rust/src/librustdoc/clean/auto_trait.rs

1493 lines
62 KiB
Rust
Raw Normal View History

Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use rustc::ty::TypeFoldable;
use super::*;
pub struct AutoTraitFinder<'a, 'tcx: 'a, 'rcx: 'a> {
pub cx: &'a core::DocContext<'a, 'tcx, 'rcx>,
}
impl<'a, 'tcx, 'rcx> AutoTraitFinder<'a, 'tcx, 'rcx> {
pub fn get_with_def_id(&self, def_id: DefId) -> Vec<Item> {
let ty = self.cx.tcx.type_of(def_id);
let def_ctor: fn(DefId) -> Def = match ty.sty {
ty::TyAdt(adt, _) => match adt.adt_kind() {
AdtKind::Struct => Def::Struct,
AdtKind::Enum => Def::Enum,
AdtKind::Union => Def::Union,
2018-02-23 17:06:05 +00:00
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
_ => panic!("Unexpected type {:?}", def_id),
};
self.get_auto_trait_impls(def_id, def_ctor, None)
}
pub fn get_with_node_id(&self, id: ast::NodeId, name: String) -> Vec<Item> {
let item = &self.cx.tcx.hir.expect_item(id).node;
let did = self.cx.tcx.hir.local_def_id(id);
let def_ctor = match *item {
hir::ItemStruct(_, _) => Def::Struct,
hir::ItemUnion(_, _) => Def::Union,
hir::ItemEnum(_, _) => Def::Enum,
_ => panic!("Unexpected type {:?} {:?}", item, id),
};
self.get_auto_trait_impls(did, def_ctor, Some(name))
}
pub fn get_auto_trait_impls(
&self,
def_id: DefId,
def_ctor: fn(DefId) -> Def,
name: Option<String>,
) -> Vec<Item> {
if self.cx
.tcx
.get_attrs(def_id)
.lists("doc")
.has_word("hidden")
{
debug!(
"get_auto_trait_impls(def_id={:?}, def_ctor={:?}): item has doc('hidden'), \
aborting",
def_id, def_ctor
);
return Vec::new();
}
let tcx = self.cx.tcx;
let generics = self.cx.tcx.generics_of(def_id);
debug!(
"get_auto_trait_impls(def_id={:?}, def_ctor={:?}, generics={:?}",
def_id, def_ctor, generics
);
let auto_traits: Vec<_> = self.cx
.send_trait
.and_then(|send_trait| {
self.get_auto_trait_impl_for(
def_id,
name.clone(),
generics.clone(),
def_ctor,
send_trait,
)
})
.into_iter()
.chain(self.get_auto_trait_impl_for(
def_id,
name.clone(),
generics.clone(),
def_ctor,
tcx.require_lang_item(lang_items::SyncTraitLangItem),
).into_iter())
.collect();
debug!(
"get_auto_traits: type {:?} auto_traits {:?}",
def_id, auto_traits
);
auto_traits
}
fn get_auto_trait_impl_for(
&self,
def_id: DefId,
name: Option<String>,
generics: ty::Generics,
def_ctor: fn(DefId) -> Def,
trait_def_id: DefId,
) -> Option<Item> {
if !self.cx
.generated_synthetics
.borrow_mut()
.insert((def_id, trait_def_id))
{
debug!(
"get_auto_trait_impl_for(def_id={:?}, generics={:?}, def_ctor={:?}, \
trait_def_id={:?}): already generated, aborting",
def_id, generics, def_ctor, trait_def_id
);
return None;
}
let result = self.find_auto_trait_generics(def_id, trait_def_id, &generics);
if result.is_auto() {
let trait_ = hir::TraitRef {
path: get_path_for_type(self.cx.tcx, trait_def_id, hir::def::Def::Trait),
ref_id: ast::DUMMY_NODE_ID,
};
let polarity;
let new_generics = match result {
AutoTraitResult::PositiveImpl(new_generics) => {
polarity = None;
new_generics
}
AutoTraitResult::NegativeImpl => {
polarity = Some(ImplPolarity::Negative);
// For negative impls, we use the generic params, but *not* the predicates,
// from the original type. Otherwise, the displayed impl appears to be a
// conditional negative impl, when it's really unconditional.
//
// For example, consider the struct Foo<T: Copy>(*mut T). Using
// the original predicates in our impl would cause us to generate
// `impl !Send for Foo<T: Copy>`, which makes it appear that Foo
// implements Send where T is not copy.
//
// Instead, we generate `impl !Send for Foo<T>`, which better
// expresses the fact that `Foo<T>` never implements `Send`,
// regardless of the choice of `T`.
let real_generics = (&generics, &Default::default());
// Clean the generics, but ignore the '?Sized' bounds generated
// by the `Clean` impl
let clean_generics = real_generics.clean(self.cx);
Generics {
params: clean_generics.params,
where_predicates: Vec::new(),
}
}
_ => unreachable!(),
};
let path = get_path_for_type(self.cx.tcx, def_id, def_ctor);
let mut segments = path.segments.into_vec();
let last = segments.pop().unwrap();
let real_name = name.as_ref().map(|n| Symbol::from(n.as_str()));
segments.push(hir::PathSegment::new(
real_name.unwrap_or(last.name),
self.generics_to_path_params(generics.clone()),
false,
));
let new_path = hir::Path {
span: path.span,
def: path.def,
segments: HirVec::from_vec(segments),
};
let ty = hir::Ty {
id: ast::DUMMY_NODE_ID,
node: hir::Ty_::TyPath(hir::QPath::Resolved(None, P(new_path))),
span: DUMMY_SP,
hir_id: hir::DUMMY_HIR_ID,
};
return Some(Item {
source: Span::empty(),
name: None,
attrs: Default::default(),
visibility: None,
def_id: self.next_def_id(def_id.krate),
stability: None,
deprecation: None,
inner: ImplItem(Impl {
unsafety: hir::Unsafety::Normal,
generics: new_generics,
provided_trait_methods: FxHashSet(),
trait_: Some(trait_.clean(self.cx)),
for_: ty.clean(self.cx),
items: Vec::new(),
polarity,
synthetic: true,
}),
});
}
None
}
fn generics_to_path_params(&self, generics: ty::Generics) -> hir::PathParameters {
let lifetimes = HirVec::from_vec(
generics
.regions
.iter()
.map(|p| {
let name = if p.name == "" {
hir::LifetimeName::Static
} else {
hir::LifetimeName::Name(p.name)
};
hir::Lifetime {
id: ast::DUMMY_NODE_ID,
span: DUMMY_SP,
name,
}
})
.collect(),
);
let types = HirVec::from_vec(
generics
.types
.iter()
.map(|p| P(self.ty_param_to_ty(p.clone())))
.collect(),
);
hir::PathParameters {
lifetimes: lifetimes,
types: types,
bindings: HirVec::new(),
parenthesized: false,
}
}
fn ty_param_to_ty(&self, param: ty::TypeParameterDef) -> hir::Ty {
debug!("ty_param_to_ty({:?}) {:?}", param, param.def_id);
hir::Ty {
id: ast::DUMMY_NODE_ID,
node: hir::Ty_::TyPath(hir::QPath::Resolved(
None,
P(hir::Path {
span: DUMMY_SP,
def: Def::TyParam(param.def_id),
segments: HirVec::from_vec(vec![hir::PathSegment::from_name(param.name)]),
}),
)),
span: DUMMY_SP,
hir_id: hir::DUMMY_HIR_ID,
}
}
fn find_auto_trait_generics(
&self,
did: DefId,
trait_did: DefId,
generics: &ty::Generics,
) -> AutoTraitResult {
let tcx = self.cx.tcx;
let ty = self.cx.tcx.type_of(did);
let orig_params = tcx.param_env(did);
let trait_ref = ty::TraitRef {
def_id: trait_did,
substs: tcx.mk_substs_trait(ty, &[]),
};
let trait_pred = ty::Binder(trait_ref);
let bail_out = tcx.infer_ctxt().enter(|infcx| {
let mut selcx = SelectionContext::with_negative(&infcx, true);
let result = selcx.select(&Obligation::new(
ObligationCause::dummy(),
orig_params,
trait_pred.to_poly_trait_predicate(),
));
match result {
Ok(Some(Vtable::VtableImpl(_))) => {
debug!(
"find_auto_trait_generics(did={:?}, trait_did={:?}, generics={:?}): \
manual impl found, bailing out",
did, trait_did, generics
);
return true;
}
_ => return false,
};
});
// If an explicit impl exists, it always takes priority over an auto impl
if bail_out {
return AutoTraitResult::ExplicitImpl;
}
return tcx.infer_ctxt().enter(|mut infcx| {
let mut fresh_preds = FxHashSet();
// Due to the way projections are handled by SelectionContext, we need to run
// evaluate_predicates twice: once on the original param env, and once on the result of
2018-02-10 19:34:46 +00:00
// the first evaluate_predicates call.
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
//
// The problem is this: most of rustc, including SelectionContext and traits::project,
// are designed to work with a concrete usage of a type (e.g. Vec<u8>
// fn<T>() { Vec<T> }. This information will generally never change - given
// the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
// If we're unable to prove that 'T' implements a particular trait, we're done -
// there's nothing left to do but error out.
//
// However, synthesizing an auto trait impl works differently. Here, we start out with
// a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
// with - and progressively discover the conditions we need to fulfill for it to
// implement a certain auto trait. This ends up breaking two assumptions made by trait
// selection and projection:
//
// * We can always cache the result of a particular trait selection for the lifetime of
// an InfCtxt
// * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
// SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
//
// We fix the first assumption by manually clearing out all of the InferCtxt's caches
// in between calls to SelectionContext.select. This allows us to keep all of the
// intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
2018-02-10 19:34:46 +00:00
// them between calls.
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
//
// We fix the second assumption by reprocessing the result of our first call to
// evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
// pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
// traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
// SelectionContext to return it back to us.
let (new_env, user_env) = match self.evaluate_predicates(
&mut infcx,
did,
trait_did,
ty,
orig_params.clone(),
orig_params,
&mut fresh_preds,
false,
) {
Some(e) => e,
None => return AutoTraitResult::NegativeImpl,
};
let (full_env, full_user_env) = self.evaluate_predicates(
&mut infcx,
did,
trait_did,
ty,
new_env.clone(),
user_env,
&mut fresh_preds,
true,
).unwrap_or_else(|| {
panic!(
"Failed to fully process: {:?} {:?} {:?}",
ty, trait_did, orig_params
)
});
debug!(
"find_auto_trait_generics(did={:?}, trait_did={:?}, generics={:?}): fulfilling \
with {:?}",
did, trait_did, generics, full_env
);
infcx.clear_caches();
// At this point, we already have all of the bounds we need. FulfillmentContext is used
// to store all of the necessary region/lifetime bounds in the InferContext, as well as
// an additional sanity check.
let mut fulfill = FulfillmentContext::new();
fulfill.register_bound(
&infcx,
full_env,
ty,
trait_did,
ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID),
);
fulfill.select_all_or_error(&infcx).unwrap_or_else(|e| {
panic!(
"Unable to fulfill trait {:?} for '{:?}': {:?}",
trait_did, ty, e
)
});
let names_map: FxHashMap<String, Lifetime> = generics
.regions
.iter()
.map(|l| (l.name.as_str().to_string(), l.clean(self.cx)))
.collect();
let body_ids: FxHashSet<_> = infcx
.region_obligations
.borrow()
.iter()
.map(|&(id, _)| id)
.collect();
for id in body_ids {
infcx.process_registered_region_obligations(&[], None, full_env.clone(), id);
}
let region_data = infcx
.borrow_region_constraints()
.region_constraint_data()
.clone();
let lifetime_predicates = self.handle_lifetimes(&region_data, &names_map);
let vid_to_region = self.map_vid_to_region(&region_data);
debug!(
"find_auto_trait_generics(did={:?}, trait_did={:?}, generics={:?}): computed \
lifetime information '{:?}' '{:?}'",
did, trait_did, generics, lifetime_predicates, vid_to_region
);
let new_generics = self.param_env_to_generics(
infcx.tcx,
did,
full_user_env,
generics.clone(),
lifetime_predicates,
vid_to_region,
);
debug!(
"find_auto_trait_generics(did={:?}, trait_did={:?}, generics={:?}): finished with \
{:?}",
did, trait_did, generics, new_generics
);
return AutoTraitResult::PositiveImpl(new_generics);
});
}
fn clean_pred<'c, 'd, 'cx>(
&self,
infcx: &InferCtxt<'c, 'd, 'cx>,
p: ty::Predicate<'cx>,
) -> ty::Predicate<'cx> {
infcx.freshen(p)
}
2018-02-10 19:34:46 +00:00
fn evaluate_nested_obligations<'b, 'c, 'd, 'cx,
T: Iterator<Item = Obligation<'cx, ty::Predicate<'cx>>>>(
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
&self,
ty: ty::Ty,
nested: T,
computed_preds: &'b mut FxHashSet<ty::Predicate<'cx>>,
fresh_preds: &'b mut FxHashSet<ty::Predicate<'cx>>,
predicates: &'b mut VecDeque<ty::PolyTraitPredicate<'cx>>,
select: &mut traits::SelectionContext<'c, 'd, 'cx>,
only_projections: bool,
) -> bool {
let dummy_cause = ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID);
for (obligation, predicate) in nested
.filter(|o| o.recursion_depth == 1)
.map(|o| (o.clone(), o.predicate.clone()))
{
let is_new_pred =
fresh_preds.insert(self.clean_pred(select.infcx(), predicate.clone()));
match &predicate {
&ty::Predicate::Trait(ref p) => {
let substs = &p.skip_binder().trait_ref.substs;
if self.is_of_param(substs) && !only_projections && is_new_pred {
computed_preds.insert(predicate);
}
predicates.push_back(p.clone());
}
&ty::Predicate::Projection(p) => {
// If the projection isn't all type vars, then
// we don't want to add it as a bound
if self.is_of_param(p.skip_binder().projection_ty.substs) && is_new_pred {
computed_preds.insert(predicate);
} else {
match traits::poly_project_and_unify_type(
select,
&obligation.with(p.clone()),
) {
Err(e) => {
debug!(
"evaluate_nested_obligations: Unable to unify predicate \
'{:?}' '{:?}', bailing out",
ty, e
);
return false;
}
Ok(Some(v)) => {
if !self.evaluate_nested_obligations(
ty,
v.clone().iter().cloned(),
computed_preds,
fresh_preds,
predicates,
select,
only_projections,
) {
return false;
}
}
Ok(None) => {
panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
}
}
}
}
&ty::Predicate::RegionOutlives(ref binder) => {
if let Err(_) = select
.infcx()
.region_outlives_predicate(&dummy_cause, binder)
{
return false;
}
}
&ty::Predicate::TypeOutlives(ref binder) => {
match (
binder.no_late_bound_regions(),
binder.map_bound_ref(|pred| pred.0).no_late_bound_regions(),
) {
(None, Some(t_a)) => {
select.infcx().register_region_obligation(
ast::DUMMY_NODE_ID,
RegionObligation {
sup_type: t_a,
sub_region: select.infcx().tcx.types.re_static,
cause: dummy_cause.clone(),
},
);
}
(Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
select.infcx().register_region_obligation(
ast::DUMMY_NODE_ID,
RegionObligation {
sup_type: t_a,
sub_region: r_b,
cause: dummy_cause.clone(),
},
);
}
_ => {}
};
}
_ => panic!("Unexpected predicate {:?} {:?}", ty, predicate),
};
}
return true;
}
// The core logic responsible for computing the bounds for our synthesized impl.
//
// To calculate the bounds, we call SelectionContext.select in a loop. Like FulfillmentContext,
// we recursively select the nested obligations of predicates we encounter. However, whenver we
// encounter an UnimplementedError involving a type parameter, we add it to our ParamEnv. Since
// our goal is to determine when a particular type implements an auto trait, Unimplemented
// errors tell us what conditions need to be met.
//
// This method ends up working somewhat similary to FulfillmentContext, but with a few key
// differences. FulfillmentContext works under the assumption that it's dealing with concrete
// user code. According, it considers all possible ways that a Predicate could be met - which
// isn't always what we want for a synthesized impl. For example, given the predicate 'T:
// Iterator', FulfillmentContext can end up reporting an Unimplemented error for T:
// IntoIterator - since there's an implementation of Iteratpr where T: IntoIterator,
// FulfillmentContext will drive SelectionContext to consider that impl before giving up. If we
// were to rely on FulfillmentContext's decision, we might end up synthesizing an impl like
// this:
// 'impl<T> Send for Foo<T> where T: IntoIterator'
//
// While it might be technically true that Foo implements Send where T: IntoIterator,
// the bound is overly restrictive - it's really only necessary that T: Iterator.
//
// For this reason, evaluate_predicates handles predicates with type variables specially. When
// we encounter an Unimplemented error for a bound such as 'T: Iterator', we immediately add it
// to our ParamEnv, and add it to our stack for recursive evaluation. When we later select it,
// we'll pick up any nested bounds, without ever inferring that 'T: IntoIterator' needs to
// hold.
//
// One additonal consideration is supertrait bounds. Normally, a ParamEnv is only ever
// consutrcted once for a given type. As part of the construction process, the ParamEnv will
// have any supertrait bounds normalized - e.g. if we have a type 'struct Foo<T: Copy>', the
// ParamEnv will contain 'T: Copy' and 'T: Clone', since 'Copy: Clone'. When we construct our
// own ParamEnv, we need to do this outselves, through traits::elaborate_predicates, or else
// SelectionContext will choke on the missing predicates. However, this should never show up in
// the final synthesized generics: we don't want our generated docs page to contain something
// like 'T: Copy + Clone', as that's redundant. Therefore, we keep track of a separate
// 'user_env', which only holds the predicates that will actually be displayed to the user.
fn evaluate_predicates<'b, 'gcx, 'c>(
&self,
infcx: &mut InferCtxt<'b, 'tcx, 'c>,
ty_did: DefId,
trait_did: DefId,
ty: ty::Ty<'c>,
param_env: ty::ParamEnv<'c>,
user_env: ty::ParamEnv<'c>,
fresh_preds: &mut FxHashSet<ty::Predicate<'c>>,
only_projections: bool,
) -> Option<(ty::ParamEnv<'c>, ty::ParamEnv<'c>)> {
let tcx = infcx.tcx;
let mut select = traits::SelectionContext::new(&infcx);
let mut already_visited = FxHashSet();
let mut predicates = VecDeque::new();
predicates.push_back(ty::Binder(ty::TraitPredicate {
trait_ref: ty::TraitRef {
def_id: trait_did,
substs: infcx.tcx.mk_substs_trait(ty, &[]),
},
}));
let mut computed_preds: FxHashSet<_> = param_env.caller_bounds.iter().cloned().collect();
let mut user_computed_preds: FxHashSet<_> =
user_env.caller_bounds.iter().cloned().collect();
let mut new_env = param_env.clone();
let dummy_cause = ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID);
while let Some(pred) = predicates.pop_front() {
infcx.clear_caches();
if !already_visited.insert(pred.clone()) {
continue;
}
let result = select.select(&Obligation::new(dummy_cause.clone(), new_env, pred));
match &result {
&Ok(Some(ref vtable)) => {
let obligations = vtable.clone().nested_obligations().into_iter();
if !self.evaluate_nested_obligations(
ty,
obligations,
&mut user_computed_preds,
fresh_preds,
&mut predicates,
&mut select,
only_projections,
) {
return None;
}
}
&Ok(None) => {}
&Err(SelectionError::Unimplemented) => {
if self.is_of_param(pred.skip_binder().trait_ref.substs) {
already_visited.remove(&pred);
user_computed_preds.insert(ty::Predicate::Trait(pred.clone()));
predicates.push_back(pred);
} else {
debug!(
"evaluate_nested_obligations: Unimplemented found, bailing: {:?} {:?} \
{:?}",
ty,
pred,
pred.skip_binder().trait_ref.substs
);
return None;
}
}
_ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
};
computed_preds.extend(user_computed_preds.iter().cloned());
let normalized_preds =
traits::elaborate_predicates(tcx, computed_preds.clone().into_iter().collect());
new_env = ty::ParamEnv::new(tcx.mk_predicates(normalized_preds), param_env.reveal);
}
let final_user_env = ty::ParamEnv::new(
tcx.mk_predicates(user_computed_preds.into_iter()),
user_env.reveal,
);
debug!(
"evaluate_nested_obligations(ty_did={:?}, trait_did={:?}): succeeded with '{:?}' \
'{:?}'",
ty_did, trait_did, new_env, final_user_env
);
return Some((new_env, final_user_env));
}
fn is_of_param(&self, substs: &Substs) -> bool {
if substs.is_noop() {
return false;
}
return match substs.type_at(0).sty {
ty::TyParam(_) => true,
ty::TyProjection(p) => self.is_of_param(p.substs),
_ => false,
};
}
fn get_lifetime(&self, region: Region, names_map: &FxHashMap<String, Lifetime>) -> Lifetime {
self.region_name(region)
.map(|name| {
names_map.get(&name).unwrap_or_else(|| {
panic!("Missing lifetime with name {:?} for {:?}", name, region)
})
})
.unwrap_or(&Lifetime::statik())
.clone()
}
fn region_name(&self, region: Region) -> Option<String> {
match region {
&ty::ReEarlyBound(r) => Some(r.name.as_str().to_string()),
_ => None,
}
}
2018-02-10 19:34:46 +00:00
// This is very similar to handle_lifetimes. However, instead of matching ty::Region's
// to each other, we match ty::RegionVid's to ty::Region's
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
fn map_vid_to_region<'cx>(
&self,
regions: &RegionConstraintData<'cx>,
) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap();
let mut finished_map = FxHashMap();
for constraint in regions.constraints.keys() {
match constraint {
&Constraint::VarSubVar(r1, r2) => {
{
let deps1 = vid_map
.entry(RegionTarget::RegionVid(r1))
.or_insert_with(|| Default::default());
deps1.larger.insert(RegionTarget::RegionVid(r2));
}
let deps2 = vid_map
.entry(RegionTarget::RegionVid(r2))
.or_insert_with(|| Default::default());
deps2.smaller.insert(RegionTarget::RegionVid(r1));
}
&Constraint::RegSubVar(region, vid) => {
{
let deps1 = vid_map
.entry(RegionTarget::Region(region))
.or_insert_with(|| Default::default());
deps1.larger.insert(RegionTarget::RegionVid(vid));
}
let deps2 = vid_map
.entry(RegionTarget::RegionVid(vid))
.or_insert_with(|| Default::default());
deps2.smaller.insert(RegionTarget::Region(region));
}
&Constraint::VarSubReg(vid, region) => {
finished_map.insert(vid, region);
}
&Constraint::RegSubReg(r1, r2) => {
{
let deps1 = vid_map
.entry(RegionTarget::Region(r1))
.or_insert_with(|| Default::default());
deps1.larger.insert(RegionTarget::Region(r2));
}
let deps2 = vid_map
.entry(RegionTarget::Region(r2))
.or_insert_with(|| Default::default());
deps2.smaller.insert(RegionTarget::Region(r1));
}
}
}
while !vid_map.is_empty() {
let target = vid_map.keys().next().expect("Keys somehow empty").clone();
let deps = vid_map.remove(&target).expect("Entry somehow missing");
for smaller in deps.smaller.iter() {
for larger in deps.larger.iter() {
match (smaller, larger) {
(&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
(&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
finished_map.insert(v1, r1);
}
(&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
// Do nothing - we don't care about regions that are smaller than vids
}
(&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
}
}
}
}
finished_map
}
// This method calculates two things: Lifetime constraints of the form 'a: 'b,
// and region constraints of the form ReVar: 'a
//
// This is essentially a simplified version of lexical_region_resolve. However,
// handle_lifetimes determines what *needs be* true in order for an impl to hold.
// lexical_region_resolve, along with much of the rest of the compiler, is concerned
// with determining if a given set up constraints/predicates *are* met, given some
// starting conditions (e.g. user-provided code). For this reason, it's easier
// to perform the calculations we need on our own, rather than trying to make
2018-02-10 19:34:46 +00:00
// existing inference/solver code do what we want.
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
fn handle_lifetimes<'cx>(
&self,
regions: &RegionConstraintData<'cx>,
names_map: &FxHashMap<String, Lifetime>,
) -> Vec<WherePredicate> {
// Our goal is to 'flatten' the list of constraints by eliminating
// all intermediate RegionVids. At the end, all constraints should
// be between Regions (aka region variables). This gives us the information
2018-02-10 19:34:46 +00:00
// we need to create the Generics.
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
let mut finished = FxHashMap();
let mut vid_map: FxHashMap<RegionTarget, RegionDeps> = FxHashMap();
// Flattening is done in two parts. First, we insert all of the constraints
// into a map. Each RegionTarget (either a RegionVid or a Region) maps
// to its smaller and larger regions. Note that 'larger' regions correspond
// to sub-regions in Rust code (e.g. in 'a: 'b, 'a is the larger region).
for constraint in regions.constraints.keys() {
match constraint {
&Constraint::VarSubVar(r1, r2) => {
{
let deps1 = vid_map
.entry(RegionTarget::RegionVid(r1))
.or_insert_with(|| Default::default());
deps1.larger.insert(RegionTarget::RegionVid(r2));
}
let deps2 = vid_map
.entry(RegionTarget::RegionVid(r2))
.or_insert_with(|| Default::default());
deps2.smaller.insert(RegionTarget::RegionVid(r1));
}
&Constraint::RegSubVar(region, vid) => {
let deps = vid_map
.entry(RegionTarget::RegionVid(vid))
.or_insert_with(|| Default::default());
deps.smaller.insert(RegionTarget::Region(region));
}
&Constraint::VarSubReg(vid, region) => {
let deps = vid_map
.entry(RegionTarget::RegionVid(vid))
.or_insert_with(|| Default::default());
deps.larger.insert(RegionTarget::Region(region));
}
&Constraint::RegSubReg(r1, r2) => {
// The constraint is already in the form that we want, so we're done with it
// Desired order is 'larger, smaller', so flip then
if self.region_name(r1) != self.region_name(r2) {
finished
.entry(self.region_name(r2).unwrap())
.or_insert_with(|| Vec::new())
.push(r1);
}
}
}
}
// Here, we 'flatten' the map one element at a time.
// All of the element's sub and super regions are connected
// to each other. For example, if we have a graph that looks like this:
//
// (A, B) - C - (D, E)
// Where (A, B) are subregions, and (D,E) are super-regions
//
// then after deleting 'C', the graph will look like this:
// ... - A - (D, E ...)
// ... - B - (D, E, ...)
// (A, B, ...) - D - ...
// (A, B, ...) - E - ...
//
// where '...' signifies the existing sub and super regions of an entry
// When two adjacent ty::Regions are encountered, we've computed a final
// constraint, and add it to our list. Since we make sure to never re-add
// deleted items, this process will always finish.
while !vid_map.is_empty() {
let target = vid_map.keys().next().expect("Keys somehow empty").clone();
let deps = vid_map.remove(&target).expect("Entry somehow missing");
for smaller in deps.smaller.iter() {
for larger in deps.larger.iter() {
match (smaller, larger) {
(&RegionTarget::Region(r1), &RegionTarget::Region(r2)) => {
if self.region_name(r1) != self.region_name(r2) {
finished
.entry(self.region_name(r2).unwrap())
.or_insert_with(|| Vec::new())
.push(r1) // Larger, smaller
}
}
(&RegionTarget::RegionVid(_), &RegionTarget::Region(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
}
(&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let deps = v.into_mut();
deps.smaller.insert(*smaller);
deps.smaller.remove(&target);
}
}
(&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
}
}
}
}
let lifetime_predicates = names_map
.iter()
.flat_map(|(name, lifetime)| {
let empty = Vec::new();
let bounds: FxHashSet<Lifetime> = finished
.get(name)
.unwrap_or(&empty)
.iter()
.map(|region| self.get_lifetime(region, names_map))
.collect();
if bounds.is_empty() {
return None;
}
Some(WherePredicate::RegionPredicate {
lifetime: lifetime.clone(),
bounds: bounds.into_iter().collect(),
})
})
.collect();
lifetime_predicates
}
fn extract_for_generics<'b, 'c, 'd>(
&self,
tcx: TyCtxt<'b, 'c, 'd>,
pred: ty::Predicate<'d>,
) -> FxHashSet<GenericParam> {
pred.walk_tys()
.flat_map(|t| {
let mut regions = FxHashSet();
tcx.collect_regions(&t, &mut regions);
regions.into_iter().flat_map(|r| {
match r {
// We only care about late bound regions, as we need to add them
// to the 'for<>' section
&ty::ReLateBound(_, ty::BoundRegion::BrNamed(_, name)) => {
Some(GenericParam::Lifetime(Lifetime(name.as_str().to_string())))
}
&ty::ReVar(_) | &ty::ReEarlyBound(_) => None,
_ => panic!("Unexpected region type {:?}", r),
}
})
})
.collect()
}
fn make_final_bounds<'b, 'c, 'cx>(
&self,
ty_to_bounds: FxHashMap<Type, FxHashSet<TyParamBound>>,
ty_to_fn: FxHashMap<Type, (Option<PolyTrait>, Option<Type>)>,
lifetime_to_bounds: FxHashMap<Lifetime, FxHashSet<Lifetime>>,
) -> Vec<WherePredicate> {
2018-02-10 19:34:46 +00:00
ty_to_bounds
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
.into_iter()
.flat_map(|(ty, mut bounds)| {
if let Some(data) = ty_to_fn.get(&ty) {
let (poly_trait, output) =
(data.0.as_ref().unwrap().clone(), data.1.as_ref().cloned());
let new_ty = match &poly_trait.trait_ {
&Type::ResolvedPath {
ref path,
ref typarams,
ref did,
ref is_generic,
} => {
let mut new_path = path.clone();
let last_segment = new_path.segments.pop().unwrap();
let (old_input, old_output) = match last_segment.params {
PathParameters::AngleBracketed { types, .. } => (types, None),
PathParameters::Parenthesized { inputs, output, .. } => {
(inputs, output)
}
};
if old_output.is_some() && old_output != output {
panic!(
"Output mismatch for {:?} {:?} {:?}",
ty, old_output, data.1
);
}
let new_params = PathParameters::Parenthesized {
inputs: old_input,
output,
};
new_path.segments.push(PathSegment {
name: last_segment.name,
params: new_params,
});
Type::ResolvedPath {
path: new_path,
typarams: typarams.clone(),
did: did.clone(),
is_generic: *is_generic,
}
}
_ => panic!("Unexpected data: {:?}, {:?}", ty, data),
};
bounds.insert(TyParamBound::TraitBound(
PolyTrait {
trait_: new_ty,
generic_params: poly_trait.generic_params,
},
hir::TraitBoundModifier::None,
));
}
if bounds.is_empty() {
return None;
}
Some(WherePredicate::BoundPredicate {
ty,
bounds: bounds.into_iter().collect(),
})
})
.chain(
lifetime_to_bounds
.into_iter()
.filter(|&(_, ref bounds)| !bounds.is_empty())
.map(|(lifetime, bounds)| WherePredicate::RegionPredicate {
lifetime,
bounds: bounds.into_iter().collect(),
}),
)
2018-02-10 19:34:46 +00:00
.collect()
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
}
// Converts the calculated ParamEnv and lifetime information to a clean::Generics, suitable for
// display on the docs page. Cleaning the Predicates produces sub-optimal WherePredicate's,
// so we fix them up:
//
// * Multiple bounds for the same type are coalesced into one: e.g. 'T: Copy', 'T: Debug'
// becomes 'T: Copy + Debug'
// * Fn bounds are handled specially - instead of leaving it as 'T: Fn(), <T as Fn::Output> =
// K', we use the dedicated syntax 'T: Fn() -> K'
// * We explcitly add a '?Sized' bound if we didn't find any 'Sized' predicates for a type
fn param_env_to_generics<'b, 'c, 'cx>(
&self,
tcx: TyCtxt<'b, 'c, 'cx>,
did: DefId,
param_env: ty::ParamEnv<'cx>,
type_generics: ty::Generics,
mut existing_predicates: Vec<WherePredicate>,
vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
) -> Generics {
debug!(
"param_env_to_generics(did={:?}, param_env={:?}, type_generics={:?}, \
existing_predicates={:?})",
did, param_env, type_generics, existing_predicates
);
// The `Sized` trait must be handled specially, since we only only display it when
// it is *not* required (i.e. '?Sized')
let sized_trait = self.cx
.tcx
.require_lang_item(lang_items::SizedTraitLangItem);
let mut replacer = RegionReplacer {
vid_to_region: &vid_to_region,
tcx,
};
let orig_bounds: FxHashSet<_> = self.cx.tcx.param_env(did).caller_bounds.iter().collect();
let clean_where_predicates = param_env
.caller_bounds
.iter()
.filter(|p| {
!orig_bounds.contains(p) || match p {
&&ty::Predicate::Trait(pred) => pred.def_id() == sized_trait,
_ => false,
}
})
.map(|p| {
let replaced = p.fold_with(&mut replacer);
(replaced.clone(), replaced.clean(self.cx))
});
let full_generics = (&type_generics, &tcx.predicates_of(did));
let Generics {
params: mut generic_params,
..
} = full_generics.clean(self.cx);
let mut has_sized = FxHashSet();
let mut ty_to_bounds = FxHashMap();
let mut lifetime_to_bounds = FxHashMap();
let mut ty_to_traits: FxHashMap<Type, FxHashSet<Type>> = FxHashMap();
let mut ty_to_fn: FxHashMap<Type, (Option<PolyTrait>, Option<Type>)> = FxHashMap();
for (orig_p, p) in clean_where_predicates {
match p {
WherePredicate::BoundPredicate { ty, mut bounds } => {
// Writing a projection trait bound of the form
// <T as Trait>::Name : ?Sized
// is illegal, because ?Sized bounds can only
// be written in the (here, nonexistant) definition
// of the type.
// Therefore, we make sure that we never add a ?Sized
// bound for projections
match &ty {
&Type::QPath { .. } => {
has_sized.insert(ty.clone());
}
_ => {}
}
if bounds.is_empty() {
continue;
}
let mut for_generics = self.extract_for_generics(tcx, orig_p.clone());
assert!(bounds.len() == 1);
let mut b = bounds.pop().unwrap();
if b.is_sized_bound(self.cx) {
has_sized.insert(ty.clone());
} else if !b.get_trait_type()
.and_then(|t| {
ty_to_traits
.get(&ty)
.map(|bounds| bounds.contains(&strip_type(t.clone())))
})
.unwrap_or(false)
{
// If we've already added a projection bound for the same type, don't add
// this, as it would be a duplicate
// Handle any 'Fn/FnOnce/FnMut' bounds specially,
// as we want to combine them with any 'Output' qpaths
// later
let is_fn = match &mut b {
&mut TyParamBound::TraitBound(ref mut p, _) => {
// Insert regions into the for_generics hash map first, to ensure
// that we don't end up with duplicate bounds (e.g. for<'b, 'b>)
for_generics.extend(p.generic_params.clone());
p.generic_params = for_generics.into_iter().collect();
self.is_fn_ty(&tcx, &p.trait_)
}
_ => false,
};
let poly_trait = b.get_poly_trait().unwrap();
if is_fn {
ty_to_fn
.entry(ty.clone())
.and_modify(|e| *e = (Some(poly_trait.clone()), e.1.clone()))
.or_insert(((Some(poly_trait.clone())), None));
ty_to_bounds
.entry(ty.clone())
.or_insert_with(|| FxHashSet());
} else {
ty_to_bounds
.entry(ty.clone())
.or_insert_with(|| FxHashSet())
.insert(b.clone());
}
}
}
WherePredicate::RegionPredicate { lifetime, bounds } => {
lifetime_to_bounds
.entry(lifetime)
.or_insert_with(|| FxHashSet())
.extend(bounds);
}
WherePredicate::EqPredicate { lhs, rhs } => {
match &lhs {
&Type::QPath {
name: ref left_name,
ref self_type,
ref trait_,
} => {
let ty = &*self_type;
match **trait_ {
Type::ResolvedPath {
path: ref trait_path,
ref typarams,
ref did,
ref is_generic,
} => {
let mut new_trait_path = trait_path.clone();
if self.is_fn_ty(&tcx, trait_) && left_name == FN_OUTPUT_NAME {
ty_to_fn
.entry(*ty.clone())
.and_modify(|e| *e = (e.0.clone(), Some(rhs.clone())))
.or_insert((None, Some(rhs)));
continue;
}
// FIXME: Remove this scope when NLL lands
{
let params =
&mut new_trait_path.segments.last_mut().unwrap().params;
match params {
// Convert somethiung like '<T as Iterator::Item> = u8'
// to 'T: Iterator<Item=u8>'
&mut PathParameters::AngleBracketed {
ref mut bindings,
..
} => {
bindings.push(TypeBinding {
name: left_name.clone(),
ty: rhs,
});
}
&mut PathParameters::Parenthesized { .. } => {
existing_predicates.push(
WherePredicate::EqPredicate {
lhs: lhs.clone(),
rhs,
},
);
continue; // If something other than a Fn ends up
// with parenthesis, leave it alone
}
}
}
let bounds = ty_to_bounds
.entry(*ty.clone())
.or_insert_with(|| FxHashSet());
bounds.insert(TyParamBound::TraitBound(
PolyTrait {
trait_: Type::ResolvedPath {
path: new_trait_path,
typarams: typarams.clone(),
did: did.clone(),
is_generic: *is_generic,
},
generic_params: Vec::new(),
},
hir::TraitBoundModifier::None,
));
// Remove any existing 'plain' bound (e.g. 'T: Iterator`) so
// that we don't see a
// duplicate bound like `T: Iterator + Iterator<Item=u8>`
// on the docs page.
bounds.remove(&TyParamBound::TraitBound(
PolyTrait {
trait_: *trait_.clone(),
generic_params: Vec::new(),
},
hir::TraitBoundModifier::None,
));
// Avoid creating any new duplicate bounds later in the outer
// loop
ty_to_traits
.entry(*ty.clone())
.or_insert_with(|| FxHashSet())
.insert(*trait_.clone());
}
_ => panic!("Unexpected trait {:?} for {:?}", trait_, did),
}
}
_ => panic!("Unexpected LHS {:?} for {:?}", lhs, did),
}
}
};
}
let final_bounds = self.make_final_bounds(ty_to_bounds, ty_to_fn, lifetime_to_bounds);
existing_predicates.extend(final_bounds);
for p in generic_params.iter_mut() {
match p {
&mut GenericParam::Type(ref mut ty) => {
// We never want something like 'impl<T=Foo>'
ty.default.take();
let generic_ty = Type::Generic(ty.name.clone());
if !has_sized.contains(&generic_ty) {
ty.bounds.insert(0, TyParamBound::maybe_sized(self.cx));
}
}
_ => {}
}
}
self.sort_where_predicates(&mut existing_predicates);
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
Generics {
params: generic_params,
where_predicates: existing_predicates,
}
}
// Ensure that the predicates are in a consistent order. The precise
// ordering doesn't actually matter, but it's important that
// a given set of predicates always appears in the same order -
// both for visual consistency between 'rustdoc' runs, and to
// make writing tests much easier
fn sort_where_predicates(&self, predicates: &mut Vec<WherePredicate>) {
// We should never have identical bounds - and if we do,
// they're visually identical as well. Therefore, using
// an unstable sort is fine.
predicates.sort_unstable_by(|first, second| {
// This might look horrendously hacky, but it's actually not that bad.
//
// For performance reasons, we use several different FxHashMaps
// in the process of computing the final set of where predicates.
// However, the iteration order of a HashMap is completely unspecified.
// In fact, the iteration of an FxHashMap can even vary between platforms,
// since FxHasher has different behavior for 32-bit and 64-bit platforms.
//
// Obviously, it's extremely undesireable for documentation rendering
// to be depndent on the platform it's run on. Apart from being confusing
// to end users, it makes writing tests much more difficult, as predicates
// can appear in any order in the final result.
//
// To solve this problem, we sort WherePredicates by their Debug
// string. The thing to keep in mind is that we don't really
// care what the final order is - we're synthesizing an impl
// ourselves, so any order can be considered equally valid.
// By sorting the predicates, however, we ensure that for
// a given codebase, all auto-trait impls always render
// in exactly the same way.
//
// Using the Debug impementation for sorting prevents
// us from needing to write quite a bit of almost
// entirely useless code (e.g. how should two
// Types be sorted relative to each other).
// This approach is probably somewhat slower, but
// the small number of items involved (impls
// rarely have more than a few bounds) means
// that it shouldn't matter in practice.
format!("{:?}", first).cmp(&format!("{:?}", second))
});
}
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
fn is_fn_ty(&self, tcx: &TyCtxt, ty: &Type) -> bool {
match &ty {
&&Type::ResolvedPath { ref did, .. } => {
*did == tcx.require_lang_item(lang_items::FnTraitLangItem)
|| *did == tcx.require_lang_item(lang_items::FnMutTraitLangItem)
|| *did == tcx.require_lang_item(lang_items::FnOnceTraitLangItem)
}
_ => false,
}
}
// This is an ugly hack, but it's the simplest way to handle synthetic impls without greatly
2018-02-10 19:34:46 +00:00
// refactoring either librustdoc or librustc. In particular, allowing new DefIds to be
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 21:16:55 +00:00
// registered after the AST is constructed would require storing the defid mapping in a
// RefCell, decreasing the performance for normal compilation for very little gain.
//
// Instead, we construct 'fake' def ids, which start immediately after the last DefId in
// DefIndexAddressSpace::Low. In the Debug impl for clean::Item, we explicitly check for fake
// def ids, as we'll end up with a panic if we use the DefId Debug impl for fake DefIds
fn next_def_id(&self, crate_num: CrateNum) -> DefId {
let start_def_id = {
let next_id = if crate_num == LOCAL_CRATE {
self.cx
.tcx
.hir
.definitions()
.def_path_table()
.next_id(DefIndexAddressSpace::Low)
} else {
self.cx
.cstore
.def_path_table(crate_num)
.next_id(DefIndexAddressSpace::Low)
};
DefId {
krate: crate_num,
index: next_id,
}
};
let mut fake_ids = self.cx.fake_def_ids.borrow_mut();
let def_id = fake_ids.entry(crate_num).or_insert(start_def_id).clone();
fake_ids.insert(
crate_num,
DefId {
krate: crate_num,
index: DefIndex::from_array_index(
def_id.index.as_array_index() + 1,
def_id.index.address_space(),
),
},
);
MAX_DEF_ID.with(|m| {
m.borrow_mut()
.entry(def_id.krate.clone())
.or_insert(start_def_id);
});
self.cx.all_fake_def_ids.borrow_mut().insert(def_id);
def_id.clone()
}
}
// Replaces all ReVars in a type with ty::Region's, using the provided map
struct RegionReplacer<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
}
impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for RegionReplacer<'a, 'gcx, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> {
self.tcx
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
(match r {
&ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
_ => None,
}).unwrap_or_else(|| r.super_fold_with(self))
}
}