, krate, &mut callback)
{
return Some(result);
}
if let Some(result) =
derefed_ty.iterate_trait_method_candidates(db, resolver, name, &mut callback)
{
return Some(result);
}
}
None
}
fn iterate_trait_method_candidates<T>(
&self,
db: &impl HirDatabase,
resolver: &Resolver,
name: Option<&Name>,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
let krate = resolver.krate()?;
'traits: for t in resolver.traits_in_scope() {
let data = t.trait_data(db);
// we'll be lazy about checking whether the type implements the
// trait, but if we find out it doesn't, we'll skip the rest of the
// iteration
let mut known_implemented = false;
for item in data.items() {
match item {
&TraitItem::Function(m) => {
let sig = m.signature(db);
if name.map_or(true, |name| sig.name() == name) && sig.has_self_param() {
if !known_implemented {
// TODO the self type may contain type
// variables, so we need to do proper
// canonicalization here
let trait_ref = TraitRef {
trait_: t,
substs: fresh_substs_for_trait(db, t, self.clone()),
};
let canonical = Canonical {
num_vars: trait_ref.substs.len(),
value: trait_ref,
};
// FIXME cache this implements check (without solution) in a query?
if super::traits::implements(db, krate, canonical).is_none() {
continue 'traits;
}
}
known_implemented = true;
if let Some(result) = callback(self, m) {
return Some(result);
}
}
}
_ => {}
}
}
}
None
}
fn iterate_inherent_methods<T>(
&self,
db: &impl HirDatabase,
name: Option<&Name>,
krate: Crate,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
let krate = match def_crate(db, krate, self) {
Some(krate) => krate,
None => return None,
};
let impls = db.impls_in_crate(krate);
for impl_block in impls.lookup_impl_blocks(self) {
for item in impl_block.items(db) {
match item {
ImplItem::Method(f) => {
let sig = f.signature(db);
if name.map_or(true, |name| sig.name() == name) && sig.has_self_param() {
if let Some(result) = callback(self, f) {
return Some(result);
}
}
}
_ => {}
}
}
}
None
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub fn iterate_impl_items<T>(
@ -280,17 +271,25 @@ impl Ty {
/// This creates Substs for a trait with the given Self type and type variables
/// for all other parameters, to query Chalk with it.
fn fresh_substs_for_trait(db: &impl HirDatabase, tr: Trait, self_ty: Ty) -> Substs {
fn canonical_trait_ref(
db: &impl HirDatabase,
trait_: Trait,
self_ty: Canonical<Ty>,
) -> Canonical<TraitRef> {
let mut substs = Vec::new();
let generics = tr.generic_params(db);
substs.push(self_ty);
let generics = trait_.generic_params(db);
let num_vars = self_ty.num_vars;
substs.push(self_ty.value);
substs.extend(
generics
.params_including_parent()
.into_iter()
.skip(1)
.enumerate()
.map(|(i, _p)| Ty::Bound(i as u32)),
.map(|(i, _p)| Ty::Bound((i + num_vars) as u32)),
);
substs.into()
Canonical {
num_vars: substs.len() - 1 + self_ty.num_vars,
value: TraitRef { trait_, substs: substs.into() },
}
}

View File

@ -4,7 +4,7 @@ use std::sync::{Arc, Mutex};
use chalk_ir::cast::Cast;
use crate::{Crate, Trait, db::HirDatabase, ImplBlock};
use super::{TraitRef, Ty, infer::Canonical};
use super::{TraitRef, Ty, Canonical};
use self::chalk::{ToChalk, from_chalk};
@ -86,10 +86,7 @@ pub(crate) fn implements(
solution.map(|solution| solution_from_chalk(db, solution))
}
fn solution_from_chalk(
db: &impl HirDatabase,
solution: chalk_solve::Solution,
) -> Solution {
fn solution_from_chalk(db: &impl HirDatabase, solution: chalk_solve::Solution) -> Solution {
let convert_subst = |subst: chalk_ir::Canonical<chalk_ir::Substitution>| {
let value = subst
.value

View File

@ -32,8 +32,7 @@ impl ToChalk for Ty {
match self {
Ty::Apply(apply_ty) => chalk_ir::Ty::Apply(apply_ty.to_chalk(db)),
Ty::Param { idx, .. } => {
PlaceholderIndex { ui: UniverseIndex::ROOT, idx: idx as usize }
.to_ty()
PlaceholderIndex { ui: UniverseIndex::ROOT, idx: idx as usize }.to_ty()
}
Ty::Bound(idx) => chalk_ir::Ty::BoundVar(idx as usize),
Ty::Infer(_infer_ty) => panic!("uncanonicalized infer ty"),
@ -74,9 +73,7 @@ impl ToChalk for ApplicationTy {
fn from_chalk(db: &impl HirDatabase, apply_ty: chalk_ir::ApplicationTy) -> ApplicationTy {
let ctor = match apply_ty.name {
TypeName::TypeKindId(TypeKindId::StructId(struct_id)) => {
from_chalk(db, struct_id)
}
TypeName::TypeKindId(TypeKindId::StructId(struct_id)) => from_chalk(db, struct_id),
TypeName::TypeKindId(_) => unimplemented!(),
TypeName::Placeholder(_) => unimplemented!(),
TypeName::AssociatedType(_) => unimplemented!(),
@ -267,7 +264,11 @@ where
.map(|impl_block| impl_block.to_chalk(self.db))
.collect()
}
fn impl_provided_for(&self, auto_trait_id: chalk_ir::TraitId, struct_id: chalk_ir::StructId) -> bool {
fn impl_provided_for(
&self,
auto_trait_id: chalk_ir::TraitId,
struct_id: chalk_ir::StructId,
) -> bool {
eprintln!("impl_provided_for {:?}, {:?}", auto_trait_id, struct_id);
false // FIXME
}