Implement unsizing in the new trait solver

This commit is contained in:
Michael Goulet 2023-01-23 22:33:59 +00:00
parent 006ca9b14d
commit 085a48e798
4 changed files with 217 additions and 0 deletions

View File

@ -173,6 +173,14 @@ pub(super) trait GoalKind<'tcx>: TypeFoldable<'tcx> + Copy + Eq {
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// Implement unsizing. The most common forms of unsizing are array to slice,
// and concrete (Sized) type into a `dyn Trait`. ADTs and Tuples can also
// have their final field unsized if it's generic.
fn consider_builtin_unsize_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
}
impl<'tcx> EvalCtxt<'_, 'tcx> {
@ -303,6 +311,8 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
G::consider_builtin_future_candidate(self, goal)
} else if lang_items.gen_trait() == Some(trait_def_id) {
G::consider_builtin_generator_candidate(self, goal)
} else if lang_items.unsize_trait() == Some(trait_def_id) {
G::consider_builtin_unsize_candidate(self, goal)
} else {
Err(NoSolution)
};

View File

@ -554,6 +554,13 @@ impl<'tcx> assembly::GoalKind<'tcx> for ProjectionPredicate<'tcx> {
.to_predicate(tcx),
)
}
fn consider_builtin_unsize_candidate(
_ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
bug!("`Unsize` does not have an associated type: {:?}", goal);
}
}
/// This behavior is also implemented in `rustc_ty_utils` and in the old `project` code.

View File

@ -8,6 +8,7 @@ use super::{Certainty, EvalCtxt, Goal, QueryResult};
use rustc_hir::def_id::DefId;
use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::util::supertraits;
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt};
use rustc_middle::ty::{TraitPredicate, TypeVisitable};
@ -238,6 +239,180 @@ impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
.to_predicate(tcx),
)
}
fn consider_builtin_unsize_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
let tcx = ecx.tcx();
let a_ty = goal.predicate.self_ty();
let b_ty = goal.predicate.trait_ref.substs.type_at(1);
if b_ty.is_ty_var() {
return ecx.make_canonical_response(Certainty::AMBIGUOUS);
}
ecx.infcx.probe(|_| {
match (a_ty.kind(), b_ty.kind()) {
// Trait upcasting, or `dyn Trait + Auto + 'a` -> `dyn Trait + 'b`
(
&ty::Dynamic(a_data, a_region, ty::Dyn),
&ty::Dynamic(b_data, b_region, ty::Dyn),
) => {
// All of a's auto traits need to be in b's auto traits.
let auto_traits_compatible = b_data
.auto_traits()
.all(|b| a_data.auto_traits().any(|a| a == b));
if !auto_traits_compatible {
return Err(NoSolution);
}
// If the principal def ids match (or are both none), then we're not doing
// trait upcasting. We're just removing auto traits (or shortening the lifetime).
if a_data.principal_def_id() == b_data.principal_def_id() {
// Require that all of the trait predicates from A match B, except for
// the auto traits. We do this by constructing a new A type with B's
// auto traits, and equating these types.
let new_a_data = a_data
.iter()
.filter(|a| {
matches!(
a.skip_binder(),
ty::ExistentialPredicate::Trait(_) | ty::ExistentialPredicate::Projection(_)
)
})
.chain(
b_data
.auto_traits()
.map(ty::ExistentialPredicate::AutoTrait)
.map(ty::Binder::dummy),
);
let new_a_data = tcx.mk_poly_existential_predicates(new_a_data);
let new_a_ty = tcx.mk_dynamic(new_a_data, b_region, ty::Dyn);
// We also require that A's lifetime outlives B's lifetime.
let mut nested_obligations = ecx.infcx.eq(goal.param_env, new_a_ty, b_ty)?;
nested_obligations.push(goal.with(tcx, ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region))));
ecx.evaluate_all_and_make_canonical_response(nested_obligations)
} else if let Some(a_principal) = a_data.principal()
&& let Some(b_principal) = b_data.principal()
&& supertraits(tcx, a_principal.with_self_ty(tcx, a_ty))
.any(|trait_ref| trait_ref.def_id() == b_principal.def_id())
{
// FIXME: Intentionally ignoring `need_migrate_deref_output_trait_object` here for now.
// Confirm upcasting candidate
todo!()
} else {
Err(NoSolution)
}
}
// `T` -> `dyn Trait` unsizing
(_, &ty::Dynamic(data, region, ty::Dyn)) => {
// Can only unsize to an object-safe type
// FIXME: Can auto traits be *not* object safe?
if data
.auto_traits()
.chain(data.principal_def_id())
.any(|def_id| !tcx.is_object_safe(def_id))
{
return Err(NoSolution);
}
let Some(sized_def_id) = tcx.lang_items().sized_trait() else {
return Err(NoSolution);
};
let nested_goals: Vec<_> = data
.iter()
// Check that the type implements all of the predicates of the def-id.
// (i.e. the principal, all of the associated types match, and any auto traits)
.map(|pred| goal.with(tcx, pred.with_self_ty(tcx, a_ty)))
.chain([
// The type must be Sized to be unsized.
goal.with(
tcx,
ty::Binder::dummy(tcx.mk_trait_ref(sized_def_id, [a_ty])),
),
// The type must outlive the lifetime of the `dyn` we're unsizing into.
goal.with(
tcx,
ty::Binder::dummy(ty::OutlivesPredicate(a_ty, region)),
),
])
.collect();
ecx.evaluate_all_and_make_canonical_response(nested_goals)
}
// `[T; n]` -> `[T]` unsizing
(&ty::Array(a_elem_ty, ..), &ty::Slice(b_elem_ty)) => {
// We just require that the element type stays the same
let nested_goals = ecx.infcx.eq(goal.param_env, a_elem_ty, b_elem_ty)?;
ecx.evaluate_all_and_make_canonical_response(nested_goals)
}
// Struct unsizing `Struct<T>` -> `Struct<U>` where `T: Unsize<U>`
(&ty::Adt(a_def, a_substs), &ty::Adt(b_def, b_substs))
if a_def.is_struct() && a_def.did() == b_def.did() =>
{
let unsizing_params = tcx.unsizing_params_for_adt(a_def.did());
// We must be unsizing some type parameters. This also implies
// that the struct has a tail field.
if unsizing_params.is_empty() {
return Err(NoSolution);
}
let tail_field = a_def
.non_enum_variant()
.fields
.last()
.expect("expected unsized ADT to have a tail field");
let tail_field_ty = tcx.bound_type_of(tail_field.did);
let a_tail_ty = tail_field_ty.subst(tcx, a_substs);
let b_tail_ty = tail_field_ty.subst(tcx, b_substs);
// Substitute just the unsizing params from B into A. The type after
// this substitution must be equal to B. This is so we don't unsize
// unrelated type parameters.
let new_a_substs = tcx.mk_substs(a_substs.iter().enumerate().map(|(i, a)| {
if unsizing_params.contains(i as u32) { b_substs[i] } else { a }
}));
let unsized_a_ty = tcx.mk_adt(a_def, new_a_substs);
// Finally, we require that `TailA: Unsize<TailB>` for the tail field
// types.
let mut nested_goals = ecx.infcx.eq(goal.param_env, unsized_a_ty, b_ty)?;
nested_goals.push(goal.with(
tcx,
ty::Binder::dummy(
tcx.mk_trait_ref(goal.predicate.def_id(), [a_tail_ty, b_tail_ty]),
),
));
ecx.evaluate_all_and_make_canonical_response(nested_goals)
}
// Tuple unsizing `(.., T)` -> `(.., U)` where `T: Unsize<U>`
(&ty::Tuple(a_tys), &ty::Tuple(b_tys))
if a_tys.len() == b_tys.len() && !a_tys.is_empty() =>
{
let (a_last_ty, a_rest_tys) = a_tys.split_last().unwrap();
let b_last_ty = b_tys.last().unwrap();
// Substitute just the tail field of B., and require that they're equal.
let unsized_a_ty = tcx.mk_tup(a_rest_tys.iter().chain([b_last_ty]));
let mut nested_goals = ecx.infcx.eq(goal.param_env, unsized_a_ty, b_ty)?;
// Similar to ADTs, require that the rest of the fields are equal.
nested_goals.push(goal.with(
tcx,
ty::Binder::dummy(
tcx.mk_trait_ref(goal.predicate.def_id(), [*a_last_ty, *b_last_ty]),
),
));
ecx.evaluate_all_and_make_canonical_response(nested_goals)
}
_ => Err(NoSolution),
}
})
}
}
impl<'tcx> EvalCtxt<'_, 'tcx> {

View File

@ -0,0 +1,25 @@
// compile-flags: -Ztrait-solver=next
// check-pass
#![feature(unsized_tuple_coercion)]
trait Foo {}
impl Foo for i32 {}
fn main() {
// Unsizing via struct
let _: Box<dyn Foo> = Box::new(1i32);
// Slice unsizing
let y = [1, 2, 3];
let _: &[i32] = &y;
// Tuple unsizing
let hi = (1i32,);
let _: &(dyn Foo,) = &hi;
// Dropping auto traits
let a: &(dyn Foo + Send) = &1;
let _: &dyn Foo = a;
}