rust/src/librustc_passes/ast_validation.rs

850 lines
35 KiB
Rust
Raw Normal View History

// Validate AST before lowering it to HIR.
//
// This pass is supposed to catch things that fit into AST data structures,
// but not permitted by the language. It runs after expansion when AST is frozen,
// so it can check for erroneous constructions produced by syntax extensions.
// This pass is supposed to perform only simple checks not requiring name resolution
// or type checking or some other kind of complex analysis.
2019-01-19 03:29:26 +00:00
use std::mem;
use syntax::print::pprust;
use rustc::lint;
use rustc::lint::builtin::{BuiltinLintDiagnostics, NESTED_IMPL_TRAIT};
use rustc::session::Session;
use rustc_data_structures::fx::FxHashMap;
use syntax::ast::*;
use syntax::attr;
2018-08-18 10:14:03 +00:00
use syntax::source_map::Spanned;
2019-05-11 14:41:37 +00:00
use syntax::symbol::{kw, sym};
use syntax::ptr::P;
use syntax::visit::{self, Visitor};
2019-02-08 11:40:49 +00:00
use syntax::{span_err, struct_span_err, walk_list};
use syntax_ext::proc_macro_decls::is_proc_macro_attr;
2019-04-30 12:28:13 +00:00
use syntax_pos::{Span, MultiSpan};
use errors::{Applicability, FatalError};
2019-02-08 11:40:49 +00:00
use log::debug;
#[derive(Copy, Clone, Debug)]
struct OuterImplTrait {
span: Span,
/// rust-lang/rust#57979: a bug in original implementation caused
/// us to fail sometimes to record an outer `impl Trait`.
/// Therefore, in order to reliably issue a warning (rather than
/// an error) in the *precise* places where we are newly injecting
/// the diagnostic, we have to distinguish between the places
/// where the outer `impl Trait` has always been recorded, versus
/// the places where it has only recently started being recorded.
only_recorded_since_pull_request_57730: bool,
}
impl OuterImplTrait {
/// This controls whether we should downgrade the nested impl
/// trait diagnostic to a warning rather than an error, based on
/// whether the outer impl trait had been improperly skipped in
/// earlier implementations of the analysis on the stable
/// compiler.
fn should_warn_instead_of_error(&self) -> bool {
self.only_recorded_since_pull_request_57730
}
}
struct AstValidator<'a> {
session: &'a Session,
has_proc_macro_decls: bool,
has_global_allocator: bool,
2019-01-18 11:35:14 +00:00
/// Used to ban nested `impl Trait`, e.g., `impl Into<impl Debug>`.
/// Nested `impl Trait` _is_ allowed in associated type position,
/// e.g., `impl Iterator<Item = impl Debug>`.
outer_impl_trait: Option<OuterImplTrait>,
2019-01-18 11:35:14 +00:00
/// Used to ban `impl Trait` in path projections like `<impl Iterator>::Item`
/// or `Foo::Bar<impl Trait>`
2019-01-18 11:35:14 +00:00
is_impl_trait_banned: bool,
/// rust-lang/rust#57979: the ban of nested `impl Trait` was buggy
/// until PRs #57730 and #57981 landed: it would jump directly to
/// walk_ty rather than visit_ty (or skip recurring entirely for
/// impl trait in projections), and thus miss some cases. We track
/// whether we should downgrade to a warning for short-term via
/// these booleans.
warning_period_57979_didnt_record_next_impl_trait: bool,
warning_period_57979_impl_trait_in_proj: bool,
}
impl<'a> AstValidator<'a> {
fn with_impl_trait_in_proj_warning<T>(&mut self, v: bool, f: impl FnOnce(&mut Self) -> T) -> T {
let old = mem::replace(&mut self.warning_period_57979_impl_trait_in_proj, v);
let ret = f(self);
self.warning_period_57979_impl_trait_in_proj = old;
ret
}
2019-01-19 03:29:26 +00:00
fn with_banned_impl_trait(&mut self, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.is_impl_trait_banned, true);
2019-01-18 11:35:14 +00:00
f(self);
2019-01-19 03:29:26 +00:00
self.is_impl_trait_banned = old;
2019-01-18 11:35:14 +00:00
}
fn with_impl_trait(&mut self, outer: Option<OuterImplTrait>, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.outer_impl_trait, outer);
2019-01-18 11:35:14 +00:00
f(self);
2019-01-19 03:29:26 +00:00
self.outer_impl_trait = old;
2019-01-18 11:35:14 +00:00
}
fn visit_assoc_type_binding_from_generic_args(&mut self, type_binding: &'a TypeBinding) {
// rust-lang/rust#57979: bug in old `visit_generic_args` called
// `walk_ty` rather than `visit_ty`, skipping outer `impl Trait`
// if it happened to occur at `type_binding.ty`.
if let TyKind::ImplTrait(..) = type_binding.ty.node {
self.warning_period_57979_didnt_record_next_impl_trait = true;
}
self.visit_assoc_type_binding(type_binding);
}
fn visit_ty_from_generic_args(&mut self, ty: &'a Ty) {
// rust-lang/rust#57979: bug in old `visit_generic_args` called
// `walk_ty` rather than `visit_ty`, skippping outer `impl Trait`
// if it happened to occur at `ty`.
if let TyKind::ImplTrait(..) = ty.node {
self.warning_period_57979_didnt_record_next_impl_trait = true;
}
self.visit_ty(ty);
}
fn outer_impl_trait(&mut self, span: Span) -> OuterImplTrait {
let only_recorded_since_pull_request_57730 =
self.warning_period_57979_didnt_record_next_impl_trait;
// (This flag is designed to be set to `true`, and then only
// reach the construction point for the outer impl trait once,
// so its safe and easiest to unconditionally reset it to
// false.)
self.warning_period_57979_didnt_record_next_impl_trait = false;
OuterImplTrait {
span, only_recorded_since_pull_request_57730,
}
}
// Mirrors `visit::walk_ty`, but tracks relevant state.
2019-01-18 11:35:14 +00:00
fn walk_ty(&mut self, t: &'a Ty) {
match t.node {
TyKind::ImplTrait(..) => {
let outer_impl_trait = self.outer_impl_trait(t.span);
self.with_impl_trait(Some(outer_impl_trait), |this| visit::walk_ty(this, t))
2019-01-18 11:35:14 +00:00
}
TyKind::Path(ref qself, ref path) => {
// We allow these:
// - `Option<impl Trait>`
// - `option::Option<impl Trait>`
// - `option::Option<T>::Foo<impl Trait>
//
// But not these:
// - `<impl Trait>::Foo`
// - `option::Option<impl Trait>::Foo`.
//
// To implement this, we disallow `impl Trait` from `qself`
// (for cases like `<impl Trait>::Foo>`)
// but we allow `impl Trait` in `GenericArgs`
// iff there are no more PathSegments.
if let Some(ref qself) = *qself {
// `impl Trait` in `qself` is always illegal
self.with_banned_impl_trait(|this| this.visit_ty(&qself.ty));
}
// Note that there should be a call to visit_path here,
// so if any logic is added to process `Path`s a call to it should be
// added both in visit_path and here. This code mirrors visit::walk_path.
for (i, segment) in path.segments.iter().enumerate() {
// Allow `impl Trait` iff we're on the final path segment
if i == path.segments.len() - 1 {
self.visit_path_segment(path.span, segment);
} else {
self.with_banned_impl_trait(|this| {
this.visit_path_segment(path.span, segment)
});
}
}
}
_ => visit::walk_ty(self, t),
}
}
fn err_handler(&self) -> &errors::Handler {
2018-07-26 22:18:06 +00:00
&self.session.diagnostic()
}
2018-03-19 00:54:56 +00:00
fn check_lifetime(&self, ident: Ident) {
2019-05-11 14:41:37 +00:00
let valid_names = [kw::UnderscoreLifetime,
kw::StaticLifetime,
kw::Invalid];
if !valid_names.contains(&ident.name) && ident.without_first_quote().is_reserved() {
2018-03-19 00:54:56 +00:00
self.err_handler().span_err(ident.span, "lifetimes cannot use keyword names");
2017-12-06 09:28:01 +00:00
}
}
2018-03-19 00:54:56 +00:00
fn check_label(&self, ident: Ident) {
if ident.without_first_quote().is_reserved() {
2018-03-19 00:54:56 +00:00
self.err_handler()
.span_err(ident.span, &format!("invalid label name `{}`", ident.name));
}
}
2018-01-29 05:12:09 +00:00
fn invalid_visibility(&self, vis: &Visibility, note: Option<&str>) {
if let VisibilityKind::Inherited = vis.node {
return
}
let mut err = struct_span_err!(self.session,
vis.span,
E0449,
"unnecessary visibility qualifier");
2018-07-06 20:18:38 +00:00
if vis.node.is_pub() {
err.span_label(vis.span, "`pub` not permitted here because it's implied");
}
if let Some(note) = note {
err.note(note);
}
err.emit();
}
fn check_decl_no_pat<ReportFn: Fn(Span, bool)>(&self, decl: &FnDecl, report_err: ReportFn) {
for arg in &decl.inputs {
match arg.pat.node {
PatKind::Ident(BindingMode::ByValue(Mutability::Immutable), _, None) |
PatKind::Wild => {}
PatKind::Ident(BindingMode::ByValue(Mutability::Mutable), _, None) =>
report_err(arg.pat.span, true),
_ => report_err(arg.pat.span, false),
}
}
}
fn check_trait_fn_not_async(&self, span: Span, asyncness: IsAsync) {
2018-06-19 04:18:10 +00:00
if asyncness.is_async() {
struct_span_err!(self.session, span, E0706,
"trait fns cannot be declared `async`").emit()
}
}
2016-08-10 23:20:12 +00:00
fn check_trait_fn_not_const(&self, constness: Spanned<Constness>) {
if constness.node == Constness::Const {
struct_span_err!(self.session, constness.span, E0379,
"trait fns cannot be declared const")
.span_label(constness.span, "trait fns cannot be const")
.emit();
}
}
2016-10-22 00:33:36 +00:00
fn no_questions_in_bounds(&self, bounds: &GenericBounds, where_: &str, is_trait: bool) {
2016-10-22 00:33:36 +00:00
for bound in bounds {
2018-06-14 11:23:46 +00:00
if let GenericBound::Trait(ref poly, TraitBoundModifier::Maybe) = *bound {
2016-10-22 00:33:36 +00:00
let mut err = self.err_handler().struct_span_err(poly.span,
&format!("`?Trait` is not permitted in {}", where_));
2016-10-22 00:33:36 +00:00
if is_trait {
err.note(&format!("traits are `?{}` by default", poly.trait_ref.path));
}
err.emit();
}
}
}
2019-02-08 13:53:55 +00:00
/// Matches `'-' lit | lit (cf. parser::Parser::parse_literal_maybe_minus)`,
/// or paths for ranges.
//
// FIXME: do we want to allow `expr -> pattern` conversion to create path expressions?
// That means making this work:
//
// ```rust,ignore (FIXME)
// struct S;
// macro_rules! m {
// ($a:expr) => {
// let $a = S;
// }
// }
// m!(S);
// ```
fn check_expr_within_pat(&self, expr: &Expr, allow_paths: bool) {
match expr.node {
ExprKind::Lit(..) => {}
ExprKind::Path(..) if allow_paths => {}
ExprKind::Unary(UnOp::Neg, ref inner)
if match inner.node { ExprKind::Lit(_) => true, _ => false } => {}
_ => self.err_handler().span_err(expr.span, "arbitrary expressions aren't allowed \
in patterns")
}
}
fn check_late_bound_lifetime_defs(&self, params: &[GenericParam]) {
2018-05-26 18:16:21 +00:00
// Check only lifetime parameters are present and that the lifetime
// parameters that are present have no bounds.
let non_lt_param_spans: Vec<_> = params.iter().filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
if !param.bounds.is_empty() {
let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
self.err_handler()
.span_err(spans, "lifetime bounds cannot be used in this context");
}
None
}
_ => Some(param.ident.span),
}).collect();
if !non_lt_param_spans.is_empty() {
self.err_handler().span_err(non_lt_param_spans,
2018-05-26 18:16:21 +00:00
"only lifetime parameters can be used in this context");
}
}
2018-10-22 16:21:55 +00:00
/// With eRFC 2497, we need to check whether an expression is ambiguous and warn or error
/// depending on the edition, this function handles that.
fn while_if_let_ambiguity(&self, expr: &P<Expr>) {
if let Some((span, op_kind)) = self.while_if_let_expr_ambiguity(&expr) {
let mut err = self.err_handler().struct_span_err(
2018-10-22 16:21:55 +00:00
span, &format!("ambiguous use of `{}`", op_kind.to_string())
);
err.note(
"this will be a error until the `let_chains` feature is stabilized"
);
err.note(
"see rust-lang/rust#53668 for more information"
);
if let Ok(snippet) = self.session.source_map().span_to_snippet(span) {
err.span_suggestion(
span, "consider adding parentheses", format!("({})", snippet),
Applicability::MachineApplicable,
);
}
err.emit();
}
}
/// With eRFC 2497 adding if-let chains, there is a requirement that the parsing of
2018-10-22 16:21:55 +00:00
/// `&&` and `||` in a if-let statement be unambiguous. This function returns a span and
/// a `BinOpKind` (either `&&` or `||` depending on what was ambiguous) if it is determined
/// that the current expression parsed is ambiguous and will break in future.
fn while_if_let_expr_ambiguity(&self, expr: &P<Expr>) -> Option<(Span, BinOpKind)> {
debug!("while_if_let_expr_ambiguity: expr.node: {:?}", expr.node);
match &expr.node {
ExprKind::Binary(op, _, _) if op.node == BinOpKind::And || op.node == BinOpKind::Or => {
Some((expr.span, op.node))
},
ExprKind::Range(ref lhs, ref rhs, _) => {
2018-10-22 16:21:55 +00:00
let lhs_ambiguous = lhs.as_ref()
.and_then(|lhs| self.while_if_let_expr_ambiguity(lhs));
2018-10-22 16:21:55 +00:00
let rhs_ambiguous = rhs.as_ref()
.and_then(|rhs| self.while_if_let_expr_ambiguity(rhs));
2018-10-22 16:21:55 +00:00
lhs_ambiguous.or(rhs_ambiguous)
}
_ => None,
}
}
}
enum GenericPosition {
Param,
Arg,
}
fn validate_generics_order<'a>(
sess: &Session,
handler: &errors::Handler,
generics: impl Iterator<
Item = (
ParamKindOrd,
Option<&'a [GenericBound]>,
Span,
Option<String>
),
>,
pos: GenericPosition,
span: Span,
) {
let mut max_param: Option<ParamKindOrd> = None;
let mut out_of_order = FxHashMap::default();
let mut param_idents = vec![];
let mut found_type = false;
let mut found_const = false;
for (kind, bounds, span, ident) in generics {
if let Some(ident) = ident {
param_idents.push((kind, bounds, param_idents.len(), ident));
}
let max_param = &mut max_param;
match max_param {
Some(max_param) if *max_param > kind => {
let entry = out_of_order.entry(kind).or_insert((*max_param, vec![]));
entry.1.push(span);
}
Some(_) | None => *max_param = Some(kind),
};
match kind {
ParamKindOrd::Type => found_type = true,
ParamKindOrd::Const => found_const = true,
_ => {}
}
}
let mut ordered_params = "<".to_string();
if !out_of_order.is_empty() {
param_idents.sort_by_key(|&(po, _, i, _)| (po, i));
let mut first = true;
for (_, bounds, _, ident) in param_idents {
if !first {
ordered_params += ", ";
}
ordered_params += &ident;
if let Some(bounds) = bounds {
if !bounds.is_empty() {
ordered_params += ": ";
ordered_params += &pprust::bounds_to_string(&bounds);
}
}
first = false;
}
}
ordered_params += ">";
let pos_str = match pos {
GenericPosition::Param => "parameter",
GenericPosition::Arg => "argument",
};
for (param_ord, (max_param, spans)) in &out_of_order {
let mut err = handler.struct_span_err(spans.clone(),
&format!(
"{} {pos}s must be declared prior to {} {pos}s",
param_ord,
max_param,
pos = pos_str,
));
if let GenericPosition::Param = pos {
err.span_suggestion(
span,
&format!(
"reorder the {}s: lifetimes, then types{}",
pos_str,
if sess.features_untracked().const_generics { ", then consts" } else { "" },
),
ordered_params.clone(),
Applicability::MachineApplicable,
);
}
err.emit();
}
// FIXME(const_generics): we shouldn't have to abort here at all, but we currently get ICEs
// if we don't. Const parameters and type parameters can currently conflict if they
// are out-of-order.
if !out_of_order.is_empty() && found_type && found_const {
FatalError.raise();
}
}
impl<'a> Visitor<'a> for AstValidator<'a> {
fn visit_expr(&mut self, expr: &'a Expr) {
match expr.node {
ExprKind::IfLet(_, ref expr, _, _) | ExprKind::WhileLet(_, ref expr, _, _) =>
self.while_if_let_ambiguity(&expr),
ExprKind::InlineAsm(..) if !self.session.target.target.options.allow_asm => {
span_err!(self.session, expr.span, E0472, "asm! is unsupported on this target");
}
_ => {}
}
visit::walk_expr(self, expr)
}
fn visit_ty(&mut self, ty: &'a Ty) {
match ty.node {
TyKind::BareFn(ref bfty) => {
self.check_decl_no_pat(&bfty.decl, |span, _| {
struct_span_err!(self.session, span, E0561,
"patterns aren't allowed in function pointer types").emit();
});
self.check_late_bound_lifetime_defs(&bfty.generic_params);
}
2017-10-10 14:33:19 +00:00
TyKind::TraitObject(ref bounds, ..) => {
let mut any_lifetime_bounds = false;
for bound in bounds {
2018-06-14 11:23:46 +00:00
if let GenericBound::Outlives(ref lifetime) = *bound {
if any_lifetime_bounds {
2018-03-19 00:54:56 +00:00
span_err!(self.session, lifetime.ident.span, E0226,
"only a single explicit lifetime bound is permitted");
break;
}
any_lifetime_bounds = true;
}
}
2016-10-22 00:33:36 +00:00
self.no_questions_in_bounds(bounds, "trait object types", false);
}
TyKind::ImplTrait(_, ref bounds) => {
2019-01-18 11:35:14 +00:00
if self.is_impl_trait_banned {
if self.warning_period_57979_impl_trait_in_proj {
self.session.buffer_lint(
NESTED_IMPL_TRAIT, ty.id, ty.span,
"`impl Trait` is not allowed in path parameters");
} else {
struct_span_err!(self.session, ty.span, E0667,
"`impl Trait` is not allowed in path parameters").emit();
}
2019-01-18 11:35:14 +00:00
}
if let Some(outer_impl_trait) = self.outer_impl_trait {
if outer_impl_trait.should_warn_instead_of_error() {
self.session.buffer_lint_with_diagnostic(
NESTED_IMPL_TRAIT, ty.id, ty.span,
"nested `impl Trait` is not allowed",
BuiltinLintDiagnostics::NestedImplTrait {
outer_impl_trait_span: outer_impl_trait.span,
inner_impl_trait_span: ty.span,
});
} else {
struct_span_err!(self.session, ty.span, E0666,
"nested `impl Trait` is not allowed")
.span_label(outer_impl_trait.span, "outer `impl Trait`")
.span_label(ty.span, "nested `impl Trait` here")
.emit();
}
2019-01-18 11:35:14 +00:00
}
if !bounds.iter()
2018-06-14 11:23:46 +00:00
.any(|b| if let GenericBound::Trait(..) = *b { true } else { false }) {
self.err_handler().span_err(ty.span, "at least one trait must be specified");
}
self.with_impl_trait_in_proj_warning(true, |this| this.walk_ty(ty));
return;
}
_ => {}
}
2019-01-18 11:35:14 +00:00
self.walk_ty(ty)
}
fn visit_label(&mut self, label: &'a Label) {
2018-03-19 00:54:56 +00:00
self.check_label(label.ident);
visit::walk_label(self, label);
}
2017-12-07 08:52:25 +00:00
fn visit_lifetime(&mut self, lifetime: &'a Lifetime) {
2018-03-19 00:54:56 +00:00
self.check_lifetime(lifetime.ident);
2017-12-07 08:52:25 +00:00
visit::walk_lifetime(self, lifetime);
}
fn visit_item(&mut self, item: &'a Item) {
if item.attrs.iter().any(|attr| is_proc_macro_attr(attr) ) {
self.has_proc_macro_decls = true;
}
if attr::contains_name(&item.attrs, sym::global_allocator) {
self.has_global_allocator = true;
}
match item.node {
ItemKind::Impl(unsafety, polarity, _, _, Some(..), ref ty, ref impl_items) => {
2018-01-29 05:12:09 +00:00
self.invalid_visibility(&item.vis, None);
if let TyKind::Err = ty.node {
self.err_handler()
.struct_span_err(item.span, "`impl Trait for .. {}` is an obsolete syntax")
.help("use `auto trait Trait {}` instead").emit();
}
if unsafety == Unsafety::Unsafe && polarity == ImplPolarity::Negative {
span_err!(self.session, item.span, E0198, "negative impls cannot be unsafe");
}
for impl_item in impl_items {
2018-01-29 05:12:09 +00:00
self.invalid_visibility(&impl_item.vis, None);
if let ImplItemKind::Method(ref sig, _) = impl_item.node {
self.check_trait_fn_not_const(sig.header.constness);
self.check_trait_fn_not_async(impl_item.span, sig.header.asyncness.node);
}
}
}
ItemKind::Impl(unsafety, polarity, defaultness, _, None, _, _) => {
2016-07-21 01:31:14 +00:00
self.invalid_visibility(&item.vis,
Some("place qualifiers on individual impl items instead"));
if unsafety == Unsafety::Unsafe {
span_err!(self.session, item.span, E0197, "inherent impls cannot be unsafe");
}
if polarity == ImplPolarity::Negative {
self.err_handler().span_err(item.span, "inherent impls cannot be negative");
}
if defaultness == Defaultness::Default {
self.err_handler()
.struct_span_err(item.span, "inherent impls cannot be default")
2018-04-16 20:56:24 +00:00
.note("only trait implementations may be annotated with default").emit();
}
}
ItemKind::Fn(_, ref header, ref generics, _) => {
// We currently do not permit const generics in `const fn`, as
// this is tantamount to allowing compile-time dependent typing.
self.visit_fn_header(header);
if header.constness.node == Constness::Const {
// Look for const generics and error if we find any.
for param in &generics.params {
match param.kind {
GenericParamKind::Const { .. } => {
self.err_handler()
.struct_span_err(
item.span,
"const parameters are not permitted in `const fn`",
)
.emit();
}
_ => {}
}
}
}
}
ItemKind::ForeignMod(..) => {
2018-01-29 05:12:09 +00:00
self.invalid_visibility(
&item.vis,
Some("place qualifiers on individual foreign items instead"),
);
}
2017-12-07 08:52:25 +00:00
ItemKind::Enum(ref def, _) => {
for variant in &def.variants {
for field in variant.node.data.fields() {
2018-01-29 05:12:09 +00:00
self.invalid_visibility(&field.vis, None);
}
}
}
ItemKind::Trait(is_auto, _, ref generics, ref bounds, ref trait_items) => {
if is_auto == IsAuto::Yes {
// Auto traits cannot have generics, super traits nor contain items.
if !generics.params.is_empty() {
struct_span_err!(self.session, item.span, E0567,
"auto traits cannot have generic parameters"
).emit();
}
if !bounds.is_empty() {
struct_span_err!(self.session, item.span, E0568,
"auto traits cannot have super traits"
).emit();
}
if !trait_items.is_empty() {
struct_span_err!(self.session, item.span, E0380,
"auto traits cannot have methods or associated items"
).emit();
}
}
2016-10-22 00:33:36 +00:00
self.no_questions_in_bounds(bounds, "supertraits", true);
for trait_item in trait_items {
if let TraitItemKind::Method(ref sig, ref block) = trait_item.node {
self.check_trait_fn_not_async(trait_item.span, sig.header.asyncness.node);
self.check_trait_fn_not_const(sig.header.constness);
if block.is_none() {
self.check_decl_no_pat(&sig.decl, |span, mut_ident| {
if mut_ident {
self.session.buffer_lint(
lint::builtin::PATTERNS_IN_FNS_WITHOUT_BODY,
trait_item.id, span,
"patterns aren't allowed in methods without bodies");
} else {
struct_span_err!(self.session, span, E0642,
"patterns aren't allowed in methods without bodies").emit();
}
});
}
}
}
}
ItemKind::Mod(_) => {
// Ensure that `path` attributes on modules are recorded as used (cf. issue #35584).
attr::first_attr_value_str_by_name(&item.attrs, sym::path);
if attr::contains_name(&item.attrs, sym::warn_directory_ownership) {
2016-11-14 09:31:03 +00:00
let lint = lint::builtin::LEGACY_DIRECTORY_OWNERSHIP;
let msg = "cannot declare a new module at this location";
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-27 04:51:09 +00:00
self.session.buffer_lint(lint, item.id, item.span, msg);
2016-11-14 09:31:03 +00:00
}
}
2017-12-07 08:52:25 +00:00
ItemKind::Union(ref vdata, _) => {
if let VariantData::Tuple(..) | VariantData::Unit(..) = vdata {
2016-07-16 21:15:15 +00:00
self.err_handler().span_err(item.span,
"tuple and unit unions are not permitted");
}
if vdata.fields().is_empty() {
2016-07-16 21:15:15 +00:00
self.err_handler().span_err(item.span,
"unions cannot have zero fields");
}
}
2019-04-30 11:43:03 +00:00
ItemKind::Existential(ref bounds, _) => {
if !bounds.iter()
.any(|b| if let GenericBound::Trait(..) = *b { true } else { false }) {
2019-04-30 12:28:13 +00:00
let msp = MultiSpan::from_spans(bounds.iter()
.map(|bound| bound.span()).collect());
self.err_handler().span_err(msp, "at least one trait must be specified");
2019-04-30 11:43:03 +00:00
}
}
_ => {}
}
visit::walk_item(self, item)
}
fn visit_foreign_item(&mut self, fi: &'a ForeignItem) {
match fi.node {
ForeignItemKind::Fn(ref decl, _) => {
self.check_decl_no_pat(decl, |span, _| {
struct_span_err!(self.session, span, E0130,
"patterns aren't allowed in foreign function declarations")
.span_label(span, "pattern not allowed in foreign function").emit();
});
}
ForeignItemKind::Static(..) | ForeignItemKind::Ty | ForeignItemKind::Macro(..) => {}
}
visit::walk_foreign_item(self, fi)
}
// Mirrors `visit::walk_generic_args`, but tracks relevant state.
2019-01-18 11:35:14 +00:00
fn visit_generic_args(&mut self, _: Span, generic_args: &'a GenericArgs) {
match *generic_args {
GenericArgs::AngleBracketed(ref data) => {
walk_list!(self, visit_generic_arg, &data.args);
validate_generics_order(
self.session,
self.err_handler(),
data.args.iter().map(|arg| {
(match arg {
GenericArg::Lifetime(..) => ParamKindOrd::Lifetime,
GenericArg::Type(..) => ParamKindOrd::Type,
GenericArg::Const(..) => ParamKindOrd::Const,
}, None, arg.span(), None)
}),
GenericPosition::Arg,
generic_args.span(),
);
// Type bindings such as `Item = impl Debug` in `Iterator<Item = Debug>`
// are allowed to contain nested `impl Trait`.
self.with_impl_trait(None, |this| {
walk_list!(this, visit_assoc_type_binding_from_generic_args, &data.bindings);
2019-01-18 11:35:14 +00:00
});
}
GenericArgs::Parenthesized(ref data) => {
walk_list!(self, visit_ty, &data.inputs);
if let Some(ref type_) = data.output {
// `-> Foo` syntax is essentially an associated type binding,
// so it is also allowed to contain nested `impl Trait`.
self.with_impl_trait(None, |this| this.visit_ty_from_generic_args(type_));
2019-01-18 11:35:14 +00:00
}
}
}
}
fn visit_generics(&mut self, generics: &'a Generics) {
let mut prev_ty_default = None;
for param in &generics.params {
if let GenericParamKind::Type { ref default, .. } = param.kind {
if default.is_some() {
prev_ty_default = Some(param.ident.span);
} else if let Some(span) = prev_ty_default {
self.err_handler()
.span_err(span, "type parameters with a default must be trailing");
break;
}
}
}
validate_generics_order(
self.session,
self.err_handler(),
generics.params.iter().map(|param| {
let ident = Some(param.ident.to_string());
let (kind, ident) = match &param.kind {
GenericParamKind::Lifetime { .. } => (ParamKindOrd::Lifetime, ident),
GenericParamKind::Type { .. } => (ParamKindOrd::Type, ident),
GenericParamKind::Const { ref ty } => {
let ty = pprust::ty_to_string(ty);
(ParamKindOrd::Const, Some(format!("const {}: {}", param.ident, ty)))
}
};
(kind, Some(&*param.bounds), param.ident.span, ident)
}),
GenericPosition::Param,
generics.span,
);
for predicate in &generics.where_clause.predicates {
if let WherePredicate::EqPredicate(ref predicate) = *predicate {
self.err_handler()
.span_err(predicate.span, "equality constraints are not yet \
supported in where clauses (see #20041)");
}
}
visit::walk_generics(self, generics)
}
fn visit_generic_param(&mut self, param: &'a GenericParam) {
if let GenericParamKind::Lifetime { .. } = param.kind {
self.check_lifetime(param.ident);
}
visit::walk_generic_param(self, param);
}
fn visit_pat(&mut self, pat: &'a Pat) {
match pat.node {
PatKind::Lit(ref expr) => {
self.check_expr_within_pat(expr, false);
}
PatKind::Range(ref start, ref end, _) => {
self.check_expr_within_pat(start, true);
self.check_expr_within_pat(end, true);
}
_ => {}
}
visit::walk_pat(self, pat)
}
fn visit_where_predicate(&mut self, p: &'a WherePredicate) {
if let &WherePredicate::BoundPredicate(ref bound_predicate) = p {
// A type binding, eg `for<'c> Foo: Send+Clone+'c`
self.check_late_bound_lifetime_defs(&bound_predicate.bound_generic_params);
}
visit::walk_where_predicate(self, p);
}
fn visit_poly_trait_ref(&mut self, t: &'a PolyTraitRef, m: &'a TraitBoundModifier) {
self.check_late_bound_lifetime_defs(&t.bound_generic_params);
visit::walk_poly_trait_ref(self, t, m);
}
fn visit_mac(&mut self, mac: &Spanned<Mac_>) {
// when a new macro kind is added but the author forgets to set it up for expansion
// because that's the only part that won't cause a compiler error
self.session.diagnostic()
.span_bug(mac.span, "macro invocation missed in expansion; did you forget to override \
the relevant `fold_*()` method in `PlaceholderExpander`?");
}
fn visit_fn_header(&mut self, header: &'a FnHeader) {
if header.asyncness.node.is_async() && self.session.rust_2015() {
struct_span_err!(self.session, header.asyncness.span, E0670,
"`async fn` is not permitted in the 2015 edition").emit();
}
}
}
pub fn check_crate(session: &Session, krate: &Crate) -> (bool, bool) {
let mut validator = AstValidator {
2019-01-18 11:35:14 +00:00
session,
has_proc_macro_decls: false,
has_global_allocator: false,
2019-01-18 11:35:14 +00:00
outer_impl_trait: None,
is_impl_trait_banned: false,
warning_period_57979_didnt_record_next_impl_trait: false,
warning_period_57979_impl_trait_in_proj: false,
};
visit::walk_crate(&mut validator, krate);
(validator.has_proc_macro_decls, validator.has_global_allocator)
}