2012-07-24 23:23:23 +00:00
|
|
|
// Ensure that you cannot use generic types to return a region outside
|
|
|
|
// of its bound. Here, in the `return_it()` fn, we call with() but
|
2015-01-08 10:54:35 +00:00
|
|
|
// with R bound to &isize from the return_it. Meanwhile, with()
|
2012-07-24 23:23:23 +00:00
|
|
|
// provides a value that is only good within its own stack frame. This
|
|
|
|
// used to successfully compile because we failed to account for the
|
2015-01-08 10:54:35 +00:00
|
|
|
// fact that fn(x: &isize) rebound the region &.
|
2012-07-24 23:23:23 +00:00
|
|
|
|
2015-01-08 10:54:35 +00:00
|
|
|
fn with<R, F>(f: F) -> R where F: FnOnce(&isize) -> R {
|
2012-07-24 23:23:23 +00:00
|
|
|
f(&3)
|
|
|
|
}
|
|
|
|
|
2015-01-08 10:54:35 +00:00
|
|
|
fn return_it<'a>() -> &'a isize {
|
DST coercions and DST structs
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
2014-08-04 12:20:11 +00:00
|
|
|
with(|o| o)
|
2022-04-01 17:13:25 +00:00
|
|
|
//~^ ERROR lifetime may not live long enough
|
2012-07-24 23:23:23 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
fn main() {
|
|
|
|
let x = return_it();
|
log: Introduce liblog, the old std::logging
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
2014-03-09 06:11:44 +00:00
|
|
|
println!("foo={}", *x);
|
2012-07-24 23:23:23 +00:00
|
|
|
}
|