2024-06-18 23:27:28 +00:00
|
|
|
#![cfg(not(bootstrap))]
|
|
|
|
// FIXME(f16_f128): only tested on platforms that have symbols and aren't buggy
|
|
|
|
#![cfg(reliable_f16)]
|
|
|
|
|
|
|
|
use crate::f16::consts;
|
|
|
|
use crate::num::*;
|
2024-03-26 08:02:54 +00:00
|
|
|
|
|
|
|
// We run out of precision pretty quickly with f16
|
2024-06-18 23:27:28 +00:00
|
|
|
// const F16_APPROX_L1: f16 = 0.001;
|
2024-03-26 08:02:54 +00:00
|
|
|
const F16_APPROX_L2: f16 = 0.01;
|
2024-06-18 23:27:28 +00:00
|
|
|
// const F16_APPROX_L3: f16 = 0.1;
|
2024-03-26 08:02:54 +00:00
|
|
|
const F16_APPROX_L4: f16 = 0.5;
|
|
|
|
|
|
|
|
/// Smallest number
|
|
|
|
const TINY_BITS: u16 = 0x1;
|
2024-06-18 23:27:28 +00:00
|
|
|
|
2024-03-26 08:02:54 +00:00
|
|
|
/// Next smallest number
|
|
|
|
const TINY_UP_BITS: u16 = 0x2;
|
2024-06-18 23:27:28 +00:00
|
|
|
|
2024-03-26 08:02:54 +00:00
|
|
|
/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0
|
|
|
|
const MAX_DOWN_BITS: u16 = 0x7bfe;
|
2024-06-18 23:27:28 +00:00
|
|
|
|
2024-03-26 08:02:54 +00:00
|
|
|
/// Zeroed exponent, full significant
|
|
|
|
const LARGEST_SUBNORMAL_BITS: u16 = 0x03ff;
|
2024-06-18 23:27:28 +00:00
|
|
|
|
2024-03-26 08:02:54 +00:00
|
|
|
/// Exponent = 0b1, zeroed significand
|
|
|
|
const SMALLEST_NORMAL_BITS: u16 = 0x0400;
|
2024-06-18 23:27:28 +00:00
|
|
|
|
2024-03-26 08:02:54 +00:00
|
|
|
/// First pattern over the mantissa
|
|
|
|
const NAN_MASK1: u16 = 0x02aa;
|
2024-06-18 23:27:28 +00:00
|
|
|
|
2024-03-26 08:02:54 +00:00
|
|
|
/// Second pattern over the mantissa
|
|
|
|
const NAN_MASK2: u16 = 0x0155;
|
|
|
|
|
|
|
|
/// Compare by representation
|
|
|
|
#[allow(unused_macros)]
|
|
|
|
macro_rules! assert_f16_biteq {
|
|
|
|
($a:expr, $b:expr) => {
|
|
|
|
let (l, r): (&f16, &f16) = (&$a, &$b);
|
|
|
|
let lb = l.to_bits();
|
|
|
|
let rb = r.to_bits();
|
2024-06-18 23:27:28 +00:00
|
|
|
assert_eq!(lb, rb, "float {l:?} ({lb:#04x}) is not bitequal to {r:?} ({rb:#04x})");
|
2024-03-26 08:02:54 +00:00
|
|
|
};
|
|
|
|
}
|
2024-06-18 23:27:28 +00:00
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_num_f16() {
|
|
|
|
test_num(10f16, 2f16);
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME(f16_f128): add min and max tests when available
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_nan() {
|
|
|
|
let nan: f16 = f16::NAN;
|
|
|
|
assert!(nan.is_nan());
|
|
|
|
assert!(!nan.is_infinite());
|
|
|
|
assert!(!nan.is_finite());
|
|
|
|
assert!(nan.is_sign_positive());
|
|
|
|
assert!(!nan.is_sign_negative());
|
|
|
|
// FIXME(f16_f128): classify
|
|
|
|
// assert!(!nan.is_normal());
|
|
|
|
// assert_eq!(Fp::Nan, nan.classify());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_infinity() {
|
|
|
|
let inf: f16 = f16::INFINITY;
|
|
|
|
assert!(inf.is_infinite());
|
|
|
|
assert!(!inf.is_finite());
|
|
|
|
assert!(inf.is_sign_positive());
|
|
|
|
assert!(!inf.is_sign_negative());
|
|
|
|
assert!(!inf.is_nan());
|
|
|
|
// FIXME(f16_f128): classify
|
|
|
|
// assert!(!inf.is_normal());
|
|
|
|
// assert_eq!(Fp::Infinite, inf.classify());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_neg_infinity() {
|
|
|
|
let neg_inf: f16 = f16::NEG_INFINITY;
|
|
|
|
assert!(neg_inf.is_infinite());
|
|
|
|
assert!(!neg_inf.is_finite());
|
|
|
|
assert!(!neg_inf.is_sign_positive());
|
|
|
|
assert!(neg_inf.is_sign_negative());
|
|
|
|
assert!(!neg_inf.is_nan());
|
|
|
|
// FIXME(f16_f128): classify
|
|
|
|
// assert!(!neg_inf.is_normal());
|
|
|
|
// assert_eq!(Fp::Infinite, neg_inf.classify());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_zero() {
|
|
|
|
let zero: f16 = 0.0f16;
|
|
|
|
assert_eq!(0.0, zero);
|
|
|
|
assert!(!zero.is_infinite());
|
|
|
|
assert!(zero.is_finite());
|
|
|
|
assert!(zero.is_sign_positive());
|
|
|
|
assert!(!zero.is_sign_negative());
|
|
|
|
assert!(!zero.is_nan());
|
|
|
|
// FIXME(f16_f128): classify
|
|
|
|
// assert!(!zero.is_normal());
|
|
|
|
// assert_eq!(Fp::Zero, zero.classify());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_neg_zero() {
|
|
|
|
let neg_zero: f16 = -0.0;
|
|
|
|
assert_eq!(0.0, neg_zero);
|
|
|
|
assert!(!neg_zero.is_infinite());
|
|
|
|
assert!(neg_zero.is_finite());
|
|
|
|
assert!(!neg_zero.is_sign_positive());
|
|
|
|
assert!(neg_zero.is_sign_negative());
|
|
|
|
assert!(!neg_zero.is_nan());
|
|
|
|
// FIXME(f16_f128): classify
|
|
|
|
// assert!(!neg_zero.is_normal());
|
|
|
|
// assert_eq!(Fp::Zero, neg_zero.classify());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_one() {
|
|
|
|
let one: f16 = 1.0f16;
|
|
|
|
assert_eq!(1.0, one);
|
|
|
|
assert!(!one.is_infinite());
|
|
|
|
assert!(one.is_finite());
|
|
|
|
assert!(one.is_sign_positive());
|
|
|
|
assert!(!one.is_sign_negative());
|
|
|
|
assert!(!one.is_nan());
|
|
|
|
// FIXME(f16_f128): classify
|
|
|
|
// assert!(one.is_normal());
|
|
|
|
// assert_eq!(Fp::Normal, one.classify());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_is_nan() {
|
|
|
|
let nan: f16 = f16::NAN;
|
|
|
|
let inf: f16 = f16::INFINITY;
|
|
|
|
let neg_inf: f16 = f16::NEG_INFINITY;
|
|
|
|
assert!(nan.is_nan());
|
|
|
|
assert!(!0.0f16.is_nan());
|
|
|
|
assert!(!5.3f16.is_nan());
|
|
|
|
assert!(!(-10.732f16).is_nan());
|
|
|
|
assert!(!inf.is_nan());
|
|
|
|
assert!(!neg_inf.is_nan());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_is_infinite() {
|
|
|
|
let nan: f16 = f16::NAN;
|
|
|
|
let inf: f16 = f16::INFINITY;
|
|
|
|
let neg_inf: f16 = f16::NEG_INFINITY;
|
|
|
|
assert!(!nan.is_infinite());
|
|
|
|
assert!(inf.is_infinite());
|
|
|
|
assert!(neg_inf.is_infinite());
|
|
|
|
assert!(!0.0f16.is_infinite());
|
|
|
|
assert!(!42.8f16.is_infinite());
|
|
|
|
assert!(!(-109.2f16).is_infinite());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_is_finite() {
|
|
|
|
let nan: f16 = f16::NAN;
|
|
|
|
let inf: f16 = f16::INFINITY;
|
|
|
|
let neg_inf: f16 = f16::NEG_INFINITY;
|
|
|
|
assert!(!nan.is_finite());
|
|
|
|
assert!(!inf.is_finite());
|
|
|
|
assert!(!neg_inf.is_finite());
|
|
|
|
assert!(0.0f16.is_finite());
|
|
|
|
assert!(42.8f16.is_finite());
|
|
|
|
assert!((-109.2f16).is_finite());
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME(f16_f128): add `test_is_normal` and `test_classify` when classify is working
|
|
|
|
// FIXME(f16_f128): add missing math functions when available
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_abs() {
|
|
|
|
assert_eq!(f16::INFINITY.abs(), f16::INFINITY);
|
|
|
|
assert_eq!(1f16.abs(), 1f16);
|
|
|
|
assert_eq!(0f16.abs(), 0f16);
|
|
|
|
assert_eq!((-0f16).abs(), 0f16);
|
|
|
|
assert_eq!((-1f16).abs(), 1f16);
|
|
|
|
assert_eq!(f16::NEG_INFINITY.abs(), f16::INFINITY);
|
|
|
|
assert_eq!((1f16 / f16::NEG_INFINITY).abs(), 0f16);
|
|
|
|
assert!(f16::NAN.abs().is_nan());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_is_sign_positive() {
|
|
|
|
assert!(f16::INFINITY.is_sign_positive());
|
|
|
|
assert!(1f16.is_sign_positive());
|
|
|
|
assert!(0f16.is_sign_positive());
|
|
|
|
assert!(!(-0f16).is_sign_positive());
|
|
|
|
assert!(!(-1f16).is_sign_positive());
|
|
|
|
assert!(!f16::NEG_INFINITY.is_sign_positive());
|
|
|
|
assert!(!(1f16 / f16::NEG_INFINITY).is_sign_positive());
|
|
|
|
assert!(f16::NAN.is_sign_positive());
|
|
|
|
assert!(!(-f16::NAN).is_sign_positive());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_is_sign_negative() {
|
|
|
|
assert!(!f16::INFINITY.is_sign_negative());
|
|
|
|
assert!(!1f16.is_sign_negative());
|
|
|
|
assert!(!0f16.is_sign_negative());
|
|
|
|
assert!((-0f16).is_sign_negative());
|
|
|
|
assert!((-1f16).is_sign_negative());
|
|
|
|
assert!(f16::NEG_INFINITY.is_sign_negative());
|
|
|
|
assert!((1f16 / f16::NEG_INFINITY).is_sign_negative());
|
|
|
|
assert!(!f16::NAN.is_sign_negative());
|
|
|
|
assert!((-f16::NAN).is_sign_negative());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_next_up() {
|
|
|
|
let tiny = f16::from_bits(TINY_BITS);
|
|
|
|
let tiny_up = f16::from_bits(TINY_UP_BITS);
|
|
|
|
let max_down = f16::from_bits(MAX_DOWN_BITS);
|
|
|
|
let largest_subnormal = f16::from_bits(LARGEST_SUBNORMAL_BITS);
|
|
|
|
let smallest_normal = f16::from_bits(SMALLEST_NORMAL_BITS);
|
|
|
|
assert_f16_biteq!(f16::NEG_INFINITY.next_up(), f16::MIN);
|
|
|
|
assert_f16_biteq!(f16::MIN.next_up(), -max_down);
|
|
|
|
assert_f16_biteq!((-1.0 - f16::EPSILON).next_up(), -1.0);
|
|
|
|
assert_f16_biteq!((-smallest_normal).next_up(), -largest_subnormal);
|
|
|
|
assert_f16_biteq!((-tiny_up).next_up(), -tiny);
|
|
|
|
assert_f16_biteq!((-tiny).next_up(), -0.0f16);
|
|
|
|
assert_f16_biteq!((-0.0f16).next_up(), tiny);
|
|
|
|
assert_f16_biteq!(0.0f16.next_up(), tiny);
|
|
|
|
assert_f16_biteq!(tiny.next_up(), tiny_up);
|
|
|
|
assert_f16_biteq!(largest_subnormal.next_up(), smallest_normal);
|
|
|
|
assert_f16_biteq!(1.0f16.next_up(), 1.0 + f16::EPSILON);
|
|
|
|
assert_f16_biteq!(f16::MAX.next_up(), f16::INFINITY);
|
|
|
|
assert_f16_biteq!(f16::INFINITY.next_up(), f16::INFINITY);
|
|
|
|
|
|
|
|
// Check that NaNs roundtrip.
|
|
|
|
let nan0 = f16::NAN;
|
|
|
|
let nan1 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK1);
|
|
|
|
let nan2 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK2);
|
|
|
|
assert_f16_biteq!(nan0.next_up(), nan0);
|
|
|
|
assert_f16_biteq!(nan1.next_up(), nan1);
|
|
|
|
assert_f16_biteq!(nan2.next_up(), nan2);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_next_down() {
|
|
|
|
let tiny = f16::from_bits(TINY_BITS);
|
|
|
|
let tiny_up = f16::from_bits(TINY_UP_BITS);
|
|
|
|
let max_down = f16::from_bits(MAX_DOWN_BITS);
|
|
|
|
let largest_subnormal = f16::from_bits(LARGEST_SUBNORMAL_BITS);
|
|
|
|
let smallest_normal = f16::from_bits(SMALLEST_NORMAL_BITS);
|
|
|
|
assert_f16_biteq!(f16::NEG_INFINITY.next_down(), f16::NEG_INFINITY);
|
|
|
|
assert_f16_biteq!(f16::MIN.next_down(), f16::NEG_INFINITY);
|
|
|
|
assert_f16_biteq!((-max_down).next_down(), f16::MIN);
|
|
|
|
assert_f16_biteq!((-1.0f16).next_down(), -1.0 - f16::EPSILON);
|
|
|
|
assert_f16_biteq!((-largest_subnormal).next_down(), -smallest_normal);
|
|
|
|
assert_f16_biteq!((-tiny).next_down(), -tiny_up);
|
|
|
|
assert_f16_biteq!((-0.0f16).next_down(), -tiny);
|
|
|
|
assert_f16_biteq!((0.0f16).next_down(), -tiny);
|
|
|
|
assert_f16_biteq!(tiny.next_down(), 0.0f16);
|
|
|
|
assert_f16_biteq!(tiny_up.next_down(), tiny);
|
|
|
|
assert_f16_biteq!(smallest_normal.next_down(), largest_subnormal);
|
|
|
|
assert_f16_biteq!((1.0 + f16::EPSILON).next_down(), 1.0f16);
|
|
|
|
assert_f16_biteq!(f16::MAX.next_down(), max_down);
|
|
|
|
assert_f16_biteq!(f16::INFINITY.next_down(), f16::MAX);
|
|
|
|
|
|
|
|
// Check that NaNs roundtrip.
|
|
|
|
let nan0 = f16::NAN;
|
|
|
|
let nan1 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK1);
|
|
|
|
let nan2 = f16::from_bits(f16::NAN.to_bits() ^ NAN_MASK2);
|
|
|
|
assert_f16_biteq!(nan0.next_down(), nan0);
|
|
|
|
assert_f16_biteq!(nan1.next_down(), nan1);
|
|
|
|
assert_f16_biteq!(nan2.next_down(), nan2);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_recip() {
|
|
|
|
let nan: f16 = f16::NAN;
|
|
|
|
let inf: f16 = f16::INFINITY;
|
|
|
|
let neg_inf: f16 = f16::NEG_INFINITY;
|
|
|
|
assert_eq!(1.0f16.recip(), 1.0);
|
|
|
|
assert_eq!(2.0f16.recip(), 0.5);
|
|
|
|
assert_eq!((-0.4f16).recip(), -2.5);
|
|
|
|
assert_eq!(0.0f16.recip(), inf);
|
|
|
|
assert!(nan.recip().is_nan());
|
|
|
|
assert_eq!(inf.recip(), 0.0);
|
|
|
|
assert_eq!(neg_inf.recip(), 0.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_to_degrees() {
|
|
|
|
let pi: f16 = consts::PI;
|
|
|
|
let nan: f16 = f16::NAN;
|
|
|
|
let inf: f16 = f16::INFINITY;
|
|
|
|
let neg_inf: f16 = f16::NEG_INFINITY;
|
|
|
|
assert_eq!(0.0f16.to_degrees(), 0.0);
|
|
|
|
assert_approx_eq!((-5.8f16).to_degrees(), -332.315521);
|
|
|
|
assert_approx_eq!(pi.to_degrees(), 180.0, F16_APPROX_L4);
|
|
|
|
assert!(nan.to_degrees().is_nan());
|
|
|
|
assert_eq!(inf.to_degrees(), inf);
|
|
|
|
assert_eq!(neg_inf.to_degrees(), neg_inf);
|
|
|
|
assert_eq!(1_f16.to_degrees(), 57.2957795130823208767981548141051703);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_to_radians() {
|
|
|
|
let pi: f16 = consts::PI;
|
|
|
|
let nan: f16 = f16::NAN;
|
|
|
|
let inf: f16 = f16::INFINITY;
|
|
|
|
let neg_inf: f16 = f16::NEG_INFINITY;
|
|
|
|
assert_eq!(0.0f16.to_radians(), 0.0);
|
|
|
|
assert_approx_eq!(154.6f16.to_radians(), 2.698279);
|
|
|
|
assert_approx_eq!((-332.31f16).to_radians(), -5.799903);
|
|
|
|
assert_approx_eq!(180.0f16.to_radians(), pi, F16_APPROX_L2);
|
|
|
|
assert!(nan.to_radians().is_nan());
|
|
|
|
assert_eq!(inf.to_radians(), inf);
|
|
|
|
assert_eq!(neg_inf.to_radians(), neg_inf);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_real_consts() {
|
|
|
|
// FIXME(f16_f128): add math tests when available
|
|
|
|
use super::consts;
|
|
|
|
|
|
|
|
let pi: f16 = consts::PI;
|
|
|
|
let frac_pi_2: f16 = consts::FRAC_PI_2;
|
|
|
|
let frac_pi_3: f16 = consts::FRAC_PI_3;
|
|
|
|
let frac_pi_4: f16 = consts::FRAC_PI_4;
|
|
|
|
let frac_pi_6: f16 = consts::FRAC_PI_6;
|
|
|
|
let frac_pi_8: f16 = consts::FRAC_PI_8;
|
|
|
|
let frac_1_pi: f16 = consts::FRAC_1_PI;
|
|
|
|
let frac_2_pi: f16 = consts::FRAC_2_PI;
|
|
|
|
// let frac_2_sqrtpi: f16 = consts::FRAC_2_SQRT_PI;
|
|
|
|
// let sqrt2: f16 = consts::SQRT_2;
|
|
|
|
// let frac_1_sqrt2: f16 = consts::FRAC_1_SQRT_2;
|
|
|
|
// let e: f16 = consts::E;
|
|
|
|
// let log2_e: f16 = consts::LOG2_E;
|
|
|
|
// let log10_e: f16 = consts::LOG10_E;
|
|
|
|
// let ln_2: f16 = consts::LN_2;
|
|
|
|
// let ln_10: f16 = consts::LN_10;
|
|
|
|
|
|
|
|
assert_approx_eq!(frac_pi_2, pi / 2f16);
|
|
|
|
assert_approx_eq!(frac_pi_3, pi / 3f16);
|
|
|
|
assert_approx_eq!(frac_pi_4, pi / 4f16);
|
|
|
|
assert_approx_eq!(frac_pi_6, pi / 6f16);
|
|
|
|
assert_approx_eq!(frac_pi_8, pi / 8f16);
|
|
|
|
assert_approx_eq!(frac_1_pi, 1f16 / pi);
|
|
|
|
assert_approx_eq!(frac_2_pi, 2f16 / pi);
|
|
|
|
// assert_approx_eq!(frac_2_sqrtpi, 2f16 / pi.sqrt());
|
|
|
|
// assert_approx_eq!(sqrt2, 2f16.sqrt());
|
|
|
|
// assert_approx_eq!(frac_1_sqrt2, 1f16 / 2f16.sqrt());
|
|
|
|
// assert_approx_eq!(log2_e, e.log2());
|
|
|
|
// assert_approx_eq!(log10_e, e.log10());
|
|
|
|
// assert_approx_eq!(ln_2, 2f16.ln());
|
|
|
|
// assert_approx_eq!(ln_10, 10f16.ln());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_float_bits_conv() {
|
|
|
|
assert_eq!((1f16).to_bits(), 0x3c00);
|
|
|
|
assert_eq!((12.5f16).to_bits(), 0x4a40);
|
|
|
|
assert_eq!((1337f16).to_bits(), 0x6539);
|
|
|
|
assert_eq!((-14.25f16).to_bits(), 0xcb20);
|
|
|
|
assert_approx_eq!(f16::from_bits(0x3c00), 1.0);
|
|
|
|
assert_approx_eq!(f16::from_bits(0x4a40), 12.5);
|
|
|
|
assert_approx_eq!(f16::from_bits(0x6539), 1337.0);
|
|
|
|
assert_approx_eq!(f16::from_bits(0xcb20), -14.25);
|
|
|
|
|
|
|
|
// Check that NaNs roundtrip their bits regardless of signaling-ness
|
|
|
|
let masked_nan1 = f16::NAN.to_bits() ^ NAN_MASK1;
|
|
|
|
let masked_nan2 = f16::NAN.to_bits() ^ NAN_MASK2;
|
|
|
|
assert!(f16::from_bits(masked_nan1).is_nan());
|
|
|
|
assert!(f16::from_bits(masked_nan2).is_nan());
|
|
|
|
|
|
|
|
assert_eq!(f16::from_bits(masked_nan1).to_bits(), masked_nan1);
|
|
|
|
assert_eq!(f16::from_bits(masked_nan2).to_bits(), masked_nan2);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
#[should_panic]
|
|
|
|
fn test_clamp_min_greater_than_max() {
|
|
|
|
let _ = 1.0f16.clamp(3.0, 1.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
#[should_panic]
|
|
|
|
fn test_clamp_min_is_nan() {
|
|
|
|
let _ = 1.0f16.clamp(f16::NAN, 1.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
#[should_panic]
|
|
|
|
fn test_clamp_max_is_nan() {
|
|
|
|
let _ = 1.0f16.clamp(3.0, f16::NAN);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_total_cmp() {
|
|
|
|
use core::cmp::Ordering;
|
|
|
|
|
|
|
|
fn quiet_bit_mask() -> u16 {
|
|
|
|
1 << (f16::MANTISSA_DIGITS - 2)
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME(f16_f128): test subnormals when powf is available
|
|
|
|
// fn min_subnorm() -> f16 {
|
|
|
|
// f16::MIN_POSITIVE / f16::powf(2.0, f16::MANTISSA_DIGITS as f16 - 1.0)
|
|
|
|
// }
|
|
|
|
|
|
|
|
// fn max_subnorm() -> f16 {
|
|
|
|
// f16::MIN_POSITIVE - min_subnorm()
|
|
|
|
// }
|
|
|
|
|
|
|
|
fn q_nan() -> f16 {
|
|
|
|
f16::from_bits(f16::NAN.to_bits() | quiet_bit_mask())
|
|
|
|
}
|
|
|
|
|
|
|
|
fn s_nan() -> f16 {
|
|
|
|
f16::from_bits((f16::NAN.to_bits() & !quiet_bit_mask()) + 42)
|
|
|
|
}
|
|
|
|
|
|
|
|
assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan()));
|
|
|
|
assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan()));
|
|
|
|
assert_eq!(Ordering::Equal, (-f16::INFINITY).total_cmp(&-f16::INFINITY));
|
|
|
|
assert_eq!(Ordering::Equal, (-f16::MAX).total_cmp(&-f16::MAX));
|
|
|
|
assert_eq!(Ordering::Equal, (-2.5_f16).total_cmp(&-2.5));
|
|
|
|
assert_eq!(Ordering::Equal, (-1.0_f16).total_cmp(&-1.0));
|
|
|
|
assert_eq!(Ordering::Equal, (-1.5_f16).total_cmp(&-1.5));
|
|
|
|
assert_eq!(Ordering::Equal, (-0.5_f16).total_cmp(&-0.5));
|
|
|
|
assert_eq!(Ordering::Equal, (-f16::MIN_POSITIVE).total_cmp(&-f16::MIN_POSITIVE));
|
|
|
|
// assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm()));
|
|
|
|
// assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm()));
|
|
|
|
assert_eq!(Ordering::Equal, (-0.0_f16).total_cmp(&-0.0));
|
|
|
|
assert_eq!(Ordering::Equal, 0.0_f16.total_cmp(&0.0));
|
|
|
|
// assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm()));
|
|
|
|
// assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm()));
|
|
|
|
assert_eq!(Ordering::Equal, f16::MIN_POSITIVE.total_cmp(&f16::MIN_POSITIVE));
|
|
|
|
assert_eq!(Ordering::Equal, 0.5_f16.total_cmp(&0.5));
|
|
|
|
assert_eq!(Ordering::Equal, 1.0_f16.total_cmp(&1.0));
|
|
|
|
assert_eq!(Ordering::Equal, 1.5_f16.total_cmp(&1.5));
|
|
|
|
assert_eq!(Ordering::Equal, 2.5_f16.total_cmp(&2.5));
|
|
|
|
assert_eq!(Ordering::Equal, f16::MAX.total_cmp(&f16::MAX));
|
|
|
|
assert_eq!(Ordering::Equal, f16::INFINITY.total_cmp(&f16::INFINITY));
|
|
|
|
assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan()));
|
|
|
|
assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan()));
|
|
|
|
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan()));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::INFINITY));
|
|
|
|
assert_eq!(Ordering::Less, (-f16::INFINITY).total_cmp(&-f16::MAX));
|
|
|
|
assert_eq!(Ordering::Less, (-f16::MAX).total_cmp(&-2.5));
|
|
|
|
assert_eq!(Ordering::Less, (-2.5_f16).total_cmp(&-1.5));
|
|
|
|
assert_eq!(Ordering::Less, (-1.5_f16).total_cmp(&-1.0));
|
|
|
|
assert_eq!(Ordering::Less, (-1.0_f16).total_cmp(&-0.5));
|
|
|
|
assert_eq!(Ordering::Less, (-0.5_f16).total_cmp(&-f16::MIN_POSITIVE));
|
|
|
|
// assert_eq!(Ordering::Less, (-f16::MIN_POSITIVE).total_cmp(&-max_subnorm()));
|
|
|
|
// assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm()));
|
|
|
|
// assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0));
|
|
|
|
assert_eq!(Ordering::Less, (-0.0_f16).total_cmp(&0.0));
|
|
|
|
// assert_eq!(Ordering::Less, 0.0_f16.total_cmp(&min_subnorm()));
|
|
|
|
// assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm()));
|
|
|
|
// assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f16::MIN_POSITIVE));
|
|
|
|
assert_eq!(Ordering::Less, f16::MIN_POSITIVE.total_cmp(&0.5));
|
|
|
|
assert_eq!(Ordering::Less, 0.5_f16.total_cmp(&1.0));
|
|
|
|
assert_eq!(Ordering::Less, 1.0_f16.total_cmp(&1.5));
|
|
|
|
assert_eq!(Ordering::Less, 1.5_f16.total_cmp(&2.5));
|
|
|
|
assert_eq!(Ordering::Less, 2.5_f16.total_cmp(&f16::MAX));
|
|
|
|
assert_eq!(Ordering::Less, f16::MAX.total_cmp(&f16::INFINITY));
|
|
|
|
assert_eq!(Ordering::Less, f16::INFINITY.total_cmp(&s_nan()));
|
|
|
|
assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan()));
|
|
|
|
|
|
|
|
assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan()));
|
|
|
|
assert_eq!(Ordering::Greater, (-f16::INFINITY).total_cmp(&-s_nan()));
|
|
|
|
assert_eq!(Ordering::Greater, (-f16::MAX).total_cmp(&-f16::INFINITY));
|
|
|
|
assert_eq!(Ordering::Greater, (-2.5_f16).total_cmp(&-f16::MAX));
|
|
|
|
assert_eq!(Ordering::Greater, (-1.5_f16).total_cmp(&-2.5));
|
|
|
|
assert_eq!(Ordering::Greater, (-1.0_f16).total_cmp(&-1.5));
|
|
|
|
assert_eq!(Ordering::Greater, (-0.5_f16).total_cmp(&-1.0));
|
|
|
|
assert_eq!(Ordering::Greater, (-f16::MIN_POSITIVE).total_cmp(&-0.5));
|
|
|
|
// assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f16::MIN_POSITIVE));
|
|
|
|
// assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm()));
|
|
|
|
// assert_eq!(Ordering::Greater, (-0.0_f16).total_cmp(&-min_subnorm()));
|
|
|
|
assert_eq!(Ordering::Greater, 0.0_f16.total_cmp(&-0.0));
|
|
|
|
// assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0));
|
|
|
|
// assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm()));
|
|
|
|
// assert_eq!(Ordering::Greater, f16::MIN_POSITIVE.total_cmp(&max_subnorm()));
|
|
|
|
assert_eq!(Ordering::Greater, 0.5_f16.total_cmp(&f16::MIN_POSITIVE));
|
|
|
|
assert_eq!(Ordering::Greater, 1.0_f16.total_cmp(&0.5));
|
|
|
|
assert_eq!(Ordering::Greater, 1.5_f16.total_cmp(&1.0));
|
|
|
|
assert_eq!(Ordering::Greater, 2.5_f16.total_cmp(&1.5));
|
|
|
|
assert_eq!(Ordering::Greater, f16::MAX.total_cmp(&2.5));
|
|
|
|
assert_eq!(Ordering::Greater, f16::INFINITY.total_cmp(&f16::MAX));
|
|
|
|
assert_eq!(Ordering::Greater, s_nan().total_cmp(&f16::INFINITY));
|
|
|
|
assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan()));
|
|
|
|
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan()));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::INFINITY));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::MAX));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f16::MIN_POSITIVE));
|
|
|
|
// assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm()));
|
|
|
|
// assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm()));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0));
|
|
|
|
// assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm()));
|
|
|
|
// assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm()));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::MIN_POSITIVE));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::MAX));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f16::INFINITY));
|
|
|
|
assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan()));
|
|
|
|
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::INFINITY));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::MAX));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f16::MIN_POSITIVE));
|
|
|
|
// assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm()));
|
|
|
|
// assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm()));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0));
|
|
|
|
// assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm()));
|
|
|
|
// assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm()));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::MIN_POSITIVE));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::MAX));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f16::INFINITY));
|
|
|
|
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
|
|
|
|
}
|