mirror of
https://github.com/rust-lang/rust.git
synced 2025-05-09 16:37:36 +00:00
1805 lines
75 KiB
Rust
1805 lines
75 KiB
Rust
![]() |
use rustc_hir as hir;
|
|||
|
use rustc_index::bit_set::BitSet;
|
|||
|
use rustc_index::vec::{Idx, IndexVec};
|
|||
|
use rustc_middle::mir::{GeneratorLayout, GeneratorSavedLocal};
|
|||
|
use rustc_middle::ty::layout::{
|
|||
|
IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout, MAX_SIMD_LANES,
|
|||
|
};
|
|||
|
use rustc_middle::ty::{
|
|||
|
self, subst::SubstsRef, EarlyBinder, ReprOptions, Ty, TyCtxt, TypeVisitable,
|
|||
|
};
|
|||
|
use rustc_session::{DataTypeKind, FieldInfo, SizeKind, VariantInfo};
|
|||
|
use rustc_span::symbol::Symbol;
|
|||
|
use rustc_span::DUMMY_SP;
|
|||
|
use rustc_target::abi::*;
|
|||
|
|
|||
|
use std::cmp::{self, Ordering};
|
|||
|
use std::iter;
|
|||
|
use std::num::NonZeroUsize;
|
|||
|
use std::ops::Bound;
|
|||
|
|
|||
|
use rand::{seq::SliceRandom, SeedableRng};
|
|||
|
use rand_xoshiro::Xoshiro128StarStar;
|
|||
|
|
|||
|
use crate::layout_sanity_check::sanity_check_layout;
|
|||
|
|
|||
|
pub fn provide(providers: &mut ty::query::Providers) {
|
|||
|
*providers = ty::query::Providers { layout_of, ..*providers };
|
|||
|
}
|
|||
|
|
|||
|
#[instrument(skip(tcx, query), level = "debug")]
|
|||
|
fn layout_of<'tcx>(
|
|||
|
tcx: TyCtxt<'tcx>,
|
|||
|
query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
|
|||
|
) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> {
|
|||
|
let (param_env, ty) = query.into_parts();
|
|||
|
debug!(?ty);
|
|||
|
|
|||
|
let param_env = param_env.with_reveal_all_normalized(tcx);
|
|||
|
let unnormalized_ty = ty;
|
|||
|
|
|||
|
// FIXME: We might want to have two different versions of `layout_of`:
|
|||
|
// One that can be called after typecheck has completed and can use
|
|||
|
// `normalize_erasing_regions` here and another one that can be called
|
|||
|
// before typecheck has completed and uses `try_normalize_erasing_regions`.
|
|||
|
let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
|
|||
|
Ok(t) => t,
|
|||
|
Err(normalization_error) => {
|
|||
|
return Err(LayoutError::NormalizationFailure(ty, normalization_error));
|
|||
|
}
|
|||
|
};
|
|||
|
|
|||
|
if ty != unnormalized_ty {
|
|||
|
// Ensure this layout is also cached for the normalized type.
|
|||
|
return tcx.layout_of(param_env.and(ty));
|
|||
|
}
|
|||
|
|
|||
|
let cx = LayoutCx { tcx, param_env };
|
|||
|
|
|||
|
let layout = layout_of_uncached(&cx, ty)?;
|
|||
|
let layout = TyAndLayout { ty, layout };
|
|||
|
|
|||
|
record_layout_for_printing(&cx, layout);
|
|||
|
|
|||
|
sanity_check_layout(&cx, &layout);
|
|||
|
|
|||
|
Ok(layout)
|
|||
|
}
|
|||
|
|
|||
|
#[derive(Copy, Clone, Debug)]
|
|||
|
enum StructKind {
|
|||
|
/// A tuple, closure, or univariant which cannot be coerced to unsized.
|
|||
|
AlwaysSized,
|
|||
|
/// A univariant, the last field of which may be coerced to unsized.
|
|||
|
MaybeUnsized,
|
|||
|
/// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag).
|
|||
|
Prefixed(Size, Align),
|
|||
|
}
|
|||
|
|
|||
|
// Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`.
|
|||
|
// This is used to go between `memory_index` (source field order to memory order)
|
|||
|
// and `inverse_memory_index` (memory order to source field order).
|
|||
|
// See also `FieldsShape::Arbitrary::memory_index` for more details.
|
|||
|
// FIXME(eddyb) build a better abstraction for permutations, if possible.
|
|||
|
fn invert_mapping(map: &[u32]) -> Vec<u32> {
|
|||
|
let mut inverse = vec![0; map.len()];
|
|||
|
for i in 0..map.len() {
|
|||
|
inverse[map[i] as usize] = i as u32;
|
|||
|
}
|
|||
|
inverse
|
|||
|
}
|
|||
|
|
|||
|
fn scalar_pair<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, a: Scalar, b: Scalar) -> LayoutS<'tcx> {
|
|||
|
let dl = cx.data_layout();
|
|||
|
let b_align = b.align(dl);
|
|||
|
let align = a.align(dl).max(b_align).max(dl.aggregate_align);
|
|||
|
let b_offset = a.size(dl).align_to(b_align.abi);
|
|||
|
let size = (b_offset + b.size(dl)).align_to(align.abi);
|
|||
|
|
|||
|
// HACK(nox): We iter on `b` and then `a` because `max_by_key`
|
|||
|
// returns the last maximum.
|
|||
|
let largest_niche = Niche::from_scalar(dl, b_offset, b)
|
|||
|
.into_iter()
|
|||
|
.chain(Niche::from_scalar(dl, Size::ZERO, a))
|
|||
|
.max_by_key(|niche| niche.available(dl));
|
|||
|
|
|||
|
LayoutS {
|
|||
|
variants: Variants::Single { index: VariantIdx::new(0) },
|
|||
|
fields: FieldsShape::Arbitrary {
|
|||
|
offsets: vec![Size::ZERO, b_offset],
|
|||
|
memory_index: vec![0, 1],
|
|||
|
},
|
|||
|
abi: Abi::ScalarPair(a, b),
|
|||
|
largest_niche,
|
|||
|
align,
|
|||
|
size,
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
fn univariant_uninterned<'tcx>(
|
|||
|
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
|||
|
ty: Ty<'tcx>,
|
|||
|
fields: &[TyAndLayout<'_>],
|
|||
|
repr: &ReprOptions,
|
|||
|
kind: StructKind,
|
|||
|
) -> Result<LayoutS<'tcx>, LayoutError<'tcx>> {
|
|||
|
let dl = cx.data_layout();
|
|||
|
let pack = repr.pack;
|
|||
|
if pack.is_some() && repr.align.is_some() {
|
|||
|
cx.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned");
|
|||
|
return Err(LayoutError::Unknown(ty));
|
|||
|
}
|
|||
|
|
|||
|
let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align };
|
|||
|
|
|||
|
let mut inverse_memory_index: Vec<u32> = (0..fields.len() as u32).collect();
|
|||
|
|
|||
|
let optimize = !repr.inhibit_struct_field_reordering_opt();
|
|||
|
if optimize {
|
|||
|
let end = if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() };
|
|||
|
let optimizing = &mut inverse_memory_index[..end];
|
|||
|
let field_align = |f: &TyAndLayout<'_>| {
|
|||
|
if let Some(pack) = pack { f.align.abi.min(pack) } else { f.align.abi }
|
|||
|
};
|
|||
|
|
|||
|
// If `-Z randomize-layout` was enabled for the type definition we can shuffle
|
|||
|
// the field ordering to try and catch some code making assumptions about layouts
|
|||
|
// we don't guarantee
|
|||
|
if repr.can_randomize_type_layout() {
|
|||
|
// `ReprOptions.layout_seed` is a deterministic seed that we can use to
|
|||
|
// randomize field ordering with
|
|||
|
let mut rng = Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed);
|
|||
|
|
|||
|
// Shuffle the ordering of the fields
|
|||
|
optimizing.shuffle(&mut rng);
|
|||
|
|
|||
|
// Otherwise we just leave things alone and actually optimize the type's fields
|
|||
|
} else {
|
|||
|
match kind {
|
|||
|
StructKind::AlwaysSized | StructKind::MaybeUnsized => {
|
|||
|
optimizing.sort_by_key(|&x| {
|
|||
|
// Place ZSTs first to avoid "interesting offsets",
|
|||
|
// especially with only one or two non-ZST fields.
|
|||
|
let f = &fields[x as usize];
|
|||
|
(!f.is_zst(), cmp::Reverse(field_align(f)))
|
|||
|
});
|
|||
|
}
|
|||
|
|
|||
|
StructKind::Prefixed(..) => {
|
|||
|
// Sort in ascending alignment so that the layout stays optimal
|
|||
|
// regardless of the prefix
|
|||
|
optimizing.sort_by_key(|&x| field_align(&fields[x as usize]));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// FIXME(Kixiron): We can always shuffle fields within a given alignment class
|
|||
|
// regardless of the status of `-Z randomize-layout`
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// inverse_memory_index holds field indices by increasing memory offset.
|
|||
|
// That is, if field 5 has offset 0, the first element of inverse_memory_index is 5.
|
|||
|
// We now write field offsets to the corresponding offset slot;
|
|||
|
// field 5 with offset 0 puts 0 in offsets[5].
|
|||
|
// At the bottom of this function, we invert `inverse_memory_index` to
|
|||
|
// produce `memory_index` (see `invert_mapping`).
|
|||
|
|
|||
|
let mut sized = true;
|
|||
|
let mut offsets = vec![Size::ZERO; fields.len()];
|
|||
|
let mut offset = Size::ZERO;
|
|||
|
let mut largest_niche = None;
|
|||
|
let mut largest_niche_available = 0;
|
|||
|
|
|||
|
if let StructKind::Prefixed(prefix_size, prefix_align) = kind {
|
|||
|
let prefix_align =
|
|||
|
if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align };
|
|||
|
align = align.max(AbiAndPrefAlign::new(prefix_align));
|
|||
|
offset = prefix_size.align_to(prefix_align);
|
|||
|
}
|
|||
|
|
|||
|
for &i in &inverse_memory_index {
|
|||
|
let field = fields[i as usize];
|
|||
|
if !sized {
|
|||
|
cx.tcx.sess.delay_span_bug(
|
|||
|
DUMMY_SP,
|
|||
|
&format!(
|
|||
|
"univariant: field #{} of `{}` comes after unsized field",
|
|||
|
offsets.len(),
|
|||
|
ty
|
|||
|
),
|
|||
|
);
|
|||
|
}
|
|||
|
|
|||
|
if field.is_unsized() {
|
|||
|
sized = false;
|
|||
|
}
|
|||
|
|
|||
|
// Invariant: offset < dl.obj_size_bound() <= 1<<61
|
|||
|
let field_align = if let Some(pack) = pack {
|
|||
|
field.align.min(AbiAndPrefAlign::new(pack))
|
|||
|
} else {
|
|||
|
field.align
|
|||
|
};
|
|||
|
offset = offset.align_to(field_align.abi);
|
|||
|
align = align.max(field_align);
|
|||
|
|
|||
|
debug!("univariant offset: {:?} field: {:#?}", offset, field);
|
|||
|
offsets[i as usize] = offset;
|
|||
|
|
|||
|
if let Some(mut niche) = field.largest_niche {
|
|||
|
let available = niche.available(dl);
|
|||
|
if available > largest_niche_available {
|
|||
|
largest_niche_available = available;
|
|||
|
niche.offset += offset;
|
|||
|
largest_niche = Some(niche);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow(ty))?;
|
|||
|
}
|
|||
|
|
|||
|
if let Some(repr_align) = repr.align {
|
|||
|
align = align.max(AbiAndPrefAlign::new(repr_align));
|
|||
|
}
|
|||
|
|
|||
|
debug!("univariant min_size: {:?}", offset);
|
|||
|
let min_size = offset;
|
|||
|
|
|||
|
// As stated above, inverse_memory_index holds field indices by increasing offset.
|
|||
|
// This makes it an already-sorted view of the offsets vec.
|
|||
|
// To invert it, consider:
|
|||
|
// If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0.
|
|||
|
// Field 5 would be the first element, so memory_index is i:
|
|||
|
// Note: if we didn't optimize, it's already right.
|
|||
|
|
|||
|
let memory_index =
|
|||
|
if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index };
|
|||
|
|
|||
|
let size = min_size.align_to(align.abi);
|
|||
|
let mut abi = Abi::Aggregate { sized };
|
|||
|
|
|||
|
// Unpack newtype ABIs and find scalar pairs.
|
|||
|
if sized && size.bytes() > 0 {
|
|||
|
// All other fields must be ZSTs.
|
|||
|
let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst());
|
|||
|
|
|||
|
match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) {
|
|||
|
// We have exactly one non-ZST field.
|
|||
|
(Some((i, field)), None, None) => {
|
|||
|
// Field fills the struct and it has a scalar or scalar pair ABI.
|
|||
|
if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size {
|
|||
|
match field.abi {
|
|||
|
// For plain scalars, or vectors of them, we can't unpack
|
|||
|
// newtypes for `#[repr(C)]`, as that affects C ABIs.
|
|||
|
Abi::Scalar(_) | Abi::Vector { .. } if optimize => {
|
|||
|
abi = field.abi;
|
|||
|
}
|
|||
|
// But scalar pairs are Rust-specific and get
|
|||
|
// treated as aggregates by C ABIs anyway.
|
|||
|
Abi::ScalarPair(..) => {
|
|||
|
abi = field.abi;
|
|||
|
}
|
|||
|
_ => {}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Two non-ZST fields, and they're both scalars.
|
|||
|
(Some((i, a)), Some((j, b)), None) => {
|
|||
|
match (a.abi, b.abi) {
|
|||
|
(Abi::Scalar(a), Abi::Scalar(b)) => {
|
|||
|
// Order by the memory placement, not source order.
|
|||
|
let ((i, a), (j, b)) = if offsets[i] < offsets[j] {
|
|||
|
((i, a), (j, b))
|
|||
|
} else {
|
|||
|
((j, b), (i, a))
|
|||
|
};
|
|||
|
let pair = scalar_pair(cx, a, b);
|
|||
|
let pair_offsets = match pair.fields {
|
|||
|
FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
|
|||
|
assert_eq!(memory_index, &[0, 1]);
|
|||
|
offsets
|
|||
|
}
|
|||
|
_ => bug!(),
|
|||
|
};
|
|||
|
if offsets[i] == pair_offsets[0]
|
|||
|
&& offsets[j] == pair_offsets[1]
|
|||
|
&& align == pair.align
|
|||
|
&& size == pair.size
|
|||
|
{
|
|||
|
// We can use `ScalarPair` only when it matches our
|
|||
|
// already computed layout (including `#[repr(C)]`).
|
|||
|
abi = pair.abi;
|
|||
|
}
|
|||
|
}
|
|||
|
_ => {}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
_ => {}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if fields.iter().any(|f| f.abi.is_uninhabited()) {
|
|||
|
abi = Abi::Uninhabited;
|
|||
|
}
|
|||
|
|
|||
|
Ok(LayoutS {
|
|||
|
variants: Variants::Single { index: VariantIdx::new(0) },
|
|||
|
fields: FieldsShape::Arbitrary { offsets, memory_index },
|
|||
|
abi,
|
|||
|
largest_niche,
|
|||
|
align,
|
|||
|
size,
|
|||
|
})
|
|||
|
}
|
|||
|
|
|||
|
fn layout_of_uncached<'tcx>(
|
|||
|
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
|||
|
ty: Ty<'tcx>,
|
|||
|
) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
|
|||
|
let tcx = cx.tcx;
|
|||
|
let param_env = cx.param_env;
|
|||
|
let dl = cx.data_layout();
|
|||
|
let scalar_unit = |value: Primitive| {
|
|||
|
let size = value.size(dl);
|
|||
|
assert!(size.bits() <= 128);
|
|||
|
Scalar::Initialized { value, valid_range: WrappingRange::full(size) }
|
|||
|
};
|
|||
|
let scalar = |value: Primitive| tcx.intern_layout(LayoutS::scalar(cx, scalar_unit(value)));
|
|||
|
|
|||
|
let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| {
|
|||
|
Ok(tcx.intern_layout(univariant_uninterned(cx, ty, fields, repr, kind)?))
|
|||
|
};
|
|||
|
debug_assert!(!ty.has_infer_types_or_consts());
|
|||
|
|
|||
|
Ok(match *ty.kind() {
|
|||
|
// Basic scalars.
|
|||
|
ty::Bool => tcx.intern_layout(LayoutS::scalar(
|
|||
|
cx,
|
|||
|
Scalar::Initialized {
|
|||
|
value: Int(I8, false),
|
|||
|
valid_range: WrappingRange { start: 0, end: 1 },
|
|||
|
},
|
|||
|
)),
|
|||
|
ty::Char => tcx.intern_layout(LayoutS::scalar(
|
|||
|
cx,
|
|||
|
Scalar::Initialized {
|
|||
|
value: Int(I32, false),
|
|||
|
valid_range: WrappingRange { start: 0, end: 0x10FFFF },
|
|||
|
},
|
|||
|
)),
|
|||
|
ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
|
|||
|
ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
|
|||
|
ty::Float(fty) => scalar(match fty {
|
|||
|
ty::FloatTy::F32 => F32,
|
|||
|
ty::FloatTy::F64 => F64,
|
|||
|
}),
|
|||
|
ty::FnPtr(_) => {
|
|||
|
let mut ptr = scalar_unit(Pointer);
|
|||
|
ptr.valid_range_mut().start = 1;
|
|||
|
tcx.intern_layout(LayoutS::scalar(cx, ptr))
|
|||
|
}
|
|||
|
|
|||
|
// The never type.
|
|||
|
ty::Never => tcx.intern_layout(LayoutS {
|
|||
|
variants: Variants::Single { index: VariantIdx::new(0) },
|
|||
|
fields: FieldsShape::Primitive,
|
|||
|
abi: Abi::Uninhabited,
|
|||
|
largest_niche: None,
|
|||
|
align: dl.i8_align,
|
|||
|
size: Size::ZERO,
|
|||
|
}),
|
|||
|
|
|||
|
// Potentially-wide pointers.
|
|||
|
ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
|
|||
|
let mut data_ptr = scalar_unit(Pointer);
|
|||
|
if !ty.is_unsafe_ptr() {
|
|||
|
data_ptr.valid_range_mut().start = 1;
|
|||
|
}
|
|||
|
|
|||
|
let pointee = tcx.normalize_erasing_regions(param_env, pointee);
|
|||
|
if pointee.is_sized(tcx.at(DUMMY_SP), param_env) {
|
|||
|
return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr)));
|
|||
|
}
|
|||
|
|
|||
|
let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env);
|
|||
|
let metadata = match unsized_part.kind() {
|
|||
|
ty::Foreign(..) => {
|
|||
|
return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr)));
|
|||
|
}
|
|||
|
ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)),
|
|||
|
ty::Dynamic(..) => {
|
|||
|
let mut vtable = scalar_unit(Pointer);
|
|||
|
vtable.valid_range_mut().start = 1;
|
|||
|
vtable
|
|||
|
}
|
|||
|
_ => return Err(LayoutError::Unknown(unsized_part)),
|
|||
|
};
|
|||
|
|
|||
|
// Effectively a (ptr, meta) tuple.
|
|||
|
tcx.intern_layout(scalar_pair(cx, data_ptr, metadata))
|
|||
|
}
|
|||
|
|
|||
|
ty::Dynamic(_, _, ty::DynStar) => {
|
|||
|
let mut data = scalar_unit(Int(dl.ptr_sized_integer(), false));
|
|||
|
data.valid_range_mut().start = 0;
|
|||
|
let mut vtable = scalar_unit(Pointer);
|
|||
|
vtable.valid_range_mut().start = 1;
|
|||
|
tcx.intern_layout(scalar_pair(cx, data, vtable))
|
|||
|
}
|
|||
|
|
|||
|
// Arrays and slices.
|
|||
|
ty::Array(element, mut count) => {
|
|||
|
if count.has_projections() {
|
|||
|
count = tcx.normalize_erasing_regions(param_env, count);
|
|||
|
if count.has_projections() {
|
|||
|
return Err(LayoutError::Unknown(ty));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?;
|
|||
|
let element = cx.layout_of(element)?;
|
|||
|
let size = element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?;
|
|||
|
|
|||
|
let abi = if count != 0 && tcx.conservative_is_privately_uninhabited(param_env.and(ty))
|
|||
|
{
|
|||
|
Abi::Uninhabited
|
|||
|
} else {
|
|||
|
Abi::Aggregate { sized: true }
|
|||
|
};
|
|||
|
|
|||
|
let largest_niche = if count != 0 { element.largest_niche } else { None };
|
|||
|
|
|||
|
tcx.intern_layout(LayoutS {
|
|||
|
variants: Variants::Single { index: VariantIdx::new(0) },
|
|||
|
fields: FieldsShape::Array { stride: element.size, count },
|
|||
|
abi,
|
|||
|
largest_niche,
|
|||
|
align: element.align,
|
|||
|
size,
|
|||
|
})
|
|||
|
}
|
|||
|
ty::Slice(element) => {
|
|||
|
let element = cx.layout_of(element)?;
|
|||
|
tcx.intern_layout(LayoutS {
|
|||
|
variants: Variants::Single { index: VariantIdx::new(0) },
|
|||
|
fields: FieldsShape::Array { stride: element.size, count: 0 },
|
|||
|
abi: Abi::Aggregate { sized: false },
|
|||
|
largest_niche: None,
|
|||
|
align: element.align,
|
|||
|
size: Size::ZERO,
|
|||
|
})
|
|||
|
}
|
|||
|
ty::Str => tcx.intern_layout(LayoutS {
|
|||
|
variants: Variants::Single { index: VariantIdx::new(0) },
|
|||
|
fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
|
|||
|
abi: Abi::Aggregate { sized: false },
|
|||
|
largest_niche: None,
|
|||
|
align: dl.i8_align,
|
|||
|
size: Size::ZERO,
|
|||
|
}),
|
|||
|
|
|||
|
// Odd unit types.
|
|||
|
ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?,
|
|||
|
ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
|
|||
|
let mut unit = univariant_uninterned(
|
|||
|
cx,
|
|||
|
ty,
|
|||
|
&[],
|
|||
|
&ReprOptions::default(),
|
|||
|
StructKind::AlwaysSized,
|
|||
|
)?;
|
|||
|
match unit.abi {
|
|||
|
Abi::Aggregate { ref mut sized } => *sized = false,
|
|||
|
_ => bug!(),
|
|||
|
}
|
|||
|
tcx.intern_layout(unit)
|
|||
|
}
|
|||
|
|
|||
|
ty::Generator(def_id, substs, _) => generator_layout(cx, ty, def_id, substs)?,
|
|||
|
|
|||
|
ty::Closure(_, ref substs) => {
|
|||
|
let tys = substs.as_closure().upvar_tys();
|
|||
|
univariant(
|
|||
|
&tys.map(|ty| cx.layout_of(ty)).collect::<Result<Vec<_>, _>>()?,
|
|||
|
&ReprOptions::default(),
|
|||
|
StructKind::AlwaysSized,
|
|||
|
)?
|
|||
|
}
|
|||
|
|
|||
|
ty::Tuple(tys) => {
|
|||
|
let kind =
|
|||
|
if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };
|
|||
|
|
|||
|
univariant(
|
|||
|
&tys.iter().map(|k| cx.layout_of(k)).collect::<Result<Vec<_>, _>>()?,
|
|||
|
&ReprOptions::default(),
|
|||
|
kind,
|
|||
|
)?
|
|||
|
}
|
|||
|
|
|||
|
// SIMD vector types.
|
|||
|
ty::Adt(def, substs) if def.repr().simd() => {
|
|||
|
if !def.is_struct() {
|
|||
|
// Should have yielded E0517 by now.
|
|||
|
tcx.sess.delay_span_bug(
|
|||
|
DUMMY_SP,
|
|||
|
"#[repr(simd)] was applied to an ADT that is not a struct",
|
|||
|
);
|
|||
|
return Err(LayoutError::Unknown(ty));
|
|||
|
}
|
|||
|
|
|||
|
// Supported SIMD vectors are homogeneous ADTs with at least one field:
|
|||
|
//
|
|||
|
// * #[repr(simd)] struct S(T, T, T, T);
|
|||
|
// * #[repr(simd)] struct S { x: T, y: T, z: T, w: T }
|
|||
|
// * #[repr(simd)] struct S([T; 4])
|
|||
|
//
|
|||
|
// where T is a primitive scalar (integer/float/pointer).
|
|||
|
|
|||
|
// SIMD vectors with zero fields are not supported.
|
|||
|
// (should be caught by typeck)
|
|||
|
if def.non_enum_variant().fields.is_empty() {
|
|||
|
tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty));
|
|||
|
}
|
|||
|
|
|||
|
// Type of the first ADT field:
|
|||
|
let f0_ty = def.non_enum_variant().fields[0].ty(tcx, substs);
|
|||
|
|
|||
|
// Heterogeneous SIMD vectors are not supported:
|
|||
|
// (should be caught by typeck)
|
|||
|
for fi in &def.non_enum_variant().fields {
|
|||
|
if fi.ty(tcx, substs) != f0_ty {
|
|||
|
tcx.sess.fatal(&format!("monomorphising heterogeneous SIMD type `{}`", ty));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// The element type and number of elements of the SIMD vector
|
|||
|
// are obtained from:
|
|||
|
//
|
|||
|
// * the element type and length of the single array field, if
|
|||
|
// the first field is of array type, or
|
|||
|
//
|
|||
|
// * the homogeneous field type and the number of fields.
|
|||
|
let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() {
|
|||
|
// First ADT field is an array:
|
|||
|
|
|||
|
// SIMD vectors with multiple array fields are not supported:
|
|||
|
// (should be caught by typeck)
|
|||
|
if def.non_enum_variant().fields.len() != 1 {
|
|||
|
tcx.sess.fatal(&format!(
|
|||
|
"monomorphising SIMD type `{}` with more than one array field",
|
|||
|
ty
|
|||
|
));
|
|||
|
}
|
|||
|
|
|||
|
// Extract the number of elements from the layout of the array field:
|
|||
|
let FieldsShape::Array { count, .. } = cx.layout_of(f0_ty)?.layout.fields() else {
|
|||
|
return Err(LayoutError::Unknown(ty));
|
|||
|
};
|
|||
|
|
|||
|
(*e_ty, *count, true)
|
|||
|
} else {
|
|||
|
// First ADT field is not an array:
|
|||
|
(f0_ty, def.non_enum_variant().fields.len() as _, false)
|
|||
|
};
|
|||
|
|
|||
|
// SIMD vectors of zero length are not supported.
|
|||
|
// Additionally, lengths are capped at 2^16 as a fixed maximum backends must
|
|||
|
// support.
|
|||
|
//
|
|||
|
// Can't be caught in typeck if the array length is generic.
|
|||
|
if e_len == 0 {
|
|||
|
tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty));
|
|||
|
} else if e_len > MAX_SIMD_LANES {
|
|||
|
tcx.sess.fatal(&format!(
|
|||
|
"monomorphising SIMD type `{}` of length greater than {}",
|
|||
|
ty, MAX_SIMD_LANES,
|
|||
|
));
|
|||
|
}
|
|||
|
|
|||
|
// Compute the ABI of the element type:
|
|||
|
let e_ly = cx.layout_of(e_ty)?;
|
|||
|
let Abi::Scalar(e_abi) = e_ly.abi else {
|
|||
|
// This error isn't caught in typeck, e.g., if
|
|||
|
// the element type of the vector is generic.
|
|||
|
tcx.sess.fatal(&format!(
|
|||
|
"monomorphising SIMD type `{}` with a non-primitive-scalar \
|
|||
|
(integer/float/pointer) element type `{}`",
|
|||
|
ty, e_ty
|
|||
|
))
|
|||
|
};
|
|||
|
|
|||
|
// Compute the size and alignment of the vector:
|
|||
|
let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?;
|
|||
|
let align = dl.vector_align(size);
|
|||
|
let size = size.align_to(align.abi);
|
|||
|
|
|||
|
// Compute the placement of the vector fields:
|
|||
|
let fields = if is_array {
|
|||
|
FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] }
|
|||
|
} else {
|
|||
|
FieldsShape::Array { stride: e_ly.size, count: e_len }
|
|||
|
};
|
|||
|
|
|||
|
tcx.intern_layout(LayoutS {
|
|||
|
variants: Variants::Single { index: VariantIdx::new(0) },
|
|||
|
fields,
|
|||
|
abi: Abi::Vector { element: e_abi, count: e_len },
|
|||
|
largest_niche: e_ly.largest_niche,
|
|||
|
size,
|
|||
|
align,
|
|||
|
})
|
|||
|
}
|
|||
|
|
|||
|
// ADTs.
|
|||
|
ty::Adt(def, substs) => {
|
|||
|
// Cache the field layouts.
|
|||
|
let variants = def
|
|||
|
.variants()
|
|||
|
.iter()
|
|||
|
.map(|v| {
|
|||
|
v.fields
|
|||
|
.iter()
|
|||
|
.map(|field| cx.layout_of(field.ty(tcx, substs)))
|
|||
|
.collect::<Result<Vec<_>, _>>()
|
|||
|
})
|
|||
|
.collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
|
|||
|
|
|||
|
if def.is_union() {
|
|||
|
if def.repr().pack.is_some() && def.repr().align.is_some() {
|
|||
|
cx.tcx.sess.delay_span_bug(
|
|||
|
tcx.def_span(def.did()),
|
|||
|
"union cannot be packed and aligned",
|
|||
|
);
|
|||
|
return Err(LayoutError::Unknown(ty));
|
|||
|
}
|
|||
|
|
|||
|
let mut align =
|
|||
|
if def.repr().pack.is_some() { dl.i8_align } else { dl.aggregate_align };
|
|||
|
|
|||
|
if let Some(repr_align) = def.repr().align {
|
|||
|
align = align.max(AbiAndPrefAlign::new(repr_align));
|
|||
|
}
|
|||
|
|
|||
|
let optimize = !def.repr().inhibit_union_abi_opt();
|
|||
|
let mut size = Size::ZERO;
|
|||
|
let mut abi = Abi::Aggregate { sized: true };
|
|||
|
let index = VariantIdx::new(0);
|
|||
|
for field in &variants[index] {
|
|||
|
assert!(!field.is_unsized());
|
|||
|
align = align.max(field.align);
|
|||
|
|
|||
|
// If all non-ZST fields have the same ABI, forward this ABI
|
|||
|
if optimize && !field.is_zst() {
|
|||
|
// Discard valid range information and allow undef
|
|||
|
let field_abi = match field.abi {
|
|||
|
Abi::Scalar(x) => Abi::Scalar(x.to_union()),
|
|||
|
Abi::ScalarPair(x, y) => Abi::ScalarPair(x.to_union(), y.to_union()),
|
|||
|
Abi::Vector { element: x, count } => {
|
|||
|
Abi::Vector { element: x.to_union(), count }
|
|||
|
}
|
|||
|
Abi::Uninhabited | Abi::Aggregate { .. } => {
|
|||
|
Abi::Aggregate { sized: true }
|
|||
|
}
|
|||
|
};
|
|||
|
|
|||
|
if size == Size::ZERO {
|
|||
|
// first non ZST: initialize 'abi'
|
|||
|
abi = field_abi;
|
|||
|
} else if abi != field_abi {
|
|||
|
// different fields have different ABI: reset to Aggregate
|
|||
|
abi = Abi::Aggregate { sized: true };
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
size = cmp::max(size, field.size);
|
|||
|
}
|
|||
|
|
|||
|
if let Some(pack) = def.repr().pack {
|
|||
|
align = align.min(AbiAndPrefAlign::new(pack));
|
|||
|
}
|
|||
|
|
|||
|
return Ok(tcx.intern_layout(LayoutS {
|
|||
|
variants: Variants::Single { index },
|
|||
|
fields: FieldsShape::Union(
|
|||
|
NonZeroUsize::new(variants[index].len()).ok_or(LayoutError::Unknown(ty))?,
|
|||
|
),
|
|||
|
abi,
|
|||
|
largest_niche: None,
|
|||
|
align,
|
|||
|
size: size.align_to(align.abi),
|
|||
|
}));
|
|||
|
}
|
|||
|
|
|||
|
// A variant is absent if it's uninhabited and only has ZST fields.
|
|||
|
// Present uninhabited variants only require space for their fields,
|
|||
|
// but *not* an encoding of the discriminant (e.g., a tag value).
|
|||
|
// See issue #49298 for more details on the need to leave space
|
|||
|
// for non-ZST uninhabited data (mostly partial initialization).
|
|||
|
let absent = |fields: &[TyAndLayout<'_>]| {
|
|||
|
let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited());
|
|||
|
let is_zst = fields.iter().all(|f| f.is_zst());
|
|||
|
uninhabited && is_zst
|
|||
|
};
|
|||
|
let (present_first, present_second) = {
|
|||
|
let mut present_variants = variants
|
|||
|
.iter_enumerated()
|
|||
|
.filter_map(|(i, v)| if absent(v) { None } else { Some(i) });
|
|||
|
(present_variants.next(), present_variants.next())
|
|||
|
};
|
|||
|
let present_first = match present_first {
|
|||
|
Some(present_first) => present_first,
|
|||
|
// Uninhabited because it has no variants, or only absent ones.
|
|||
|
None if def.is_enum() => {
|
|||
|
return Ok(tcx.layout_of(param_env.and(tcx.types.never))?.layout);
|
|||
|
}
|
|||
|
// If it's a struct, still compute a layout so that we can still compute the
|
|||
|
// field offsets.
|
|||
|
None => VariantIdx::new(0),
|
|||
|
};
|
|||
|
|
|||
|
let is_struct = !def.is_enum() ||
|
|||
|
// Only one variant is present.
|
|||
|
(present_second.is_none() &&
|
|||
|
// Representation optimizations are allowed.
|
|||
|
!def.repr().inhibit_enum_layout_opt());
|
|||
|
if is_struct {
|
|||
|
// Struct, or univariant enum equivalent to a struct.
|
|||
|
// (Typechecking will reject discriminant-sizing attrs.)
|
|||
|
|
|||
|
let v = present_first;
|
|||
|
let kind = if def.is_enum() || variants[v].is_empty() {
|
|||
|
StructKind::AlwaysSized
|
|||
|
} else {
|
|||
|
let param_env = tcx.param_env(def.did());
|
|||
|
let last_field = def.variant(v).fields.last().unwrap();
|
|||
|
let always_sized =
|
|||
|
tcx.type_of(last_field.did).is_sized(tcx.at(DUMMY_SP), param_env);
|
|||
|
if !always_sized { StructKind::MaybeUnsized } else { StructKind::AlwaysSized }
|
|||
|
};
|
|||
|
|
|||
|
let mut st = univariant_uninterned(cx, ty, &variants[v], &def.repr(), kind)?;
|
|||
|
st.variants = Variants::Single { index: v };
|
|||
|
|
|||
|
if def.is_unsafe_cell() {
|
|||
|
let hide_niches = |scalar: &mut _| match scalar {
|
|||
|
Scalar::Initialized { value, valid_range } => {
|
|||
|
*valid_range = WrappingRange::full(value.size(dl))
|
|||
|
}
|
|||
|
// Already doesn't have any niches
|
|||
|
Scalar::Union { .. } => {}
|
|||
|
};
|
|||
|
match &mut st.abi {
|
|||
|
Abi::Uninhabited => {}
|
|||
|
Abi::Scalar(scalar) => hide_niches(scalar),
|
|||
|
Abi::ScalarPair(a, b) => {
|
|||
|
hide_niches(a);
|
|||
|
hide_niches(b);
|
|||
|
}
|
|||
|
Abi::Vector { element, count: _ } => hide_niches(element),
|
|||
|
Abi::Aggregate { sized: _ } => {}
|
|||
|
}
|
|||
|
st.largest_niche = None;
|
|||
|
return Ok(tcx.intern_layout(st));
|
|||
|
}
|
|||
|
|
|||
|
let (start, end) = cx.tcx.layout_scalar_valid_range(def.did());
|
|||
|
match st.abi {
|
|||
|
Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => {
|
|||
|
// the asserts ensure that we are not using the
|
|||
|
// `#[rustc_layout_scalar_valid_range(n)]`
|
|||
|
// attribute to widen the range of anything as that would probably
|
|||
|
// result in UB somewhere
|
|||
|
// FIXME(eddyb) the asserts are probably not needed,
|
|||
|
// as larger validity ranges would result in missed
|
|||
|
// optimizations, *not* wrongly assuming the inner
|
|||
|
// value is valid. e.g. unions enlarge validity ranges,
|
|||
|
// because the values may be uninitialized.
|
|||
|
if let Bound::Included(start) = start {
|
|||
|
// FIXME(eddyb) this might be incorrect - it doesn't
|
|||
|
// account for wrap-around (end < start) ranges.
|
|||
|
let valid_range = scalar.valid_range_mut();
|
|||
|
assert!(valid_range.start <= start);
|
|||
|
valid_range.start = start;
|
|||
|
}
|
|||
|
if let Bound::Included(end) = end {
|
|||
|
// FIXME(eddyb) this might be incorrect - it doesn't
|
|||
|
// account for wrap-around (end < start) ranges.
|
|||
|
let valid_range = scalar.valid_range_mut();
|
|||
|
assert!(valid_range.end >= end);
|
|||
|
valid_range.end = end;
|
|||
|
}
|
|||
|
|
|||
|
// Update `largest_niche` if we have introduced a larger niche.
|
|||
|
let niche = Niche::from_scalar(dl, Size::ZERO, *scalar);
|
|||
|
if let Some(niche) = niche {
|
|||
|
match st.largest_niche {
|
|||
|
Some(largest_niche) => {
|
|||
|
// Replace the existing niche even if they're equal,
|
|||
|
// because this one is at a lower offset.
|
|||
|
if largest_niche.available(dl) <= niche.available(dl) {
|
|||
|
st.largest_niche = Some(niche);
|
|||
|
}
|
|||
|
}
|
|||
|
None => st.largest_niche = Some(niche),
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
_ => assert!(
|
|||
|
start == Bound::Unbounded && end == Bound::Unbounded,
|
|||
|
"nonscalar layout for layout_scalar_valid_range type {:?}: {:#?}",
|
|||
|
def,
|
|||
|
st,
|
|||
|
),
|
|||
|
}
|
|||
|
|
|||
|
return Ok(tcx.intern_layout(st));
|
|||
|
}
|
|||
|
|
|||
|
// At this point, we have handled all unions and
|
|||
|
// structs. (We have also handled univariant enums
|
|||
|
// that allow representation optimization.)
|
|||
|
assert!(def.is_enum());
|
|||
|
|
|||
|
// Until we've decided whether to use the tagged or
|
|||
|
// niche filling LayoutS, we don't want to intern the
|
|||
|
// variant layouts, so we can't store them in the
|
|||
|
// overall LayoutS. Store the overall LayoutS
|
|||
|
// and the variant LayoutSs here until then.
|
|||
|
struct TmpLayout<'tcx> {
|
|||
|
layout: LayoutS<'tcx>,
|
|||
|
variants: IndexVec<VariantIdx, LayoutS<'tcx>>,
|
|||
|
}
|
|||
|
|
|||
|
let calculate_niche_filling_layout =
|
|||
|
|| -> Result<Option<TmpLayout<'tcx>>, LayoutError<'tcx>> {
|
|||
|
// The current code for niche-filling relies on variant indices
|
|||
|
// instead of actual discriminants, so enums with
|
|||
|
// explicit discriminants (RFC #2363) would misbehave.
|
|||
|
if def.repr().inhibit_enum_layout_opt()
|
|||
|
|| def
|
|||
|
.variants()
|
|||
|
.iter_enumerated()
|
|||
|
.any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32()))
|
|||
|
{
|
|||
|
return Ok(None);
|
|||
|
}
|
|||
|
|
|||
|
if variants.len() < 2 {
|
|||
|
return Ok(None);
|
|||
|
}
|
|||
|
|
|||
|
let mut align = dl.aggregate_align;
|
|||
|
let mut variant_layouts = variants
|
|||
|
.iter_enumerated()
|
|||
|
.map(|(j, v)| {
|
|||
|
let mut st = univariant_uninterned(
|
|||
|
cx,
|
|||
|
ty,
|
|||
|
v,
|
|||
|
&def.repr(),
|
|||
|
StructKind::AlwaysSized,
|
|||
|
)?;
|
|||
|
st.variants = Variants::Single { index: j };
|
|||
|
|
|||
|
align = align.max(st.align);
|
|||
|
|
|||
|
Ok(st)
|
|||
|
})
|
|||
|
.collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
|
|||
|
|
|||
|
let largest_variant_index = match variant_layouts
|
|||
|
.iter_enumerated()
|
|||
|
.max_by_key(|(_i, layout)| layout.size.bytes())
|
|||
|
.map(|(i, _layout)| i)
|
|||
|
{
|
|||
|
None => return Ok(None),
|
|||
|
Some(i) => i,
|
|||
|
};
|
|||
|
|
|||
|
let all_indices = VariantIdx::new(0)..=VariantIdx::new(variants.len() - 1);
|
|||
|
let needs_disc = |index: VariantIdx| {
|
|||
|
index != largest_variant_index && !absent(&variants[index])
|
|||
|
};
|
|||
|
let niche_variants = all_indices.clone().find(|v| needs_disc(*v)).unwrap()
|
|||
|
..=all_indices.rev().find(|v| needs_disc(*v)).unwrap();
|
|||
|
|
|||
|
let count = niche_variants.size_hint().1.unwrap() as u128;
|
|||
|
|
|||
|
// Find the field with the largest niche
|
|||
|
let (field_index, niche, (niche_start, niche_scalar)) = match variants
|
|||
|
[largest_variant_index]
|
|||
|
.iter()
|
|||
|
.enumerate()
|
|||
|
.filter_map(|(j, field)| Some((j, field.largest_niche?)))
|
|||
|
.max_by_key(|(_, niche)| niche.available(dl))
|
|||
|
.and_then(|(j, niche)| Some((j, niche, niche.reserve(cx, count)?)))
|
|||
|
{
|
|||
|
None => return Ok(None),
|
|||
|
Some(x) => x,
|
|||
|
};
|
|||
|
|
|||
|
let niche_offset = niche.offset
|
|||
|
+ variant_layouts[largest_variant_index].fields.offset(field_index);
|
|||
|
let niche_size = niche.value.size(dl);
|
|||
|
let size = variant_layouts[largest_variant_index].size.align_to(align.abi);
|
|||
|
|
|||
|
let all_variants_fit =
|
|||
|
variant_layouts.iter_enumerated_mut().all(|(i, layout)| {
|
|||
|
if i == largest_variant_index {
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
layout.largest_niche = None;
|
|||
|
|
|||
|
if layout.size <= niche_offset {
|
|||
|
// This variant will fit before the niche.
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
// Determine if it'll fit after the niche.
|
|||
|
let this_align = layout.align.abi;
|
|||
|
let this_offset = (niche_offset + niche_size).align_to(this_align);
|
|||
|
|
|||
|
if this_offset + layout.size > size {
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
// It'll fit, but we need to make some adjustments.
|
|||
|
match layout.fields {
|
|||
|
FieldsShape::Arbitrary { ref mut offsets, .. } => {
|
|||
|
for (j, offset) in offsets.iter_mut().enumerate() {
|
|||
|
if !variants[i][j].is_zst() {
|
|||
|
*offset += this_offset;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
_ => {
|
|||
|
panic!("Layout of fields should be Arbitrary for variants")
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// It can't be a Scalar or ScalarPair because the offset isn't 0.
|
|||
|
if !layout.abi.is_uninhabited() {
|
|||
|
layout.abi = Abi::Aggregate { sized: true };
|
|||
|
}
|
|||
|
layout.size += this_offset;
|
|||
|
|
|||
|
true
|
|||
|
});
|
|||
|
|
|||
|
if !all_variants_fit {
|
|||
|
return Ok(None);
|
|||
|
}
|
|||
|
|
|||
|
let largest_niche = Niche::from_scalar(dl, niche_offset, niche_scalar);
|
|||
|
|
|||
|
let others_zst = variant_layouts
|
|||
|
.iter_enumerated()
|
|||
|
.all(|(i, layout)| i == largest_variant_index || layout.size == Size::ZERO);
|
|||
|
let same_size = size == variant_layouts[largest_variant_index].size;
|
|||
|
let same_align = align == variant_layouts[largest_variant_index].align;
|
|||
|
|
|||
|
let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) {
|
|||
|
Abi::Uninhabited
|
|||
|
} else if same_size && same_align && others_zst {
|
|||
|
match variant_layouts[largest_variant_index].abi {
|
|||
|
// When the total alignment and size match, we can use the
|
|||
|
// same ABI as the scalar variant with the reserved niche.
|
|||
|
Abi::Scalar(_) => Abi::Scalar(niche_scalar),
|
|||
|
Abi::ScalarPair(first, second) => {
|
|||
|
// Only the niche is guaranteed to be initialised,
|
|||
|
// so use union layouts for the other primitive.
|
|||
|
if niche_offset == Size::ZERO {
|
|||
|
Abi::ScalarPair(niche_scalar, second.to_union())
|
|||
|
} else {
|
|||
|
Abi::ScalarPair(first.to_union(), niche_scalar)
|
|||
|
}
|
|||
|
}
|
|||
|
_ => Abi::Aggregate { sized: true },
|
|||
|
}
|
|||
|
} else {
|
|||
|
Abi::Aggregate { sized: true }
|
|||
|
};
|
|||
|
|
|||
|
let layout = LayoutS {
|
|||
|
variants: Variants::Multiple {
|
|||
|
tag: niche_scalar,
|
|||
|
tag_encoding: TagEncoding::Niche {
|
|||
|
untagged_variant: largest_variant_index,
|
|||
|
niche_variants,
|
|||
|
niche_start,
|
|||
|
},
|
|||
|
tag_field: 0,
|
|||
|
variants: IndexVec::new(),
|
|||
|
},
|
|||
|
fields: FieldsShape::Arbitrary {
|
|||
|
offsets: vec![niche_offset],
|
|||
|
memory_index: vec![0],
|
|||
|
},
|
|||
|
abi,
|
|||
|
largest_niche,
|
|||
|
size,
|
|||
|
align,
|
|||
|
};
|
|||
|
|
|||
|
Ok(Some(TmpLayout { layout, variants: variant_layouts }))
|
|||
|
};
|
|||
|
|
|||
|
let niche_filling_layout = calculate_niche_filling_layout()?;
|
|||
|
|
|||
|
let (mut min, mut max) = (i128::MAX, i128::MIN);
|
|||
|
let discr_type = def.repr().discr_type();
|
|||
|
let bits = Integer::from_attr(cx, discr_type).size().bits();
|
|||
|
for (i, discr) in def.discriminants(tcx) {
|
|||
|
if variants[i].iter().any(|f| f.abi.is_uninhabited()) {
|
|||
|
continue;
|
|||
|
}
|
|||
|
let mut x = discr.val as i128;
|
|||
|
if discr_type.is_signed() {
|
|||
|
// sign extend the raw representation to be an i128
|
|||
|
x = (x << (128 - bits)) >> (128 - bits);
|
|||
|
}
|
|||
|
if x < min {
|
|||
|
min = x;
|
|||
|
}
|
|||
|
if x > max {
|
|||
|
max = x;
|
|||
|
}
|
|||
|
}
|
|||
|
// We might have no inhabited variants, so pretend there's at least one.
|
|||
|
if (min, max) == (i128::MAX, i128::MIN) {
|
|||
|
min = 0;
|
|||
|
max = 0;
|
|||
|
}
|
|||
|
assert!(min <= max, "discriminant range is {}...{}", min, max);
|
|||
|
let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr(), min, max);
|
|||
|
|
|||
|
let mut align = dl.aggregate_align;
|
|||
|
let mut size = Size::ZERO;
|
|||
|
|
|||
|
// We're interested in the smallest alignment, so start large.
|
|||
|
let mut start_align = Align::from_bytes(256).unwrap();
|
|||
|
assert_eq!(Integer::for_align(dl, start_align), None);
|
|||
|
|
|||
|
// repr(C) on an enum tells us to make a (tag, union) layout,
|
|||
|
// so we need to grow the prefix alignment to be at least
|
|||
|
// the alignment of the union. (This value is used both for
|
|||
|
// determining the alignment of the overall enum, and the
|
|||
|
// determining the alignment of the payload after the tag.)
|
|||
|
let mut prefix_align = min_ity.align(dl).abi;
|
|||
|
if def.repr().c() {
|
|||
|
for fields in &variants {
|
|||
|
for field in fields {
|
|||
|
prefix_align = prefix_align.max(field.align.abi);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Create the set of structs that represent each variant.
|
|||
|
let mut layout_variants = variants
|
|||
|
.iter_enumerated()
|
|||
|
.map(|(i, field_layouts)| {
|
|||
|
let mut st = univariant_uninterned(
|
|||
|
cx,
|
|||
|
ty,
|
|||
|
&field_layouts,
|
|||
|
&def.repr(),
|
|||
|
StructKind::Prefixed(min_ity.size(), prefix_align),
|
|||
|
)?;
|
|||
|
st.variants = Variants::Single { index: i };
|
|||
|
// Find the first field we can't move later
|
|||
|
// to make room for a larger discriminant.
|
|||
|
for field in st.fields.index_by_increasing_offset().map(|j| field_layouts[j]) {
|
|||
|
if !field.is_zst() || field.align.abi.bytes() != 1 {
|
|||
|
start_align = start_align.min(field.align.abi);
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
size = cmp::max(size, st.size);
|
|||
|
align = align.max(st.align);
|
|||
|
Ok(st)
|
|||
|
})
|
|||
|
.collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
|
|||
|
|
|||
|
// Align the maximum variant size to the largest alignment.
|
|||
|
size = size.align_to(align.abi);
|
|||
|
|
|||
|
if size.bytes() >= dl.obj_size_bound() {
|
|||
|
return Err(LayoutError::SizeOverflow(ty));
|
|||
|
}
|
|||
|
|
|||
|
let typeck_ity = Integer::from_attr(dl, def.repr().discr_type());
|
|||
|
if typeck_ity < min_ity {
|
|||
|
// It is a bug if Layout decided on a greater discriminant size than typeck for
|
|||
|
// some reason at this point (based on values discriminant can take on). Mostly
|
|||
|
// because this discriminant will be loaded, and then stored into variable of
|
|||
|
// type calculated by typeck. Consider such case (a bug): typeck decided on
|
|||
|
// byte-sized discriminant, but layout thinks we need a 16-bit to store all
|
|||
|
// discriminant values. That would be a bug, because then, in codegen, in order
|
|||
|
// to store this 16-bit discriminant into 8-bit sized temporary some of the
|
|||
|
// space necessary to represent would have to be discarded (or layout is wrong
|
|||
|
// on thinking it needs 16 bits)
|
|||
|
bug!(
|
|||
|
"layout decided on a larger discriminant type ({:?}) than typeck ({:?})",
|
|||
|
min_ity,
|
|||
|
typeck_ity
|
|||
|
);
|
|||
|
// However, it is fine to make discr type however large (as an optimisation)
|
|||
|
// after this point – we’ll just truncate the value we load in codegen.
|
|||
|
}
|
|||
|
|
|||
|
// Check to see if we should use a different type for the
|
|||
|
// discriminant. We can safely use a type with the same size
|
|||
|
// as the alignment of the first field of each variant.
|
|||
|
// We increase the size of the discriminant to avoid LLVM copying
|
|||
|
// padding when it doesn't need to. This normally causes unaligned
|
|||
|
// load/stores and excessive memcpy/memset operations. By using a
|
|||
|
// bigger integer size, LLVM can be sure about its contents and
|
|||
|
// won't be so conservative.
|
|||
|
|
|||
|
// Use the initial field alignment
|
|||
|
let mut ity = if def.repr().c() || def.repr().int.is_some() {
|
|||
|
min_ity
|
|||
|
} else {
|
|||
|
Integer::for_align(dl, start_align).unwrap_or(min_ity)
|
|||
|
};
|
|||
|
|
|||
|
// If the alignment is not larger than the chosen discriminant size,
|
|||
|
// don't use the alignment as the final size.
|
|||
|
if ity <= min_ity {
|
|||
|
ity = min_ity;
|
|||
|
} else {
|
|||
|
// Patch up the variants' first few fields.
|
|||
|
let old_ity_size = min_ity.size();
|
|||
|
let new_ity_size = ity.size();
|
|||
|
for variant in &mut layout_variants {
|
|||
|
match variant.fields {
|
|||
|
FieldsShape::Arbitrary { ref mut offsets, .. } => {
|
|||
|
for i in offsets {
|
|||
|
if *i <= old_ity_size {
|
|||
|
assert_eq!(*i, old_ity_size);
|
|||
|
*i = new_ity_size;
|
|||
|
}
|
|||
|
}
|
|||
|
// We might be making the struct larger.
|
|||
|
if variant.size <= old_ity_size {
|
|||
|
variant.size = new_ity_size;
|
|||
|
}
|
|||
|
}
|
|||
|
_ => bug!(),
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
let tag_mask = ity.size().unsigned_int_max();
|
|||
|
let tag = Scalar::Initialized {
|
|||
|
value: Int(ity, signed),
|
|||
|
valid_range: WrappingRange {
|
|||
|
start: (min as u128 & tag_mask),
|
|||
|
end: (max as u128 & tag_mask),
|
|||
|
},
|
|||
|
};
|
|||
|
let mut abi = Abi::Aggregate { sized: true };
|
|||
|
|
|||
|
if layout_variants.iter().all(|v| v.abi.is_uninhabited()) {
|
|||
|
abi = Abi::Uninhabited;
|
|||
|
} else if tag.size(dl) == size {
|
|||
|
// Make sure we only use scalar layout when the enum is entirely its
|
|||
|
// own tag (i.e. it has no padding nor any non-ZST variant fields).
|
|||
|
abi = Abi::Scalar(tag);
|
|||
|
} else {
|
|||
|
// Try to use a ScalarPair for all tagged enums.
|
|||
|
let mut common_prim = None;
|
|||
|
let mut common_prim_initialized_in_all_variants = true;
|
|||
|
for (field_layouts, layout_variant) in iter::zip(&variants, &layout_variants) {
|
|||
|
let FieldsShape::Arbitrary { ref offsets, .. } = layout_variant.fields else {
|
|||
|
bug!();
|
|||
|
};
|
|||
|
let mut fields = iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst());
|
|||
|
let (field, offset) = match (fields.next(), fields.next()) {
|
|||
|
(None, None) => {
|
|||
|
common_prim_initialized_in_all_variants = false;
|
|||
|
continue;
|
|||
|
}
|
|||
|
(Some(pair), None) => pair,
|
|||
|
_ => {
|
|||
|
common_prim = None;
|
|||
|
break;
|
|||
|
}
|
|||
|
};
|
|||
|
let prim = match field.abi {
|
|||
|
Abi::Scalar(scalar) => {
|
|||
|
common_prim_initialized_in_all_variants &=
|
|||
|
matches!(scalar, Scalar::Initialized { .. });
|
|||
|
scalar.primitive()
|
|||
|
}
|
|||
|
_ => {
|
|||
|
common_prim = None;
|
|||
|
break;
|
|||
|
}
|
|||
|
};
|
|||
|
if let Some(pair) = common_prim {
|
|||
|
// This is pretty conservative. We could go fancier
|
|||
|
// by conflating things like i32 and u32, or even
|
|||
|
// realising that (u8, u8) could just cohabit with
|
|||
|
// u16 or even u32.
|
|||
|
if pair != (prim, offset) {
|
|||
|
common_prim = None;
|
|||
|
break;
|
|||
|
}
|
|||
|
} else {
|
|||
|
common_prim = Some((prim, offset));
|
|||
|
}
|
|||
|
}
|
|||
|
if let Some((prim, offset)) = common_prim {
|
|||
|
let prim_scalar = if common_prim_initialized_in_all_variants {
|
|||
|
scalar_unit(prim)
|
|||
|
} else {
|
|||
|
// Common prim might be uninit.
|
|||
|
Scalar::Union { value: prim }
|
|||
|
};
|
|||
|
let pair = scalar_pair(cx, tag, prim_scalar);
|
|||
|
let pair_offsets = match pair.fields {
|
|||
|
FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
|
|||
|
assert_eq!(memory_index, &[0, 1]);
|
|||
|
offsets
|
|||
|
}
|
|||
|
_ => bug!(),
|
|||
|
};
|
|||
|
if pair_offsets[0] == Size::ZERO
|
|||
|
&& pair_offsets[1] == *offset
|
|||
|
&& align == pair.align
|
|||
|
&& size == pair.size
|
|||
|
{
|
|||
|
// We can use `ScalarPair` only when it matches our
|
|||
|
// already computed layout (including `#[repr(C)]`).
|
|||
|
abi = pair.abi;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the
|
|||
|
// variants to ensure they are consistent. This is because a downcast is
|
|||
|
// semantically a NOP, and thus should not affect layout.
|
|||
|
if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
|
|||
|
for variant in &mut layout_variants {
|
|||
|
// We only do this for variants with fields; the others are not accessed anyway.
|
|||
|
// Also do not overwrite any already existing "clever" ABIs.
|
|||
|
if variant.fields.count() > 0 && matches!(variant.abi, Abi::Aggregate { .. }) {
|
|||
|
variant.abi = abi;
|
|||
|
// Also need to bump up the size and alignment, so that the entire value fits in here.
|
|||
|
variant.size = cmp::max(variant.size, size);
|
|||
|
variant.align.abi = cmp::max(variant.align.abi, align.abi);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag);
|
|||
|
|
|||
|
let tagged_layout = LayoutS {
|
|||
|
variants: Variants::Multiple {
|
|||
|
tag,
|
|||
|
tag_encoding: TagEncoding::Direct,
|
|||
|
tag_field: 0,
|
|||
|
variants: IndexVec::new(),
|
|||
|
},
|
|||
|
fields: FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] },
|
|||
|
largest_niche,
|
|||
|
abi,
|
|||
|
align,
|
|||
|
size,
|
|||
|
};
|
|||
|
|
|||
|
let tagged_layout = TmpLayout { layout: tagged_layout, variants: layout_variants };
|
|||
|
|
|||
|
let mut best_layout = match (tagged_layout, niche_filling_layout) {
|
|||
|
(tl, Some(nl)) => {
|
|||
|
// Pick the smaller layout; otherwise,
|
|||
|
// pick the layout with the larger niche; otherwise,
|
|||
|
// pick tagged as it has simpler codegen.
|
|||
|
use Ordering::*;
|
|||
|
let niche_size = |tmp_l: &TmpLayout<'_>| {
|
|||
|
tmp_l.layout.largest_niche.map_or(0, |n| n.available(dl))
|
|||
|
};
|
|||
|
match (
|
|||
|
tl.layout.size.cmp(&nl.layout.size),
|
|||
|
niche_size(&tl).cmp(&niche_size(&nl)),
|
|||
|
) {
|
|||
|
(Greater, _) => nl,
|
|||
|
(Equal, Less) => nl,
|
|||
|
_ => tl,
|
|||
|
}
|
|||
|
}
|
|||
|
(tl, None) => tl,
|
|||
|
};
|
|||
|
|
|||
|
// Now we can intern the variant layouts and store them in the enum layout.
|
|||
|
best_layout.layout.variants = match best_layout.layout.variants {
|
|||
|
Variants::Multiple { tag, tag_encoding, tag_field, .. } => Variants::Multiple {
|
|||
|
tag,
|
|||
|
tag_encoding,
|
|||
|
tag_field,
|
|||
|
variants: best_layout
|
|||
|
.variants
|
|||
|
.into_iter()
|
|||
|
.map(|layout| tcx.intern_layout(layout))
|
|||
|
.collect(),
|
|||
|
},
|
|||
|
_ => bug!(),
|
|||
|
};
|
|||
|
|
|||
|
tcx.intern_layout(best_layout.layout)
|
|||
|
}
|
|||
|
|
|||
|
// Types with no meaningful known layout.
|
|||
|
ty::Projection(_) | ty::Opaque(..) => {
|
|||
|
// NOTE(eddyb) `layout_of` query should've normalized these away,
|
|||
|
// if that was possible, so there's no reason to try again here.
|
|||
|
return Err(LayoutError::Unknown(ty));
|
|||
|
}
|
|||
|
|
|||
|
ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => {
|
|||
|
bug!("Layout::compute: unexpected type `{}`", ty)
|
|||
|
}
|
|||
|
|
|||
|
ty::Bound(..) | ty::Param(_) | ty::Error(_) => {
|
|||
|
return Err(LayoutError::Unknown(ty));
|
|||
|
}
|
|||
|
})
|
|||
|
}
|
|||
|
|
|||
|
/// Overlap eligibility and variant assignment for each GeneratorSavedLocal.
|
|||
|
#[derive(Clone, Debug, PartialEq)]
|
|||
|
enum SavedLocalEligibility {
|
|||
|
Unassigned,
|
|||
|
Assigned(VariantIdx),
|
|||
|
// FIXME: Use newtype_index so we aren't wasting bytes
|
|||
|
Ineligible(Option<u32>),
|
|||
|
}
|
|||
|
|
|||
|
// When laying out generators, we divide our saved local fields into two
|
|||
|
// categories: overlap-eligible and overlap-ineligible.
|
|||
|
//
|
|||
|
// Those fields which are ineligible for overlap go in a "prefix" at the
|
|||
|
// beginning of the layout, and always have space reserved for them.
|
|||
|
//
|
|||
|
// Overlap-eligible fields are only assigned to one variant, so we lay
|
|||
|
// those fields out for each variant and put them right after the
|
|||
|
// prefix.
|
|||
|
//
|
|||
|
// Finally, in the layout details, we point to the fields from the
|
|||
|
// variants they are assigned to. It is possible for some fields to be
|
|||
|
// included in multiple variants. No field ever "moves around" in the
|
|||
|
// layout; its offset is always the same.
|
|||
|
//
|
|||
|
// Also included in the layout are the upvars and the discriminant.
|
|||
|
// These are included as fields on the "outer" layout; they are not part
|
|||
|
// of any variant.
|
|||
|
|
|||
|
/// Compute the eligibility and assignment of each local.
|
|||
|
fn generator_saved_local_eligibility<'tcx>(
|
|||
|
info: &GeneratorLayout<'tcx>,
|
|||
|
) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>) {
|
|||
|
use SavedLocalEligibility::*;
|
|||
|
|
|||
|
let mut assignments: IndexVec<GeneratorSavedLocal, SavedLocalEligibility> =
|
|||
|
IndexVec::from_elem_n(Unassigned, info.field_tys.len());
|
|||
|
|
|||
|
// The saved locals not eligible for overlap. These will get
|
|||
|
// "promoted" to the prefix of our generator.
|
|||
|
let mut ineligible_locals = BitSet::new_empty(info.field_tys.len());
|
|||
|
|
|||
|
// Figure out which of our saved locals are fields in only
|
|||
|
// one variant. The rest are deemed ineligible for overlap.
|
|||
|
for (variant_index, fields) in info.variant_fields.iter_enumerated() {
|
|||
|
for local in fields {
|
|||
|
match assignments[*local] {
|
|||
|
Unassigned => {
|
|||
|
assignments[*local] = Assigned(variant_index);
|
|||
|
}
|
|||
|
Assigned(idx) => {
|
|||
|
// We've already seen this local at another suspension
|
|||
|
// point, so it is no longer a candidate.
|
|||
|
trace!(
|
|||
|
"removing local {:?} in >1 variant ({:?}, {:?})",
|
|||
|
local,
|
|||
|
variant_index,
|
|||
|
idx
|
|||
|
);
|
|||
|
ineligible_locals.insert(*local);
|
|||
|
assignments[*local] = Ineligible(None);
|
|||
|
}
|
|||
|
Ineligible(_) => {}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Next, check every pair of eligible locals to see if they
|
|||
|
// conflict.
|
|||
|
for local_a in info.storage_conflicts.rows() {
|
|||
|
let conflicts_a = info.storage_conflicts.count(local_a);
|
|||
|
if ineligible_locals.contains(local_a) {
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
for local_b in info.storage_conflicts.iter(local_a) {
|
|||
|
// local_a and local_b are storage live at the same time, therefore they
|
|||
|
// cannot overlap in the generator layout. The only way to guarantee
|
|||
|
// this is if they are in the same variant, or one is ineligible
|
|||
|
// (which means it is stored in every variant).
|
|||
|
if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] {
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
// If they conflict, we will choose one to make ineligible.
|
|||
|
// This is not always optimal; it's just a greedy heuristic that
|
|||
|
// seems to produce good results most of the time.
|
|||
|
let conflicts_b = info.storage_conflicts.count(local_b);
|
|||
|
let (remove, other) =
|
|||
|
if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
|
|||
|
ineligible_locals.insert(remove);
|
|||
|
assignments[remove] = Ineligible(None);
|
|||
|
trace!("removing local {:?} due to conflict with {:?}", remove, other);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Count the number of variants in use. If only one of them, then it is
|
|||
|
// impossible to overlap any locals in our layout. In this case it's
|
|||
|
// always better to make the remaining locals ineligible, so we can
|
|||
|
// lay them out with the other locals in the prefix and eliminate
|
|||
|
// unnecessary padding bytes.
|
|||
|
{
|
|||
|
let mut used_variants = BitSet::new_empty(info.variant_fields.len());
|
|||
|
for assignment in &assignments {
|
|||
|
if let Assigned(idx) = assignment {
|
|||
|
used_variants.insert(*idx);
|
|||
|
}
|
|||
|
}
|
|||
|
if used_variants.count() < 2 {
|
|||
|
for assignment in assignments.iter_mut() {
|
|||
|
*assignment = Ineligible(None);
|
|||
|
}
|
|||
|
ineligible_locals.insert_all();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Write down the order of our locals that will be promoted to the prefix.
|
|||
|
{
|
|||
|
for (idx, local) in ineligible_locals.iter().enumerate() {
|
|||
|
assignments[local] = Ineligible(Some(idx as u32));
|
|||
|
}
|
|||
|
}
|
|||
|
debug!("generator saved local assignments: {:?}", assignments);
|
|||
|
|
|||
|
(ineligible_locals, assignments)
|
|||
|
}
|
|||
|
|
|||
|
/// Compute the full generator layout.
|
|||
|
fn generator_layout<'tcx>(
|
|||
|
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
|||
|
ty: Ty<'tcx>,
|
|||
|
def_id: hir::def_id::DefId,
|
|||
|
substs: SubstsRef<'tcx>,
|
|||
|
) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
|
|||
|
use SavedLocalEligibility::*;
|
|||
|
let tcx = cx.tcx;
|
|||
|
let subst_field = |ty: Ty<'tcx>| EarlyBinder(ty).subst(tcx, substs);
|
|||
|
|
|||
|
let Some(info) = tcx.generator_layout(def_id) else {
|
|||
|
return Err(LayoutError::Unknown(ty));
|
|||
|
};
|
|||
|
let (ineligible_locals, assignments) = generator_saved_local_eligibility(&info);
|
|||
|
|
|||
|
// Build a prefix layout, including "promoting" all ineligible
|
|||
|
// locals as part of the prefix. We compute the layout of all of
|
|||
|
// these fields at once to get optimal packing.
|
|||
|
let tag_index = substs.as_generator().prefix_tys().count();
|
|||
|
|
|||
|
// `info.variant_fields` already accounts for the reserved variants, so no need to add them.
|
|||
|
let max_discr = (info.variant_fields.len() - 1) as u128;
|
|||
|
let discr_int = Integer::fit_unsigned(max_discr);
|
|||
|
let discr_int_ty = discr_int.to_ty(tcx, false);
|
|||
|
let tag = Scalar::Initialized {
|
|||
|
value: Primitive::Int(discr_int, false),
|
|||
|
valid_range: WrappingRange { start: 0, end: max_discr },
|
|||
|
};
|
|||
|
let tag_layout = cx.tcx.intern_layout(LayoutS::scalar(cx, tag));
|
|||
|
let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout };
|
|||
|
|
|||
|
let promoted_layouts = ineligible_locals
|
|||
|
.iter()
|
|||
|
.map(|local| subst_field(info.field_tys[local]))
|
|||
|
.map(|ty| tcx.mk_maybe_uninit(ty))
|
|||
|
.map(|ty| cx.layout_of(ty));
|
|||
|
let prefix_layouts = substs
|
|||
|
.as_generator()
|
|||
|
.prefix_tys()
|
|||
|
.map(|ty| cx.layout_of(ty))
|
|||
|
.chain(iter::once(Ok(tag_layout)))
|
|||
|
.chain(promoted_layouts)
|
|||
|
.collect::<Result<Vec<_>, _>>()?;
|
|||
|
let prefix = univariant_uninterned(
|
|||
|
cx,
|
|||
|
ty,
|
|||
|
&prefix_layouts,
|
|||
|
&ReprOptions::default(),
|
|||
|
StructKind::AlwaysSized,
|
|||
|
)?;
|
|||
|
|
|||
|
let (prefix_size, prefix_align) = (prefix.size, prefix.align);
|
|||
|
|
|||
|
// Split the prefix layout into the "outer" fields (upvars and
|
|||
|
// discriminant) and the "promoted" fields. Promoted fields will
|
|||
|
// get included in each variant that requested them in
|
|||
|
// GeneratorLayout.
|
|||
|
debug!("prefix = {:#?}", prefix);
|
|||
|
let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
|
|||
|
FieldsShape::Arbitrary { mut offsets, memory_index } => {
|
|||
|
let mut inverse_memory_index = invert_mapping(&memory_index);
|
|||
|
|
|||
|
// "a" (`0..b_start`) and "b" (`b_start..`) correspond to
|
|||
|
// "outer" and "promoted" fields respectively.
|
|||
|
let b_start = (tag_index + 1) as u32;
|
|||
|
let offsets_b = offsets.split_off(b_start as usize);
|
|||
|
let offsets_a = offsets;
|
|||
|
|
|||
|
// Disentangle the "a" and "b" components of `inverse_memory_index`
|
|||
|
// by preserving the order but keeping only one disjoint "half" each.
|
|||
|
// FIXME(eddyb) build a better abstraction for permutations, if possible.
|
|||
|
let inverse_memory_index_b: Vec<_> =
|
|||
|
inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect();
|
|||
|
inverse_memory_index.retain(|&i| i < b_start);
|
|||
|
let inverse_memory_index_a = inverse_memory_index;
|
|||
|
|
|||
|
// Since `inverse_memory_index_{a,b}` each only refer to their
|
|||
|
// respective fields, they can be safely inverted
|
|||
|
let memory_index_a = invert_mapping(&inverse_memory_index_a);
|
|||
|
let memory_index_b = invert_mapping(&inverse_memory_index_b);
|
|||
|
|
|||
|
let outer_fields =
|
|||
|
FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
|
|||
|
(outer_fields, offsets_b, memory_index_b)
|
|||
|
}
|
|||
|
_ => bug!(),
|
|||
|
};
|
|||
|
|
|||
|
let mut size = prefix.size;
|
|||
|
let mut align = prefix.align;
|
|||
|
let variants = info
|
|||
|
.variant_fields
|
|||
|
.iter_enumerated()
|
|||
|
.map(|(index, variant_fields)| {
|
|||
|
// Only include overlap-eligible fields when we compute our variant layout.
|
|||
|
let variant_only_tys = variant_fields
|
|||
|
.iter()
|
|||
|
.filter(|local| match assignments[**local] {
|
|||
|
Unassigned => bug!(),
|
|||
|
Assigned(v) if v == index => true,
|
|||
|
Assigned(_) => bug!("assignment does not match variant"),
|
|||
|
Ineligible(_) => false,
|
|||
|
})
|
|||
|
.map(|local| subst_field(info.field_tys[*local]));
|
|||
|
|
|||
|
let mut variant = univariant_uninterned(
|
|||
|
cx,
|
|||
|
ty,
|
|||
|
&variant_only_tys.map(|ty| cx.layout_of(ty)).collect::<Result<Vec<_>, _>>()?,
|
|||
|
&ReprOptions::default(),
|
|||
|
StructKind::Prefixed(prefix_size, prefix_align.abi),
|
|||
|
)?;
|
|||
|
variant.variants = Variants::Single { index };
|
|||
|
|
|||
|
let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else {
|
|||
|
bug!();
|
|||
|
};
|
|||
|
|
|||
|
// Now, stitch the promoted and variant-only fields back together in
|
|||
|
// the order they are mentioned by our GeneratorLayout.
|
|||
|
// Because we only use some subset (that can differ between variants)
|
|||
|
// of the promoted fields, we can't just pick those elements of the
|
|||
|
// `promoted_memory_index` (as we'd end up with gaps).
|
|||
|
// So instead, we build an "inverse memory_index", as if all of the
|
|||
|
// promoted fields were being used, but leave the elements not in the
|
|||
|
// subset as `INVALID_FIELD_IDX`, which we can filter out later to
|
|||
|
// obtain a valid (bijective) mapping.
|
|||
|
const INVALID_FIELD_IDX: u32 = !0;
|
|||
|
let mut combined_inverse_memory_index =
|
|||
|
vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()];
|
|||
|
let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
|
|||
|
let combined_offsets = variant_fields
|
|||
|
.iter()
|
|||
|
.enumerate()
|
|||
|
.map(|(i, local)| {
|
|||
|
let (offset, memory_index) = match assignments[*local] {
|
|||
|
Unassigned => bug!(),
|
|||
|
Assigned(_) => {
|
|||
|
let (offset, memory_index) = offsets_and_memory_index.next().unwrap();
|
|||
|
(offset, promoted_memory_index.len() as u32 + memory_index)
|
|||
|
}
|
|||
|
Ineligible(field_idx) => {
|
|||
|
let field_idx = field_idx.unwrap() as usize;
|
|||
|
(promoted_offsets[field_idx], promoted_memory_index[field_idx])
|
|||
|
}
|
|||
|
};
|
|||
|
combined_inverse_memory_index[memory_index as usize] = i as u32;
|
|||
|
offset
|
|||
|
})
|
|||
|
.collect();
|
|||
|
|
|||
|
// Remove the unused slots and invert the mapping to obtain the
|
|||
|
// combined `memory_index` (also see previous comment).
|
|||
|
combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX);
|
|||
|
let combined_memory_index = invert_mapping(&combined_inverse_memory_index);
|
|||
|
|
|||
|
variant.fields = FieldsShape::Arbitrary {
|
|||
|
offsets: combined_offsets,
|
|||
|
memory_index: combined_memory_index,
|
|||
|
};
|
|||
|
|
|||
|
size = size.max(variant.size);
|
|||
|
align = align.max(variant.align);
|
|||
|
Ok(tcx.intern_layout(variant))
|
|||
|
})
|
|||
|
.collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
|
|||
|
|
|||
|
size = size.align_to(align.abi);
|
|||
|
|
|||
|
let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi().is_uninhabited()) {
|
|||
|
Abi::Uninhabited
|
|||
|
} else {
|
|||
|
Abi::Aggregate { sized: true }
|
|||
|
};
|
|||
|
|
|||
|
let layout = tcx.intern_layout(LayoutS {
|
|||
|
variants: Variants::Multiple {
|
|||
|
tag,
|
|||
|
tag_encoding: TagEncoding::Direct,
|
|||
|
tag_field: tag_index,
|
|||
|
variants,
|
|||
|
},
|
|||
|
fields: outer_fields,
|
|||
|
abi,
|
|||
|
largest_niche: prefix.largest_niche,
|
|||
|
size,
|
|||
|
align,
|
|||
|
});
|
|||
|
debug!("generator layout ({:?}): {:#?}", ty, layout);
|
|||
|
Ok(layout)
|
|||
|
}
|
|||
|
|
|||
|
/// This is invoked by the `layout_of` query to record the final
|
|||
|
/// layout of each type.
|
|||
|
#[inline(always)]
|
|||
|
fn record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>) {
|
|||
|
// If we are running with `-Zprint-type-sizes`, maybe record layouts
|
|||
|
// for dumping later.
|
|||
|
if cx.tcx.sess.opts.unstable_opts.print_type_sizes {
|
|||
|
record_layout_for_printing_outlined(cx, layout)
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
fn record_layout_for_printing_outlined<'tcx>(
|
|||
|
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
|||
|
layout: TyAndLayout<'tcx>,
|
|||
|
) {
|
|||
|
// Ignore layouts that are done with non-empty environments or
|
|||
|
// non-monomorphic layouts, as the user only wants to see the stuff
|
|||
|
// resulting from the final codegen session.
|
|||
|
if layout.ty.has_param_types_or_consts() || !cx.param_env.caller_bounds().is_empty() {
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
// (delay format until we actually need it)
|
|||
|
let record = |kind, packed, opt_discr_size, variants| {
|
|||
|
let type_desc = format!("{:?}", layout.ty);
|
|||
|
cx.tcx.sess.code_stats.record_type_size(
|
|||
|
kind,
|
|||
|
type_desc,
|
|||
|
layout.align.abi,
|
|||
|
layout.size,
|
|||
|
packed,
|
|||
|
opt_discr_size,
|
|||
|
variants,
|
|||
|
);
|
|||
|
};
|
|||
|
|
|||
|
let adt_def = match *layout.ty.kind() {
|
|||
|
ty::Adt(ref adt_def, _) => {
|
|||
|
debug!("print-type-size t: `{:?}` process adt", layout.ty);
|
|||
|
adt_def
|
|||
|
}
|
|||
|
|
|||
|
ty::Closure(..) => {
|
|||
|
debug!("print-type-size t: `{:?}` record closure", layout.ty);
|
|||
|
record(DataTypeKind::Closure, false, None, vec![]);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
_ => {
|
|||
|
debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty);
|
|||
|
return;
|
|||
|
}
|
|||
|
};
|
|||
|
|
|||
|
let adt_kind = adt_def.adt_kind();
|
|||
|
let adt_packed = adt_def.repr().pack.is_some();
|
|||
|
|
|||
|
let build_variant_info = |n: Option<Symbol>, flds: &[Symbol], layout: TyAndLayout<'tcx>| {
|
|||
|
let mut min_size = Size::ZERO;
|
|||
|
let field_info: Vec<_> = flds
|
|||
|
.iter()
|
|||
|
.enumerate()
|
|||
|
.map(|(i, &name)| {
|
|||
|
let field_layout = layout.field(cx, i);
|
|||
|
let offset = layout.fields.offset(i);
|
|||
|
let field_end = offset + field_layout.size;
|
|||
|
if min_size < field_end {
|
|||
|
min_size = field_end;
|
|||
|
}
|
|||
|
FieldInfo {
|
|||
|
name,
|
|||
|
offset: offset.bytes(),
|
|||
|
size: field_layout.size.bytes(),
|
|||
|
align: field_layout.align.abi.bytes(),
|
|||
|
}
|
|||
|
})
|
|||
|
.collect();
|
|||
|
|
|||
|
VariantInfo {
|
|||
|
name: n,
|
|||
|
kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact },
|
|||
|
align: layout.align.abi.bytes(),
|
|||
|
size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() },
|
|||
|
fields: field_info,
|
|||
|
}
|
|||
|
};
|
|||
|
|
|||
|
match layout.variants {
|
|||
|
Variants::Single { index } => {
|
|||
|
if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive {
|
|||
|
debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variant(index).name);
|
|||
|
let variant_def = &adt_def.variant(index);
|
|||
|
let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
|
|||
|
record(
|
|||
|
adt_kind.into(),
|
|||
|
adt_packed,
|
|||
|
None,
|
|||
|
vec![build_variant_info(Some(variant_def.name), &fields, layout)],
|
|||
|
);
|
|||
|
} else {
|
|||
|
// (This case arises for *empty* enums; so give it
|
|||
|
// zero variants.)
|
|||
|
record(adt_kind.into(), adt_packed, None, vec![]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
Variants::Multiple { tag, ref tag_encoding, .. } => {
|
|||
|
debug!(
|
|||
|
"print-type-size `{:#?}` adt general variants def {}",
|
|||
|
layout.ty,
|
|||
|
adt_def.variants().len()
|
|||
|
);
|
|||
|
let variant_infos: Vec<_> = adt_def
|
|||
|
.variants()
|
|||
|
.iter_enumerated()
|
|||
|
.map(|(i, variant_def)| {
|
|||
|
let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
|
|||
|
build_variant_info(Some(variant_def.name), &fields, layout.for_variant(cx, i))
|
|||
|
})
|
|||
|
.collect();
|
|||
|
record(
|
|||
|
adt_kind.into(),
|
|||
|
adt_packed,
|
|||
|
match tag_encoding {
|
|||
|
TagEncoding::Direct => Some(tag.size(cx)),
|
|||
|
_ => None,
|
|||
|
},
|
|||
|
variant_infos,
|
|||
|
);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|