mirror of
https://github.com/rust-lang/rust.git
synced 2025-02-13 07:24:00 +00:00
Major revision to the dropck_legal_cycles test.
1. Added big comment block explaining the test framework. 2. Added tests exericising Rc and Arc. This was inspired by a comment from eefriedman on PR #28861. 3. Made the cycle-detection not issue false-positives on acyclic dags. Doing this efficiently required revising the framework; instead of visiting all children (i.e. doing a traversal), now each test is responsible for supplying the path that will act as a witness to the cycle. Luckily for me, all of the pre-existing tests worked with a trivial path built from "always tke your first left", but new tests I added did require other input paths (i.e., "first turn right, then left". (The path representation is a bit-string and its branches are n-ary, not word phrases and binary branches as you might think from the outline above.)
This commit is contained in:
parent
c298efdb1f
commit
098a7a07ee
@ -24,9 +24,92 @@
|
||||
// through the collection, for every collection type that supports
|
||||
// this.
|
||||
|
||||
#![feature(vecmap)]
|
||||
// HIGH LEVEL DESCRIPTION OF THE TEST ARCHITECTURE
|
||||
// -----------------------------------------------
|
||||
//
|
||||
// We pick a data structure and want to make a cyclic construction
|
||||
// from it. Each test of interest is labelled starting with "Cycle N:
|
||||
// { ... }" where N is the test number and the "..."`is filled in with
|
||||
// a graphviz-style description of the graph structure that the
|
||||
// author believes is being made. So "{ a -> b, b -> (c,d), (c,d) -> e }"
|
||||
// describes a line connected to a diamond:
|
||||
//
|
||||
// c
|
||||
// / \
|
||||
// a - b e
|
||||
// \ /
|
||||
// d
|
||||
//
|
||||
// (Note that the above directed graph is actually acyclic.)
|
||||
//
|
||||
// The different graph structures are often composed of different data
|
||||
// types. Some may be built atop `Vec`, others atop `HashMap`, etc.
|
||||
//
|
||||
// For each graph structure, we actually *confirm* that a cycle exists
|
||||
// (as a safe-guard against a test author accidentally leaving it out)
|
||||
// by traversing each graph and "proving" that a cycle exists within it.
|
||||
//
|
||||
// To do this, while trying to keep the code uniform (despite working
|
||||
// with different underlying collection and smart-pointer types), we
|
||||
// have a standard traversal API:
|
||||
//
|
||||
// 1. every node in the graph carries a `mark` (a u32, init'ed to 0).
|
||||
//
|
||||
// 2. every node provides a method to visit its children
|
||||
//
|
||||
// 3. a traversal attmepts to visit the nodes of the graph and prove that
|
||||
// it sees the same node twice. It does this by setting the mark of each
|
||||
// node to a fresh non-zero value, and if it sees the current mark, it
|
||||
// "knows" that it must have found a cycle, and stops attempting further
|
||||
// traversal.
|
||||
//
|
||||
// 4. each traversal is controlled by a bit-string that tells it which child
|
||||
// it visit when it can take different paths. As a simple example,
|
||||
// in a binary tree, 0 could mean "left" (and 1, "right"), so that
|
||||
// "00010" means "left, left, left, right, left". (In general it will
|
||||
// read as many bits as it needs to choose one child.)
|
||||
//
|
||||
// The graphs in this test are all meant to be very small, and thus
|
||||
// short bitstrings of less than 64 bits should always suffice.
|
||||
//
|
||||
// (An earlier version of this test infrastructure simply had any
|
||||
// given traversal visit all children it encountered, in a
|
||||
// depth-first manner; one problem with this approach is that an
|
||||
// acyclic graph can still have sharing, which would then be treated
|
||||
// as a repeat mark and reported as a detected cycle.)
|
||||
//
|
||||
// The travseral code is a little more complicated because it has been
|
||||
// programmed in a somewhat defensive manner. For example it also has
|
||||
// a max threshold for the number of nodes it will visit, to guard
|
||||
// against scenarios where the nodes are not correctly setting their
|
||||
// mark when asked. There are various other methods not discussed here
|
||||
// that are for aiding debugging the test when it runs, such as the
|
||||
// `name` method that all nodes provide.
|
||||
//
|
||||
// So each test:
|
||||
//
|
||||
// 1. allocates the nodes in the graph,
|
||||
//
|
||||
// 2. sets up the links in the graph,
|
||||
//
|
||||
// 3. clones the "ContextData"
|
||||
//
|
||||
// 4. chooses a new current mark value for this test
|
||||
//
|
||||
// 5. initiates a traversal, potentially from multiple starting points
|
||||
// (aka "roots"), with a given control-string (potentially a
|
||||
// different string for each root). if it does start from a
|
||||
// distinct root, then such a test should also increment the
|
||||
// current mark value, so that this traversal is considered
|
||||
// distinct from the prior one on this graph structure.
|
||||
//
|
||||
// Note that most of the tests work with the default control string
|
||||
// of all-zeroes.
|
||||
//
|
||||
// 6. assert that the context confirms that it actually saw a cycle (since a traversal
|
||||
// might have terminated, e.g. on a tree structure that contained no cycles).
|
||||
|
||||
use std::cell::Cell;
|
||||
use std::cell::{Cell, RefCell};
|
||||
use std::cmp::Ordering;
|
||||
use std::collections::BinaryHeap;
|
||||
use std::collections::HashMap;
|
||||
@ -35,6 +118,8 @@ use std::collections::VecDeque;
|
||||
use std::collections::btree_map::BTreeMap;
|
||||
use std::collections::btree_set::BTreeSet;
|
||||
use std::hash::{Hash, Hasher};
|
||||
use std::rc::Rc;
|
||||
use std::sync::{Arc, RwLock, Mutex};
|
||||
|
||||
const PRINT: bool = false;
|
||||
|
||||
@ -47,8 +132,28 @@ pub fn main() {
|
||||
skipped: 0,
|
||||
curr_mark: 0,
|
||||
saw_prev_marked: false,
|
||||
control_bits: 0,
|
||||
};
|
||||
|
||||
// SANITY CHECK FOR TEST SUITE (thus unnumbered)
|
||||
// Not a cycle: { v[0] -> (v[1], v[2]), v[1] -> v[3], v[2] -> v[3] };
|
||||
let v: Vec<S2> = vec![Named::new("s0"),
|
||||
Named::new("s1"),
|
||||
Named::new("s2"),
|
||||
Named::new("s3")];
|
||||
v[0].next.set((Some(&v[1]), Some(&v[2])));
|
||||
v[1].next.set((Some(&v[3]), None));
|
||||
v[2].next.set((Some(&v[3]), None));
|
||||
v[3].next.set((None, None));
|
||||
|
||||
let mut c = c_orig.clone();
|
||||
c.curr_mark = 10;
|
||||
assert!(!c.saw_prev_marked);
|
||||
v[0].descend_into_self(&mut c);
|
||||
assert!(!c.saw_prev_marked); // <-- different from below, b/c acyclic above
|
||||
|
||||
if PRINT { println!(""); }
|
||||
|
||||
// Cycle 1: { v[0] -> v[1], v[1] -> v[0] };
|
||||
// does not exercise `v` itself
|
||||
let v: Vec<S> = vec![Named::new("s0"),
|
||||
@ -59,7 +164,7 @@ pub fn main() {
|
||||
let mut c = c_orig.clone();
|
||||
c.curr_mark = 10;
|
||||
assert!(!c.saw_prev_marked);
|
||||
v[0].for_each_child(&mut c);
|
||||
v[0].descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
|
||||
if PRINT { println!(""); }
|
||||
@ -72,7 +177,7 @@ pub fn main() {
|
||||
let mut c = c_orig.clone();
|
||||
c.curr_mark = 20;
|
||||
assert!(!c.saw_prev_marked);
|
||||
v.for_each_child(&mut c);
|
||||
v.descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
|
||||
if PRINT { println!(""); }
|
||||
@ -93,7 +198,7 @@ pub fn main() {
|
||||
for (key, _) in h.iter() {
|
||||
c.curr_mark += 1;
|
||||
c.saw_prev_marked = false;
|
||||
key.for_each_child(&mut c);
|
||||
key.descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
}
|
||||
|
||||
@ -115,7 +220,7 @@ pub fn main() {
|
||||
for (key, _) in h.iter() {
|
||||
c.curr_mark += 1;
|
||||
c.saw_prev_marked = false;
|
||||
key.for_each_child(&mut c);
|
||||
key.descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
// break;
|
||||
}
|
||||
@ -133,7 +238,7 @@ pub fn main() {
|
||||
let mut c = c_orig.clone();
|
||||
c.curr_mark = 50;
|
||||
assert!(!c.saw_prev_marked);
|
||||
vd[0].for_each_child(&mut c);
|
||||
vd[0].descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
|
||||
if PRINT { println!(""); }
|
||||
@ -148,7 +253,7 @@ pub fn main() {
|
||||
let mut c = c_orig.clone();
|
||||
c.curr_mark = 60;
|
||||
assert!(!c.saw_prev_marked);
|
||||
vd[0].for_each_child(&mut c);
|
||||
vd[0].descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
|
||||
if PRINT { println!(""); }
|
||||
@ -163,7 +268,7 @@ pub fn main() {
|
||||
let mut c = c_orig.clone();
|
||||
c.curr_mark = 70;
|
||||
assert!(!c.saw_prev_marked);
|
||||
vm[&0].for_each_child(&mut c);
|
||||
vm[&0].descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
|
||||
if PRINT { println!(""); }
|
||||
@ -181,7 +286,7 @@ pub fn main() {
|
||||
for e in &ll {
|
||||
c.curr_mark += 1;
|
||||
c.saw_prev_marked = false;
|
||||
e.for_each_child(&mut c);
|
||||
e.descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
// break;
|
||||
}
|
||||
@ -201,7 +306,7 @@ pub fn main() {
|
||||
for b in &bh {
|
||||
c.curr_mark += 1;
|
||||
c.saw_prev_marked = false;
|
||||
b.for_each_child(&mut c);
|
||||
b.descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
// break;
|
||||
}
|
||||
@ -222,7 +327,7 @@ pub fn main() {
|
||||
for (k, _) in &btm {
|
||||
c.curr_mark += 1;
|
||||
c.saw_prev_marked = false;
|
||||
k.for_each_child(&mut c);
|
||||
k.descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
// break;
|
||||
}
|
||||
@ -242,10 +347,98 @@ pub fn main() {
|
||||
for b in &bts {
|
||||
c.curr_mark += 1;
|
||||
c.saw_prev_marked = false;
|
||||
b.for_each_child(&mut c);
|
||||
b.descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
// break;
|
||||
}
|
||||
|
||||
if PRINT { println!(""); }
|
||||
|
||||
// Cycle 11: { rc0 -> (rc1, rc2), rc1 -> (), rc2 -> rc0 }
|
||||
let (rc0, rc1, rc2): (RCRC, RCRC, RCRC);
|
||||
rc0 = RCRC::new("rcrc0");
|
||||
rc1 = RCRC::new("rcrc1");
|
||||
rc2 = RCRC::new("rcrc2");
|
||||
rc0.0.borrow_mut().children.0 = Some(&rc1);
|
||||
rc0.0.borrow_mut().children.1 = Some(&rc2);
|
||||
rc2.0.borrow_mut().children.0 = Some(&rc0);
|
||||
|
||||
let mut c = c_orig.clone();
|
||||
c.control_bits = 0b1;
|
||||
c.curr_mark = 110;
|
||||
assert!(!c.saw_prev_marked);
|
||||
rc0.descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
|
||||
if PRINT { println!(""); }
|
||||
|
||||
// We want to take the previous Rc case and generalize it to Arc.
|
||||
//
|
||||
// We can use refcells if we're single-threaded (as this test is).
|
||||
// If one were to generalize these constructions to a
|
||||
// multi-threaded context, then it might seem like we could choose
|
||||
// between either a RwLock or a Mutex to hold the owned arcs on
|
||||
// each node.
|
||||
//
|
||||
// Part of the point of this test is to actually confirm that the
|
||||
// cycle exists by traversing it. We can do that just fine with an
|
||||
// RwLock (since we can grab the child pointers in read-only
|
||||
// mode), but we cannot lock a std::sync::Mutex to guard reading
|
||||
// from each node via the same pattern, since once you hit the
|
||||
// cycle, you'll be trying to acquring the same lock twice.
|
||||
// (We deal with this by exiting the traversal early if try_lock fails.)
|
||||
|
||||
// Cycle 12: { arc0 -> (arc1, arc2), arc1 -> (), arc2 -> arc0 }, refcells
|
||||
let (arc0, arc1, arc2): (ARCRC, ARCRC, ARCRC);
|
||||
arc0 = ARCRC::new("arcrc0");
|
||||
arc1 = ARCRC::new("arcrc1");
|
||||
arc2 = ARCRC::new("arcrc2");
|
||||
arc0.0.borrow_mut().children.0 = Some(&arc1);
|
||||
arc0.0.borrow_mut().children.1 = Some(&arc2);
|
||||
arc2.0.borrow_mut().children.0 = Some(&arc0);
|
||||
|
||||
let mut c = c_orig.clone();
|
||||
c.control_bits = 0b1;
|
||||
c.curr_mark = 110;
|
||||
assert!(!c.saw_prev_marked);
|
||||
arc0.descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
|
||||
if PRINT { println!(""); }
|
||||
|
||||
// Cycle 13: { arc0 -> (arc1, arc2), arc1 -> (), arc2 -> arc0 }, rwlocks
|
||||
let (arc0, arc1, arc2): (ARCRW, ARCRW, ARCRW);
|
||||
arc0 = ARCRW::new("arcrw0");
|
||||
arc1 = ARCRW::new("arcrw1");
|
||||
arc2 = ARCRW::new("arcrw2");
|
||||
arc0.0.write().unwrap().children.0 = Some(&arc1);
|
||||
arc0.0.write().unwrap().children.1 = Some(&arc2);
|
||||
arc2.0.write().unwrap().children.0 = Some(&arc0);
|
||||
|
||||
let mut c = c_orig.clone();
|
||||
c.control_bits = 0b1;
|
||||
c.curr_mark = 110;
|
||||
assert!(!c.saw_prev_marked);
|
||||
arc0.descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
|
||||
if PRINT { println!(""); }
|
||||
|
||||
// Cycle 14: { arc0 -> (arc1, arc2), arc1 -> (), arc2 -> arc0 }, mutexs
|
||||
let (arc0, arc1, arc2): (ARCM, ARCM, ARCM);
|
||||
arc0 = ARCM::new("arcm0");
|
||||
arc1 = ARCM::new("arcm1");
|
||||
arc2 = ARCM::new("arcm2");
|
||||
arc0.1.lock().unwrap().children.0 = Some(&arc1);
|
||||
arc0.1.lock().unwrap().children.1 = Some(&arc2);
|
||||
arc2.1.lock().unwrap().children.0 = Some(&arc0);
|
||||
|
||||
let mut c = c_orig.clone();
|
||||
c.control_bits = 0b1;
|
||||
c.curr_mark = 110;
|
||||
assert!(!c.saw_prev_marked);
|
||||
arc0.descend_into_self(&mut c);
|
||||
assert!(c.saw_prev_marked);
|
||||
}
|
||||
|
||||
trait Named {
|
||||
@ -276,6 +469,26 @@ impl<'a> Marked<u32> for S<'a> {
|
||||
fn set_mark(&self, mark: u32) { self.mark.set(mark); }
|
||||
}
|
||||
|
||||
struct S2<'a> {
|
||||
name: &'static str,
|
||||
mark: Cell<u32>,
|
||||
next: Cell<(Option<&'a S2<'a>>, Option<&'a S2<'a>>)>,
|
||||
}
|
||||
|
||||
impl<'a> Named for S2<'a> {
|
||||
fn new<'b>(name: &'static str) -> S2<'b> {
|
||||
S2 { name: name, mark: Cell::new(0), next: Cell::new((None, None)) }
|
||||
}
|
||||
fn name(&self) -> &str { self.name }
|
||||
}
|
||||
|
||||
impl<'a> Marked<u32> for S2<'a> {
|
||||
fn mark(&self) -> u32 { self.mark.get() }
|
||||
fn set_mark(&self, mark: u32) {
|
||||
self.mark.set(mark);
|
||||
}
|
||||
}
|
||||
|
||||
struct V<'a> {
|
||||
name: &'static str,
|
||||
mark: Cell<u32>,
|
||||
@ -549,8 +762,168 @@ impl<'a> Ord for BTS<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct RCRCData<'a> {
|
||||
name: &'static str,
|
||||
mark: Cell<u32>,
|
||||
children: (Option<&'a RCRC<'a>>, Option<&'a RCRC<'a>>),
|
||||
}
|
||||
#[derive(Clone)]
|
||||
struct RCRC<'a>(Rc<RefCell<RCRCData<'a>>>);
|
||||
|
||||
impl<'a> Named for RCRC<'a> {
|
||||
fn new(name: &'static str) -> Self {
|
||||
RCRC(Rc::new(RefCell::new(RCRCData {
|
||||
name: name, mark: Cell::new(0), children: (None, None), })))
|
||||
}
|
||||
fn name(&self) -> &str { self.0.borrow().name }
|
||||
}
|
||||
|
||||
impl<'a> Marked<u32> for RCRC<'a> {
|
||||
fn mark(&self) -> u32 { self.0.borrow().mark.get() }
|
||||
fn set_mark(&self, mark: u32) { self.0.borrow().mark.set(mark); }
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for RCRC<'a> {
|
||||
fn count_children(&self) -> usize { 2 }
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<Self>, Self: Sized
|
||||
{
|
||||
let children = &self.0.borrow().children;
|
||||
let child = match index {
|
||||
0 => if let Some(child) = children.0 { child } else { return; },
|
||||
1 => if let Some(child) = children.1 { child } else { return; },
|
||||
_ => panic!("bad children"),
|
||||
};
|
||||
// println!("S2 {} descending into child {} at index {}", self.name, child.name, index);
|
||||
child.descend_into_self(context);
|
||||
}
|
||||
}
|
||||
#[derive(Clone)]
|
||||
struct ARCRCData<'a> {
|
||||
name: &'static str,
|
||||
mark: Cell<u32>,
|
||||
children: (Option<&'a ARCRC<'a>>, Option<&'a ARCRC<'a>>),
|
||||
}
|
||||
#[derive(Clone)]
|
||||
struct ARCRC<'a>(Arc<RefCell<ARCRCData<'a>>>);
|
||||
|
||||
impl<'a> Named for ARCRC<'a> {
|
||||
fn new(name: &'static str) -> Self {
|
||||
ARCRC(Arc::new(RefCell::new(ARCRCData {
|
||||
name: name, mark: Cell::new(0), children: (None, None), })))
|
||||
}
|
||||
fn name(&self) -> &str { self.0.borrow().name }
|
||||
}
|
||||
|
||||
impl<'a> Marked<u32> for ARCRC<'a> {
|
||||
fn mark(&self) -> u32 { self.0.borrow().mark.get() }
|
||||
fn set_mark(&self, mark: u32) { self.0.borrow().mark.set(mark); }
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for ARCRC<'a> {
|
||||
fn count_children(&self) -> usize { 2 }
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<Self>, Self: Sized
|
||||
{
|
||||
let children = &self.0.borrow().children;
|
||||
match index {
|
||||
0 => if let Some(ref child) = children.0 {
|
||||
child.descend_into_self(context);
|
||||
},
|
||||
1 => if let Some(ref child) = children.1 {
|
||||
child.descend_into_self(context);
|
||||
},
|
||||
_ => panic!("bad children!"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct ARCMData<'a> {
|
||||
mark: Cell<u32>,
|
||||
children: (Option<&'a ARCM<'a>>, Option<&'a ARCM<'a>>),
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct ARCM<'a>(&'static str, Arc<Mutex<ARCMData<'a>>>);
|
||||
|
||||
impl<'a> Named for ARCM<'a> {
|
||||
fn new(name: &'static str) -> Self {
|
||||
ARCM(name, Arc::new(Mutex::new(ARCMData {
|
||||
mark: Cell::new(0), children: (None, None), })))
|
||||
}
|
||||
fn name(&self) -> &str { self.0 }
|
||||
}
|
||||
|
||||
impl<'a> Marked<u32> for ARCM<'a> {
|
||||
fn mark(&self) -> u32 { self.1.lock().unwrap().mark.get() }
|
||||
fn set_mark(&self, mark: u32) { self.1.lock().unwrap().mark.set(mark); }
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for ARCM<'a> {
|
||||
fn count_children(&self) -> usize { 2 }
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<Self>, Self: Sized
|
||||
{
|
||||
let ref children = if let Ok(data) = self.1.try_lock() {
|
||||
data.children
|
||||
} else { return; };
|
||||
match index {
|
||||
0 => if let Some(ref child) = children.0 {
|
||||
child.descend_into_self(context);
|
||||
},
|
||||
1 => if let Some(ref child) = children.1 {
|
||||
child.descend_into_self(context);
|
||||
},
|
||||
_ => panic!("bad children!"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct ARCRWData<'a> {
|
||||
name: &'static str,
|
||||
mark: Cell<u32>,
|
||||
children: (Option<&'a ARCRW<'a>>, Option<&'a ARCRW<'a>>),
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct ARCRW<'a>(Arc<RwLock<ARCRWData<'a>>>);
|
||||
|
||||
impl<'a> Named for ARCRW<'a> {
|
||||
fn new(name: &'static str) -> Self {
|
||||
ARCRW(Arc::new(RwLock::new(ARCRWData {
|
||||
name: name, mark: Cell::new(0), children: (None, None), })))
|
||||
}
|
||||
fn name(&self) -> &str { self.0.read().unwrap().name }
|
||||
}
|
||||
|
||||
impl<'a> Marked<u32> for ARCRW<'a> {
|
||||
fn mark(&self) -> u32 { self.0.read().unwrap().mark.get() }
|
||||
fn set_mark(&self, mark: u32) { self.0.read().unwrap().mark.set(mark); }
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for ARCRW<'a> {
|
||||
fn count_children(&self) -> usize { 2 }
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<Self>, Self: Sized
|
||||
{
|
||||
let children = &self.0.read().unwrap().children;
|
||||
match index {
|
||||
0 => if let Some(ref child) = children.0 {
|
||||
child.descend_into_self(context);
|
||||
},
|
||||
1 => if let Some(ref child) = children.1 {
|
||||
child.descend_into_self(context);
|
||||
},
|
||||
_ => panic!("bad children!"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
trait Context {
|
||||
fn next_index(&mut self, len: usize) -> usize;
|
||||
fn should_act(&self) -> bool;
|
||||
fn increase_visited(&mut self);
|
||||
fn increase_skipped(&mut self);
|
||||
@ -565,9 +938,17 @@ trait PrePost<T> {
|
||||
}
|
||||
|
||||
trait Children<'a> {
|
||||
fn for_each_child<C>(&self, context: &mut C)
|
||||
fn count_children(&self) -> usize;
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<Self>, Self: Sized;
|
||||
|
||||
fn next_child<C>(&self, context: &mut C)
|
||||
where C: Context + PrePost<Self>, Self: Sized
|
||||
{
|
||||
let index = context.next_index(self.count_children());
|
||||
self.descend_one_child(context, index);
|
||||
}
|
||||
|
||||
fn descend_into_self<C>(&self, context: &mut C)
|
||||
where C: Context + PrePost<Self>, Self: Sized
|
||||
{
|
||||
@ -575,7 +956,7 @@ trait Children<'a> {
|
||||
if context.should_act() {
|
||||
context.increase_visited();
|
||||
context.increase_depth();
|
||||
self.for_each_child(context);
|
||||
self.next_child(context);
|
||||
context.decrease_depth();
|
||||
} else {
|
||||
context.hit_limit(self);
|
||||
@ -594,51 +975,73 @@ trait Children<'a> {
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for S<'a> {
|
||||
fn for_each_child<C>(&self, context: &mut C)
|
||||
where C: Context + PrePost<S<'a>>
|
||||
fn count_children(&self) -> usize { 1 }
|
||||
fn descend_one_child<C>(&self, context: &mut C, _: usize)
|
||||
where C: Context + PrePost<Self>, Self: Sized {
|
||||
self.descend(&self.next, context);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for S2<'a> {
|
||||
fn count_children(&self) -> usize { 2 }
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<Self>, Self: Sized
|
||||
{
|
||||
self.descend(&self.next, context);
|
||||
let children = self.next.get();
|
||||
let child = match index {
|
||||
0 => if let Some(child) = children.0 { child } else { return; },
|
||||
1 => if let Some(child) = children.1 { child } else { return; },
|
||||
_ => panic!("bad children"),
|
||||
};
|
||||
// println!("S2 {} descending into child {} at index {}", self.name, child.name, index);
|
||||
child.descend_into_self(context);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for V<'a> {
|
||||
fn for_each_child<C>(&self, context: &mut C)
|
||||
where C: Context + PrePost<V<'a>>
|
||||
fn count_children(&self) -> usize { self.contents.len() }
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<Self>, Self: Sized
|
||||
{
|
||||
for r in &self.contents {
|
||||
self.descend(r, context);
|
||||
if let Some(child) = self.contents[index].get() {
|
||||
child.descend_into_self(context);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for H<'a> {
|
||||
fn for_each_child<C>(&self, context: &mut C)
|
||||
where C: Context + PrePost<H<'a>>
|
||||
fn count_children(&self) -> usize { 1 }
|
||||
fn descend_one_child<C>(&self, context: &mut C, _: usize)
|
||||
where C: Context + PrePost<Self>, Self: Sized
|
||||
{
|
||||
self.descend(&self.next, context);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for HM<'a> {
|
||||
fn for_each_child<C>(&self, context: &mut C)
|
||||
where C: Context + PrePost<HM<'a>>
|
||||
fn count_children(&self) -> usize {
|
||||
if let Some(m) = self.contents.get() { 2 * m.iter().count() } else { 0 }
|
||||
}
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<Self>, Self: Sized
|
||||
{
|
||||
if let Some(ref hm) = self.contents.get() {
|
||||
for (k, v) in hm.iter() {
|
||||
for r in &[k, v] {
|
||||
r.descend_into_self(context);
|
||||
}
|
||||
for (k, v) in hm.iter().nth(index / 2) {
|
||||
[k, v][index % 2].descend_into_self(context);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for VD<'a> {
|
||||
fn for_each_child<C>(&self, context: &mut C)
|
||||
where C: Context + PrePost<VD<'a>>
|
||||
fn count_children(&self) -> usize {
|
||||
if let Some(d) = self.contents.get() { d.iter().count() } else { 0 }
|
||||
}
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<Self>, Self: Sized
|
||||
{
|
||||
if let Some(ref vd) = self.contents.get() {
|
||||
for r in vd.iter() {
|
||||
for r in vd.iter().nth(index) {
|
||||
r.descend_into_self(context);
|
||||
}
|
||||
}
|
||||
@ -646,11 +1049,14 @@ impl<'a> Children<'a> for VD<'a> {
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for VM<'a> {
|
||||
fn for_each_child<C>(&self, context: &mut C)
|
||||
fn count_children(&self) -> usize {
|
||||
if let Some(m) = self.contents.get() { m.iter().count() } else { 0 }
|
||||
}
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<VM<'a>>
|
||||
{
|
||||
if let Some(ref vd) = self.contents.get() {
|
||||
for (_idx, r) in vd.iter() {
|
||||
for (_idx, r) in vd.iter().nth(index) {
|
||||
r.descend_into_self(context);
|
||||
}
|
||||
}
|
||||
@ -658,11 +1064,14 @@ impl<'a> Children<'a> for VM<'a> {
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for LL<'a> {
|
||||
fn for_each_child<C>(&self, context: &mut C)
|
||||
fn count_children(&self) -> usize {
|
||||
if let Some(l) = self.contents.get() { l.iter().count() } else { 0 }
|
||||
}
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<LL<'a>>
|
||||
{
|
||||
if let Some(ref ll) = self.contents.get() {
|
||||
for r in ll.iter() {
|
||||
for r in ll.iter().nth(index) {
|
||||
r.descend_into_self(context);
|
||||
}
|
||||
}
|
||||
@ -670,11 +1079,14 @@ impl<'a> Children<'a> for LL<'a> {
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for BH<'a> {
|
||||
fn for_each_child<C>(&self, context: &mut C)
|
||||
fn count_children(&self) -> usize {
|
||||
if let Some(h) = self.contents.get() { h.iter().count() } else { 0 }
|
||||
}
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<BH<'a>>
|
||||
{
|
||||
if let Some(ref bh) = self.contents.get() {
|
||||
for r in bh.iter() {
|
||||
for r in bh.iter().nth(index) {
|
||||
r.descend_into_self(context);
|
||||
}
|
||||
}
|
||||
@ -682,25 +1094,29 @@ impl<'a> Children<'a> for BH<'a> {
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for BTM<'a> {
|
||||
fn for_each_child<C>(&self, context: &mut C)
|
||||
fn count_children(&self) -> usize {
|
||||
if let Some(m) = self.contents.get() { 2 * m.iter().count() } else { 0 }
|
||||
}
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<BTM<'a>>
|
||||
{
|
||||
if let Some(ref bh) = self.contents.get() {
|
||||
for (k, v) in bh.iter() {
|
||||
for r in &[k, v] {
|
||||
r.descend_into_self(context);
|
||||
}
|
||||
for (k, v) in bh.iter().nth(index / 2) {
|
||||
[k, v][index % 2].descend_into_self(context);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Children<'a> for BTS<'a> {
|
||||
fn for_each_child<C>(&self, context: &mut C)
|
||||
fn count_children(&self) -> usize {
|
||||
if let Some(s) = self.contents.get() { s.iter().count() } else { 0 }
|
||||
}
|
||||
fn descend_one_child<C>(&self, context: &mut C, index: usize)
|
||||
where C: Context + PrePost<BTS<'a>>
|
||||
{
|
||||
if let Some(ref bh) = self.contents.get() {
|
||||
for r in bh.iter() {
|
||||
for r in bh.iter().nth(index) {
|
||||
r.descend_into_self(context);
|
||||
}
|
||||
}
|
||||
@ -716,9 +1132,27 @@ struct ContextData {
|
||||
skipped: usize,
|
||||
curr_mark: u32,
|
||||
saw_prev_marked: bool,
|
||||
control_bits: u64,
|
||||
}
|
||||
|
||||
impl Context for ContextData {
|
||||
fn next_index(&mut self, len: usize) -> usize {
|
||||
if len < 2 { return 0; }
|
||||
let mut pow2 = len.next_power_of_two();
|
||||
let _pow2_orig = pow2;
|
||||
let mut idx = 0;
|
||||
let mut bits = self.control_bits;
|
||||
while pow2 > 1 {
|
||||
idx = (idx << 1) | (bits & 1) as usize;
|
||||
bits = bits >> 1;
|
||||
pow2 = pow2 >> 1;
|
||||
}
|
||||
idx = idx % len;
|
||||
// println!("next_index({} [{:b}]) says {}, pre(bits): {:b} post(bits): {:b}",
|
||||
// len, _pow2_orig, idx, self.control_bits, bits);
|
||||
self.control_bits = bits;
|
||||
return idx;
|
||||
}
|
||||
fn should_act(&self) -> bool {
|
||||
self.curr_depth < self.max_depth && self.visited < self.max_visits
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user