Auto merge of #95526 - Dylan-DPC:rollup-0ikl5l5, r=Dylan-DPC

Rollup of 5 pull requests

Successful merges:

 - #91416 (Specialize infinite-type "insert some indirection" suggestion for Option)
 - #95384 (Update target_has_atomic documentation for stabilization)
 - #95517 (small rustc_borrowck cleanup)
 - #95520 (Fix typos in core::ptr docs)
 - #95523 (remove unused field from `infcx`)

Failed merges:

r? `@ghost`
`@rustbot` modify labels: rollup
This commit is contained in:
bors 2022-03-31 17:45:26 +00:00
commit 0677edc86e
27 changed files with 282 additions and 114 deletions

View File

@ -253,8 +253,10 @@ impl<'tcx> UniversalRegionRelationsBuilder<'_, 'tcx> {
let constraint_sets: Vec<_> = unnormalized_input_output_tys
.flat_map(|ty| {
debug!("build: input_or_output={:?}", ty);
// We add implied bounds from both the unnormalized and normalized ty
// See issue #87748
// We only add implied bounds for the normalized type as the unnormalized
// type may not actually get checked by the caller.
//
// Can otherwise be unsound, see #91068.
let TypeOpOutput { output: norm_ty, constraints: constraints1, .. } = self
.param_env
.and(type_op::normalize::Normalize::new(ty))

View File

@ -1899,7 +1899,9 @@ impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
ObligationCause::new(
span,
self.tcx().hir().local_def_id_to_hir_id(def_id),
traits::ObligationCauseCode::RepeatVec(is_const_fn),
traits::ObligationCauseCode::RepeatElementCopy {
is_const_fn,
},
),
self.param_env,
ty::Binder::dummy(ty::TraitRef::new(

View File

@ -65,7 +65,6 @@ impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
Self {
tcx: self.tcx.clone(),
defining_use_anchor: self.defining_use_anchor.clone(),
reveal_defining_opaque_types: self.reveal_defining_opaque_types.clone(),
in_progress_typeck_results: self.in_progress_typeck_results.clone(),
inner: self.inner.clone(),
skip_leak_check: self.skip_leak_check.clone(),

View File

@ -290,10 +290,6 @@ pub struct InferCtxt<'a, 'tcx> {
/// to the outside until the end up in an `InferCtxt` for typeck or borrowck.
pub defining_use_anchor: Option<LocalDefId>,
/// Used by WF-checking to not have to figure out hidden types itself, but
/// to just invoke type_of to get the already computed hidden type from typeck.
pub reveal_defining_opaque_types: bool,
/// During type-checking/inference of a body, `in_progress_typeck_results`
/// contains a reference to the typeck results being built up, which are
/// used for reading closure kinds/signatures as they are inferred,
@ -569,7 +565,6 @@ pub struct InferCtxtBuilder<'tcx> {
tcx: TyCtxt<'tcx>,
fresh_typeck_results: Option<RefCell<ty::TypeckResults<'tcx>>>,
defining_use_anchor: Option<LocalDefId>,
reveal_defining_opaque_types: bool,
}
pub trait TyCtxtInferExt<'tcx> {
@ -578,12 +573,7 @@ pub trait TyCtxtInferExt<'tcx> {
impl<'tcx> TyCtxtInferExt<'tcx> for TyCtxt<'tcx> {
fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
InferCtxtBuilder {
tcx: self,
defining_use_anchor: None,
fresh_typeck_results: None,
reveal_defining_opaque_types: false,
}
InferCtxtBuilder { tcx: self, defining_use_anchor: None, fresh_typeck_results: None }
}
}
@ -607,13 +597,6 @@ impl<'tcx> InferCtxtBuilder<'tcx> {
self
}
/// WF-checking doesn't need to recompute opaque types and can instead use
/// the type_of query to get them from typeck.
pub fn reveal_defining_opaque_types(mut self) -> Self {
self.reveal_defining_opaque_types = true;
self
}
/// Given a canonical value `C` as a starting point, create an
/// inference context that contains each of the bound values
/// within instantiated as a fresh variable. The `f` closure is
@ -638,17 +621,11 @@ impl<'tcx> InferCtxtBuilder<'tcx> {
}
pub fn enter<R>(&mut self, f: impl for<'a> FnOnce(InferCtxt<'a, 'tcx>) -> R) -> R {
let InferCtxtBuilder {
tcx,
defining_use_anchor,
reveal_defining_opaque_types,
ref fresh_typeck_results,
} = *self;
let InferCtxtBuilder { tcx, defining_use_anchor, ref fresh_typeck_results } = *self;
let in_progress_typeck_results = fresh_typeck_results.as_ref();
f(InferCtxt {
tcx,
defining_use_anchor,
reveal_defining_opaque_types,
in_progress_typeck_results,
inner: RefCell::new(InferCtxtInner::new()),
lexical_region_resolutions: RefCell::new(None),

View File

@ -236,11 +236,12 @@ pub enum ObligationCauseCode<'tcx> {
SizedBoxType,
/// Inline asm operand type must be `Sized`.
InlineAsmSized,
/// `[T, ..n]` implies that `T` must be `Copy`.
/// If the function in the array repeat expression is a `const fn`,
/// display a help message suggesting to move the function call to a
/// new `const` item while saying that `T` doesn't implement `Copy`.
RepeatVec(bool),
/// `[expr; N]` requires `type_of(expr): Copy`.
RepeatElementCopy {
/// If element is a `const fn` we display a help message suggesting to move the
/// function call to a new `const` item while saying that `T` doesn't implement `Copy`.
is_const_fn: bool,
},
/// Types of fields (other than the last, except for packed structs) in a struct must be sized.
FieldSized {

View File

@ -198,7 +198,7 @@ impl<'a, 'tcx> PatCtxt<'a, 'tcx> {
let kind = match pat.kind {
hir::PatKind::Wild => PatKind::Wild,
hir::PatKind::Lit(ref value) => self.lower_lit(value),
hir::PatKind::Lit(value) => self.lower_lit(value),
hir::PatKind::Range(ref lo_expr, ref hi_expr, end) => {
let (lo_expr, hi_expr) = (lo_expr.as_deref(), hi_expr.as_deref());

View File

@ -2285,10 +2285,10 @@ impl<'v> Visitor<'v> for FindTypeParam {
}
}
pub fn recursive_type_with_infinite_size_error(
tcx: TyCtxt<'_>,
pub fn recursive_type_with_infinite_size_error<'tcx>(
tcx: TyCtxt<'tcx>,
type_def_id: DefId,
spans: Vec<Span>,
spans: Vec<(Span, Option<hir::HirId>)>,
) {
assert!(type_def_id.is_local());
let span = tcx.hir().span_if_local(type_def_id).unwrap();
@ -2297,7 +2297,7 @@ pub fn recursive_type_with_infinite_size_error(
let mut err =
struct_span_err!(tcx.sess, span, E0072, "recursive type `{}` has infinite size", path);
err.span_label(span, "recursive type has infinite size");
for &span in &spans {
for &(span, _) in &spans {
err.span_label(span, "recursive without indirection");
}
let msg = format!(
@ -2305,16 +2305,25 @@ pub fn recursive_type_with_infinite_size_error(
path,
);
if spans.len() <= 4 {
// FIXME(compiler-errors): This suggestion might be erroneous if Box is shadowed
err.multipart_suggestion(
&msg,
spans
.iter()
.flat_map(|&span| {
[
(span.shrink_to_lo(), "Box<".to_string()),
(span.shrink_to_hi(), ">".to_string()),
]
.into_iter()
.into_iter()
.flat_map(|(span, field_id)| {
if let Some(generic_span) = get_option_generic_from_field_id(tcx, field_id) {
// If we match an `Option` and can grab the span of the Option's generic, then
// suggest boxing the generic arg for a non-null niche optimization.
vec![
(generic_span.shrink_to_lo(), "Box<".to_string()),
(generic_span.shrink_to_hi(), ">".to_string()),
]
} else {
vec![
(span.shrink_to_lo(), "Box<".to_string()),
(span.shrink_to_hi(), ">".to_string()),
]
}
})
.collect(),
Applicability::HasPlaceholders,
@ -2325,6 +2334,34 @@ pub fn recursive_type_with_infinite_size_error(
err.emit();
}
/// Extract the span for the generic type `T` of `Option<T>` in a field definition
fn get_option_generic_from_field_id(tcx: TyCtxt<'_>, field_id: Option<hir::HirId>) -> Option<Span> {
let node = tcx.hir().find(field_id?);
// Expect a field from our field_id
let Some(hir::Node::Field(field_def)) = node
else { bug!("Expected HirId corresponding to FieldDef, found: {:?}", node) };
// Match a type that is a simple QPath with no Self
let hir::TyKind::Path(hir::QPath::Resolved(None, path)) = &field_def.ty.kind
else { return None };
// Check if the path we're checking resolves to Option
let hir::def::Res::Def(_, did) = path.res
else { return None };
// Bail if this path doesn't describe `::core::option::Option`
if !tcx.is_diagnostic_item(sym::Option, did) {
return None;
}
// Match a single generic arg in the 0th path segment
let generic_arg = path.segments.last()?.args?.args.get(0)?;
// Take the span out of the type, if it's a type
if let hir::GenericArg::Type(generic_ty) = generic_arg { Some(generic_ty.span) } else { None }
}
/// Summarizes information
#[derive(Clone)]
pub enum ArgKind {

View File

@ -1988,7 +1988,7 @@ impl<'a, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'a, 'tcx> {
ObligationCauseCode::Coercion { source: _, target } => {
err.note(&format!("required by cast to type `{}`", self.ty_to_string(target)));
}
ObligationCauseCode::RepeatVec(is_const_fn) => {
ObligationCauseCode::RepeatElementCopy { is_const_fn } => {
err.note(
"the `Copy` trait is required because the repeated element will be copied",
);

View File

@ -17,12 +17,20 @@ use std::cmp;
pub enum Representability {
Representable,
ContainsRecursive,
SelfRecursive(Vec<Span>),
/// Return a list of types that are included in themselves:
/// the spans where they are self-included, and (if found)
/// the HirId of the FieldDef that defines the self-inclusion.
SelfRecursive(Vec<(Span, Option<hir::HirId>)>),
}
/// Check whether a type is representable. This means it cannot contain unboxed
/// structural recursion. This check is needed for structs and enums.
pub fn ty_is_representable<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, sp: Span) -> Representability {
pub fn ty_is_representable<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
sp: Span,
field_id: Option<hir::HirId>,
) -> Representability {
debug!("is_type_representable: {:?}", ty);
// To avoid a stack overflow when checking an enum variant or struct that
// contains a different, structurally recursive type, maintain a stack of
@ -38,11 +46,12 @@ pub fn ty_is_representable<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, sp: Span) -> R
let mut force_result = false;
let r = is_type_structurally_recursive(
tcx,
sp,
&mut seen,
&mut shadow_seen,
&mut representable_cache,
ty,
sp,
field_id,
&mut force_result,
);
debug!("is_type_representable: {:?} is {:?}", ty, r);
@ -61,11 +70,12 @@ fn fold_repr<It: Iterator<Item = Representability>>(iter: It) -> Representabilit
fn are_inner_types_recursive<'tcx>(
tcx: TyCtxt<'tcx>,
sp: Span,
seen: &mut Vec<Ty<'tcx>>,
shadow_seen: &mut Vec<ty::AdtDef<'tcx>>,
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
ty: Ty<'tcx>,
sp: Span,
field_id: Option<hir::HirId>,
force_result: &mut bool,
) -> Representability {
debug!("are_inner_types_recursive({:?}, {:?}, {:?})", ty, seen, shadow_seen);
@ -75,11 +85,12 @@ fn are_inner_types_recursive<'tcx>(
fold_repr(fields.iter().map(|ty| {
is_type_structurally_recursive(
tcx,
sp,
seen,
shadow_seen,
representable_cache,
ty,
sp,
field_id,
force_result,
)
}))
@ -88,20 +99,26 @@ fn are_inner_types_recursive<'tcx>(
// FIXME(#11924) Behavior undecided for zero-length vectors.
ty::Array(ty, _) => is_type_structurally_recursive(
tcx,
sp,
seen,
shadow_seen,
representable_cache,
*ty,
sp,
field_id,
force_result,
),
ty::Adt(def, substs) => {
// Find non representable fields with their spans
fold_repr(def.all_fields().map(|field| {
let ty = field.ty(tcx, substs);
let span = match field.did.as_local().and_then(|id| tcx.hir().find_by_def_id(id)) {
Some(hir::Node::Field(field)) => field.ty.span,
_ => sp,
let (sp, field_id) = match field
.did
.as_local()
.map(|id| tcx.hir().local_def_id_to_hir_id(id))
.and_then(|id| tcx.hir().find(id))
{
Some(hir::Node::Field(field)) => (field.ty.span, Some(field.hir_id)),
_ => (sp, field_id),
};
let mut result = None;
@ -130,7 +147,7 @@ fn are_inner_types_recursive<'tcx>(
// result without adjusting).
if shadow_seen.len() > seen.len() && shadow_seen.first() == Some(def) {
*force_result = true;
result = Some(Representability::SelfRecursive(vec![span]));
result = Some(Representability::SelfRecursive(vec![(sp, field_id)]));
}
if result == None {
@ -161,16 +178,17 @@ fn are_inner_types_recursive<'tcx>(
result = Some(
match is_type_structurally_recursive(
tcx,
span,
&mut nested_seen,
shadow_seen,
representable_cache,
raw_adt_ty,
sp,
field_id,
force_result,
) {
Representability::SelfRecursive(_) => {
if *force_result {
Representability::SelfRecursive(vec![span])
Representability::SelfRecursive(vec![(sp, field_id)])
} else {
Representability::ContainsRecursive
}
@ -208,15 +226,16 @@ fn are_inner_types_recursive<'tcx>(
result = Some(
match is_type_structurally_recursive(
tcx,
span,
seen,
shadow_seen,
representable_cache,
ty,
sp,
field_id,
force_result,
) {
Representability::SelfRecursive(_) => {
Representability::SelfRecursive(vec![span])
Representability::SelfRecursive(vec![(sp, field_id)])
}
x => x,
},
@ -247,29 +266,31 @@ fn same_adt<'tcx>(ty: Ty<'tcx>, def: ty::AdtDef<'tcx>) -> bool {
// contain any types on stack `seen`?
fn is_type_structurally_recursive<'tcx>(
tcx: TyCtxt<'tcx>,
sp: Span,
seen: &mut Vec<Ty<'tcx>>,
shadow_seen: &mut Vec<ty::AdtDef<'tcx>>,
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
ty: Ty<'tcx>,
sp: Span,
field_id: Option<hir::HirId>,
force_result: &mut bool,
) -> Representability {
debug!("is_type_structurally_recursive: {:?} {:?}", ty, sp);
debug!("is_type_structurally_recursive: {:?} {:?} {:?}", ty, sp, field_id);
if let Some(representability) = representable_cache.get(&ty) {
debug!(
"is_type_structurally_recursive: {:?} {:?} - (cached) {:?}",
ty, sp, representability
"is_type_structurally_recursive: {:?} {:?} {:?} - (cached) {:?}",
ty, sp, field_id, representability
);
return representability.clone();
}
let representability = is_type_structurally_recursive_inner(
tcx,
sp,
seen,
shadow_seen,
representable_cache,
ty,
sp,
field_id,
force_result,
);
@ -279,11 +300,12 @@ fn is_type_structurally_recursive<'tcx>(
fn is_type_structurally_recursive_inner<'tcx>(
tcx: TyCtxt<'tcx>,
sp: Span,
seen: &mut Vec<Ty<'tcx>>,
shadow_seen: &mut Vec<ty::AdtDef<'tcx>>,
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
ty: Ty<'tcx>,
sp: Span,
field_id: Option<hir::HirId>,
force_result: &mut bool,
) -> Representability {
match ty.kind() {
@ -305,7 +327,7 @@ fn is_type_structurally_recursive_inner<'tcx>(
if let Some(&seen_adt) = iter.next() {
if same_adt(seen_adt, *def) {
debug!("SelfRecursive: {:?} contains {:?}", seen_adt, ty);
return Representability::SelfRecursive(vec![sp]);
return Representability::SelfRecursive(vec![(sp, field_id)]);
}
}
@ -335,11 +357,12 @@ fn is_type_structurally_recursive_inner<'tcx>(
shadow_seen.push(*def);
let out = are_inner_types_recursive(
tcx,
sp,
seen,
shadow_seen,
representable_cache,
ty,
sp,
field_id,
force_result,
);
shadow_seen.pop();
@ -350,11 +373,12 @@ fn is_type_structurally_recursive_inner<'tcx>(
// No need to push in other cases.
are_inner_types_recursive(
tcx,
sp,
seen,
shadow_seen,
representable_cache,
ty,
sp,
field_id,
force_result,
)
}

View File

@ -1045,7 +1045,7 @@ pub(super) fn check_representable(tcx: TyCtxt<'_>, sp: Span, item_def_id: LocalD
// recursive type. It is only necessary to throw an error on those that
// contain themselves. For case 2, there must be an inner type that will be
// caught by case 1.
match representability::ty_is_representable(tcx, rty, sp) {
match representability::ty_is_representable(tcx, rty, sp, None) {
Representability::SelfRecursive(spans) => {
recursive_type_with_infinite_size_error(tcx, item_def_id.to_def_id(), spans);
return false;

View File

@ -95,13 +95,6 @@ impl<'tcx> InheritedBuilder<'tcx> {
let def_id = self.def_id;
self.infcx.enter(|infcx| f(Inherited::new(infcx, def_id)))
}
/// WF-checking doesn't need to recompute opaque types and can instead use
/// the type_of query to get them from typeck.
pub fn reveal_defining_opaque_types(mut self) -> Self {
self.infcx = self.infcx.reveal_defining_opaque_types();
self
}
}
impl<'a, 'tcx> Inherited<'a, 'tcx> {

View File

@ -968,7 +968,7 @@ fn for_item<'tcx>(tcx: TyCtxt<'tcx>, item: &hir::Item<'_>) -> CheckWfFcxBuilder<
fn for_id(tcx: TyCtxt<'_>, def_id: LocalDefId, span: Span) -> CheckWfFcxBuilder<'_> {
CheckWfFcxBuilder {
inherited: Inherited::build(tcx, def_id).reveal_defining_opaque_types(),
inherited: Inherited::build(tcx, def_id),
id: hir::HirId::make_owner(def_id),
span,
param_env: tcx.param_env(def_id),

View File

@ -84,7 +84,7 @@
//! have to change, and is it worse or better now? Would any patterns become truly inexpressible?
//! Could we carve out special exceptions for those patterns? Should we?
//!
//! A secondary goal of this project is to see if we can disamiguate the many functions of
//! A secondary goal of this project is to see if we can disambiguate the many functions of
//! pointer<->integer casts enough for the definition of `usize` to be loosened so that it
//! isn't *pointer*-sized but address-space/offset/allocation-sized (we'll probably continue
//! to conflate these notions). This would potentially make it possible to more efficiently
@ -163,7 +163,7 @@
//! of pointers and `usize` (and `isize`), and defining a pointer to semantically contain the
//! following information:
//!
//! * The **address-space** it is part of (i.e. "data" vs "code" in WASM).
//! * The **address-space** it is part of (e.g. "data" vs "code" in WASM).
//! * The **address** it points to, which can be represented by a `usize`.
//! * The **provenance** it has, defining the memory it has permission to access.
//!
@ -246,7 +246,7 @@
//! be using AtomicPtr instead. If that messes up the way you atomically manipulate pointers,
//! we would like to know why, and what needs to be done to fix it.)
//!
//! Something more complicated and just generally *evil* like a XOR-List requires more significant
//! Something more complicated and just generally *evil* like an XOR-List requires more significant
//! changes like allocating all nodes in a pre-allocated Vec or Arena and using a pointer
//! to the whole allocation to reconstitute the XORed addresses.
//!
@ -257,7 +257,7 @@
//! special attention at all, because they're generally accessing memory outside the scope of
//! "the abstract machine", or already using "I know what I'm doing" annotations like "volatile".
//!
//! Under [Strict Provenance] is is Undefined Behaviour to:
//! Under [Strict Provenance] it is Undefined Behaviour to:
//!
//! * Access memory through a pointer that does not have provenance over that memory.
//!

View File

@ -65,9 +65,10 @@
//! For reference, the `std` library requires `AtomicBool`s and pointer-sized atomics, although
//! `core` does not.
//!
//! Currently you'll need to use `#[cfg(target_arch)]` primarily to
//! conditionally compile in code with atomics. There is an unstable
//! `#[cfg(target_has_atomic)]` as well which may be stabilized in the future.
//! The `#[cfg(target_has_atomic)]` attribute can be used to conditionally
//! compile based on the target's supported bit widths. It is a key-value
//! option set for each supported size, with values "8", "16", "32", "64",
//! "128", and "ptr" for pointer-sized atomics.
//!
//! [lock-free]: https://en.wikipedia.org/wiki/Non-blocking_algorithm
//!

View File

@ -8,8 +8,8 @@ LL | struct Foo { foo: Option<Option<Foo>> }
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `Foo` representable
|
LL | struct Foo { foo: Box<Option<Option<Foo>>> }
| ++++ +
LL | struct Foo { foo: Option<Box<Option<Foo>>> }
| ++++ +
error: aborting due to previous error

View File

@ -8,8 +8,8 @@ LL | struct Baz { q: Option<Foo> }
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `Baz` representable
|
LL | struct Baz { q: Box<Option<Foo>> }
| ++++ +
LL | struct Baz { q: Option<Box<Foo>> }
| ++++ +
error[E0072]: recursive type `Foo` has infinite size
--> $DIR/issue-17431-2.rs:4:1
@ -21,8 +21,8 @@ LL | struct Foo { q: Option<Baz> }
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `Foo` representable
|
LL | struct Foo { q: Box<Option<Baz>> }
| ++++ +
LL | struct Foo { q: Option<Box<Baz>> }
| ++++ +
error: aborting due to 2 previous errors

View File

@ -8,8 +8,8 @@ LL | struct Foo<T> { foo: Option<Option<Foo<T>>>, marker: marker::PhantomData<T>
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `Foo` representable
|
LL | struct Foo<T> { foo: Box<Option<Option<Foo<T>>>>, marker: marker::PhantomData<T> }
| ++++ +
LL | struct Foo<T> { foo: Option<Box<Option<Foo<T>>>>, marker: marker::PhantomData<T> }
| ++++ +
error: aborting due to previous error

View File

@ -8,8 +8,8 @@ LL | enum Foo { Voo(Option<Option<Foo>>) }
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `Foo` representable
|
LL | enum Foo { Voo(Box<Option<Option<Foo>>>) }
| ++++ +
LL | enum Foo { Voo(Option<Box<Option<Foo>>>) }
| ++++ +
error: aborting due to previous error

View File

@ -9,8 +9,8 @@ LL | element: Option<S>
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `S` representable
|
LL | element: Box<Option<S>>
| ++++ +
LL | element: Option<Box<S>>
| ++++ +
error: aborting due to previous error

View File

@ -8,8 +8,8 @@ LL | struct Baz { q: Option<Foo> }
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `Baz` representable
|
LL | struct Baz { q: Box<Option<Foo>> }
| ++++ +
LL | struct Baz { q: Option<Box<Foo>> }
| ++++ +
error[E0072]: recursive type `Foo` has infinite size
--> $DIR/sized-cycle-note.rs:11:1
@ -21,8 +21,8 @@ LL | struct Foo { q: Option<Baz> }
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `Foo` representable
|
LL | struct Foo { q: Box<Option<Baz>> }
| ++++ +
LL | struct Foo { q: Option<Box<Baz>> }
| ++++ +
error: aborting due to 2 previous errors

View File

@ -9,8 +9,8 @@ LL | tail: Option<ListNode>,
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `ListNode` representable
|
LL | tail: Box<Option<ListNode>>,
| ++++ +
LL | tail: Option<Box<ListNode>>,
| ++++ +
error: aborting due to previous error

View File

@ -12,8 +12,8 @@ LL | | }
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `ListNode` representable
|
LL | tail: Box<Option<ListNode>>,
| ++++ +
LL | tail: Option<Box<ListNode>>,
| ++++ +
error: aborting due to previous error

View File

@ -37,8 +37,8 @@ LL | y: Option<Option<D<T>>>,
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `C` representable
|
LL | y: Box<Option<Option<D<T>>>>,
| ++++ +
LL | y: Option<Box<Option<D<T>>>>,
| ++++ +
error[E0072]: recursive type `D` has infinite size
--> $DIR/mutual-struct-recursion.rs:18:1
@ -51,8 +51,8 @@ LL | z: Option<Option<C<T>>>,
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `D` representable
|
LL | z: Box<Option<Option<C<T>>>>,
| ++++ +
LL | z: Option<Box<Option<C<T>>>>,
| ++++ +
error: aborting due to 4 previous errors

View File

@ -0,0 +1,12 @@
//FIXME(compiler-errors): This fixup should suggest the full box path, not just `Box`
struct Box<T> {
t: T,
}
struct Foo {
//~^ ERROR recursive type `Foo` has infinite size
inner: Foo,
}
fn main() {}

View File

@ -0,0 +1,17 @@
error[E0072]: recursive type `Foo` has infinite size
--> $DIR/type-recursive-box-shadowed.rs:7:1
|
LL | struct Foo {
| ^^^^^^^^^^ recursive type has infinite size
LL |
LL | inner: Foo,
| --- recursive without indirection
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `Foo` representable
|
LL | inner: Box<Foo>,
| ++++ +
error: aborting due to previous error
For more information about this error, try `rustc --explain E0072`.

View File

@ -1,6 +1,30 @@
struct T1 { //~ ERROR E0072
foo: isize,
foolish: T1
foolish: T1,
}
struct T2 { //~ ERROR E0072
inner: Option<T2>,
}
type OptionT3 = Option<T3>;
struct T3 { //~ ERROR E0072
inner: OptionT3,
}
struct T4(Option<T4>); //~ ERROR E0072
enum T5 { //~ ERROR E0072
Variant(Option<T5>),
}
enum T6 { //~ ERROR E0072
Variant{ field: Option<T6> },
}
struct T7 { //~ ERROR E0072
foo: std::cell::Cell<Option<T7>>,
}
fn main() { }

View File

@ -4,14 +4,93 @@ error[E0072]: recursive type `T1` has infinite size
LL | struct T1 {
| ^^^^^^^^^ recursive type has infinite size
LL | foo: isize,
LL | foolish: T1
LL | foolish: T1,
| -- recursive without indirection
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `T1` representable
|
LL | foolish: Box<T1>
LL | foolish: Box<T1>,
| ++++ +
error: aborting due to previous error
error[E0072]: recursive type `T2` has infinite size
--> $DIR/type-recursive.rs:6:1
|
LL | struct T2 {
| ^^^^^^^^^ recursive type has infinite size
LL | inner: Option<T2>,
| ---------- recursive without indirection
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `T2` representable
|
LL | inner: Option<Box<T2>>,
| ++++ +
error[E0072]: recursive type `T3` has infinite size
--> $DIR/type-recursive.rs:12:1
|
LL | struct T3 {
| ^^^^^^^^^ recursive type has infinite size
LL | inner: OptionT3,
| -------- recursive without indirection
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `T3` representable
|
LL | inner: Box<OptionT3>,
| ++++ +
error[E0072]: recursive type `T4` has infinite size
--> $DIR/type-recursive.rs:16:1
|
LL | struct T4(Option<T4>);
| ^^^^^^^^^^----------^^
| | |
| | recursive without indirection
| recursive type has infinite size
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `T4` representable
|
LL | struct T4(Option<Box<T4>>);
| ++++ +
error[E0072]: recursive type `T5` has infinite size
--> $DIR/type-recursive.rs:18:1
|
LL | enum T5 {
| ^^^^^^^ recursive type has infinite size
LL | Variant(Option<T5>),
| ---------- recursive without indirection
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `T5` representable
|
LL | Variant(Option<Box<T5>>),
| ++++ +
error[E0072]: recursive type `T6` has infinite size
--> $DIR/type-recursive.rs:22:1
|
LL | enum T6 {
| ^^^^^^^ recursive type has infinite size
LL | Variant{ field: Option<T6> },
| ---------- recursive without indirection
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `T6` representable
|
LL | Variant{ field: Option<Box<T6>> },
| ++++ +
error[E0072]: recursive type `T7` has infinite size
--> $DIR/type-recursive.rs:26:1
|
LL | struct T7 {
| ^^^^^^^^^ recursive type has infinite size
LL | foo: std::cell::Cell<Option<T7>>,
| --------------------------- recursive without indirection
|
help: insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `T7` representable
|
LL | foo: Box<std::cell::Cell<Option<T7>>>,
| ++++ +
error: aborting due to 7 previous errors
For more information about this error, try `rustc --explain E0072`.