rust/src/libstd/sys_common/mod.rs

142 lines
4.3 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2016-09-30 23:56:28 +00:00
//! Platform-independent platform abstraction
//!
2016-11-10 03:15:56 +00:00
//! This is the platform-independent portion of the standard library's
2016-09-30 23:56:28 +00:00
//! platform abstraction layer, whereas `std::sys` is the
//! platform-specific portion.
//!
//! The relationship between `std::sys_common`, `std::sys` and the
//! rest of `std` is complex, with dependencies going in all
//! directions: `std` depending on `sys_common`, `sys_common`
//! depending on `sys`, and `sys` depending on `sys_common` and `std`.
//! Ideally `sys_common` would be split into two and the dependencies
//! between them all would form a dag, facilitating the extraction of
//! `std::sys` from the standard library.
2014-11-09 12:59:23 +00:00
#![allow(missing_docs)]
2016-12-20 20:18:55 +00:00
#![allow(missing_debug_implementations)]
use sync::Once;
use sys;
macro_rules! rtabort {
($($t:tt)*) => (::sys_common::util::abort(format_args!($($t)*)))
}
macro_rules! rtassert {
($e:expr) => (if !$e {
rtabort!(concat!("assertion failed: ", stringify!($e)));
})
}
pub mod at_exit_imp;
#[cfg(feature = "backtrace")]
pub mod backtrace;
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
pub mod condvar;
pub mod io;
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
pub mod mutex;
pub mod poison;
pub mod remutex;
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
pub mod rwlock;
pub mod thread;
2014-12-07 02:34:37 +00:00
pub mod thread_info;
pub mod thread_local;
pub mod util;
pub mod wtf8;
pub mod bytestring;
2017-12-17 15:21:47 +00:00
pub mod process;
std: Add a new wasm32-unknown-unknown target This commit adds a new target to the compiler: wasm32-unknown-unknown. This target is a reimagining of what it looks like to generate WebAssembly code from Rust. Instead of using Emscripten which can bring with it a weighty runtime this instead is a target which uses only the LLVM backend for WebAssembly and a "custom linker" for now which will hopefully one day be direct calls to lld. Notable features of this target include: * There is zero runtime footprint. The target assumes nothing exists other than the wasm32 instruction set. * There is zero toolchain footprint beyond adding the target. No custom linker is needed, rustc contains everything. * Very small wasm modules can be generated directly from Rust code using this target. * Most of the standard library is stubbed out to return an error, but anything related to allocation works (aka `HashMap`, `Vec`, etc). * Naturally, any `#[no_std]` crate should be 100% compatible with this new target. This target is currently somewhat janky due to how linking works. The "linking" is currently unconditional whole program LTO (aka LLVM is being used as a linker). Naturally that means compiling programs is pretty slow! Eventually though this target should have a linker. This target is also intended to be quite experimental. I'm hoping that this can act as a catalyst for further experimentation in Rust with WebAssembly. Breaking changes are very likely to land to this target, so it's not recommended to rely on it in any critical capacity yet. We'll let you know when it's "production ready". --- Currently testing-wise this target is looking pretty good but isn't complete. I've got almost the entire `run-pass` test suite working with this target (lots of tests ignored, but many passing as well). The `core` test suite is still getting LLVM bugs fixed to get that working and will take some time. Relatively simple programs all seem to work though! --- It's worth nothing that you may not immediately see the "smallest possible wasm module" for the input you feed to rustc. For various reasons it's very difficult to get rid of the final "bloat" in vanilla rustc (again, a real linker should fix all this). For now what you'll have to do is: cargo install --git https://github.com/alexcrichton/wasm-gc wasm-gc foo.wasm bar.wasm And then `bar.wasm` should be the smallest we can get it! --- In any case for now I'd love feedback on this, particularly on the various integration points if you've got better ideas of how to approach them!
2017-10-23 03:01:00 +00:00
cfg_if! {
if #[cfg(any(target_os = "cloudabi", target_os = "l4re", target_os = "redox"))] {
std: Add a new wasm32-unknown-unknown target This commit adds a new target to the compiler: wasm32-unknown-unknown. This target is a reimagining of what it looks like to generate WebAssembly code from Rust. Instead of using Emscripten which can bring with it a weighty runtime this instead is a target which uses only the LLVM backend for WebAssembly and a "custom linker" for now which will hopefully one day be direct calls to lld. Notable features of this target include: * There is zero runtime footprint. The target assumes nothing exists other than the wasm32 instruction set. * There is zero toolchain footprint beyond adding the target. No custom linker is needed, rustc contains everything. * Very small wasm modules can be generated directly from Rust code using this target. * Most of the standard library is stubbed out to return an error, but anything related to allocation works (aka `HashMap`, `Vec`, etc). * Naturally, any `#[no_std]` crate should be 100% compatible with this new target. This target is currently somewhat janky due to how linking works. The "linking" is currently unconditional whole program LTO (aka LLVM is being used as a linker). Naturally that means compiling programs is pretty slow! Eventually though this target should have a linker. This target is also intended to be quite experimental. I'm hoping that this can act as a catalyst for further experimentation in Rust with WebAssembly. Breaking changes are very likely to land to this target, so it's not recommended to rely on it in any critical capacity yet. We'll let you know when it's "production ready". --- Currently testing-wise this target is looking pretty good but isn't complete. I've got almost the entire `run-pass` test suite working with this target (lots of tests ignored, but many passing as well). The `core` test suite is still getting LLVM bugs fixed to get that working and will take some time. Relatively simple programs all seem to work though! --- It's worth nothing that you may not immediately see the "smallest possible wasm module" for the input you feed to rustc. For various reasons it's very difficult to get rid of the final "bloat" in vanilla rustc (again, a real linker should fix all this). For now what you'll have to do is: cargo install --git https://github.com/alexcrichton/wasm-gc wasm-gc foo.wasm bar.wasm And then `bar.wasm` should be the smallest we can get it! --- In any case for now I'd love feedback on this, particularly on the various integration points if you've got better ideas of how to approach them!
2017-10-23 03:01:00 +00:00
pub use sys::net;
} else if #[cfg(all(target_arch = "wasm32", not(target_os = "emscripten")))] {
pub use sys::net;
} else {
pub mod net;
}
}
2016-10-28 02:57:49 +00:00
#[cfg(feature = "backtrace")]
#[cfg(any(all(unix, not(target_os = "emscripten")),
2017-07-14 02:07:37 +00:00
all(windows, target_env = "gnu"),
target_os = "redox"))]
pub mod gnu;
// common error constructors
/// A trait for viewing representations from std types
#[doc(hidden)]
pub trait AsInner<Inner: ?Sized> {
fn as_inner(&self) -> &Inner;
}
/// A trait for viewing representations from std types
#[doc(hidden)]
pub trait AsInnerMut<Inner: ?Sized> {
fn as_inner_mut(&mut self) -> &mut Inner;
}
/// A trait for extracting representations from std types
#[doc(hidden)]
pub trait IntoInner<Inner> {
fn into_inner(self) -> Inner;
}
/// A trait for creating std types from internal representations
#[doc(hidden)]
pub trait FromInner<Inner> {
fn from_inner(inner: Inner) -> Self;
}
/// Enqueues a procedure to run when the main thread exits.
///
/// Currently these closures are only run once the main *Rust* thread exits.
/// Once the `at_exit` handlers begin running, more may be enqueued, but not
/// infinitely so. Eventually a handler registration will be forced to fail.
///
/// Returns `Ok` if the handler was successfully registered, meaning that the
/// closure will be run once the main thread exits. Returns `Err` to indicate
/// that the closure could not be registered, meaning that it is not scheduled
/// to be run.
pub fn at_exit<F: FnOnce() + Send + 'static>(f: F) -> Result<(), ()> {
if at_exit_imp::push(Box::new(f)) {Ok(())} else {Err(())}
}
/// One-time runtime cleanup.
pub fn cleanup() {
static CLEANUP: Once = Once::new();
CLEANUP.call_once(|| unsafe {
sys::args::cleanup();
sys::stack_overflow::cleanup();
at_exit_imp::cleanup();
});
}
// Computes (value*numer)/denom without overflow, as long as both
// (numer*denom) and the overall result fit into i64 (which is the case
// for our time conversions).
#[allow(dead_code)] // not used on all platforms
pub fn mul_div_u64(value: u64, numer: u64, denom: u64) -> u64 {
let q = value / denom;
let r = value % denom;
// Decompose value as (value/denom*denom + value%denom),
// substitute into (value*numer)/denom and simplify.
// r < denom, so (denom*numer) is the upper bound of (r*numer)
q * numer + r * numer / denom
}
#[test]
fn test_muldiv() {
assert_eq!(mul_div_u64( 1_000_000_000_001, 1_000_000_000, 1_000_000),
1_000_000_000_001_000);
}