rust/src/librustc_mir/interpret/memory.rs

1000 lines
36 KiB
Rust
Raw Normal View History

2018-08-22 19:52:01 +00:00
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2018-08-18 09:53:15 +00:00
//! The memory subsystem.
//!
//! Generally, we use `Pointer` to denote memory addresses. However, some operations
//! have a "size"-like parameter, and they take `Scalar` for the address because
//! if the size is 0, then the pointer can also be a (properly aligned, non-NULL)
//! integer. It is crucial that these operations call `check_align` *before*
//! short-circuiting the empty case!
use std::collections::VecDeque;
use std::hash::{Hash, Hasher};
use std::ptr;
2016-03-05 06:48:23 +00:00
use rustc::ty::{self, Instance, query::TyCtxtAt};
use rustc::ty::layout::{self, Align, TargetDataLayout, Size, HasDataLayout};
use rustc::mir::interpret::{Pointer, AllocId, Allocation, ScalarMaybeUndef, GlobalId,
EvalResult, Scalar, EvalErrorKind, AllocType, PointerArithmetic,
truncate};
pub use rustc::mir::interpret::{write_target_uint, read_target_uint};
use rustc_data_structures::fx::{FxHashSet, FxHashMap, FxHasher};
use syntax::ast::Mutability;
use super::Machine;
2016-04-05 02:33:41 +00:00
#[derive(Debug, PartialEq, Eq, Copy, Clone, Hash)]
pub enum MemoryKind<T> {
2017-07-13 14:58:36 +00:00
/// Error if deallocated except during a stack pop
Stack,
/// Additional memory kinds a machine wishes to distinguish from the builtin ones
Machine(T),
2016-04-05 02:33:41 +00:00
}
#[derive(Clone)]
2018-01-16 08:31:48 +00:00
pub struct Memory<'a, 'mir, 'tcx: 'a + 'mir, M: Machine<'mir, 'tcx>> {
2017-07-21 15:25:30 +00:00
/// Additional data required by the Machine
pub data: M::MemoryData,
2017-05-26 05:38:07 +00:00
/// Allocations local to this instance of the miri engine. The kind
/// helps ensure that the same mechanism is used for allocation and
/// deallocation. When an allocation is not found here, it is a
/// static and looked up in the `tcx` for read access. Writing to
/// a static creates a copy here, in the machine.
alloc_map: FxHashMap<AllocId, (MemoryKind<M::MemoryKinds>, Allocation)>,
2017-02-10 21:35:45 +00:00
pub tcx: TyCtxtAt<'a, 'tcx, 'tcx>,
2016-03-24 03:40:58 +00:00
}
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> HasDataLayout for &'a Memory<'a, 'mir, 'tcx, M> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
impl<'a, 'b, 'c, 'mir, 'tcx, M: Machine<'mir, 'tcx>> HasDataLayout
for &'b &'c mut Memory<'a, 'mir, 'tcx, M>
{
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
impl<'a, 'mir, 'tcx, M> Eq for Memory<'a, 'mir, 'tcx, M>
where M: Machine<'mir, 'tcx>,
'tcx: 'a + 'mir,
{}
impl<'a, 'mir, 'tcx, M> PartialEq for Memory<'a, 'mir, 'tcx, M>
where M: Machine<'mir, 'tcx>,
'tcx: 'a + 'mir,
{
fn eq(&self, other: &Self) -> bool {
let Memory {
data,
alloc_map,
tcx: _,
} = self;
*data == other.data
&& *alloc_map == other.alloc_map
}
}
impl<'a, 'mir, 'tcx, M> Hash for Memory<'a, 'mir, 'tcx, M>
where M: Machine<'mir, 'tcx>,
'tcx: 'a + 'mir,
{
fn hash<H: Hasher>(&self, state: &mut H) {
let Memory {
data,
alloc_map: _,
tcx: _,
} = self;
data.hash(state);
// We ignore some fields which don't change between evaluation steps.
// Since HashMaps which contain the same items may have different
// iteration orders, we use a commutative operation (in this case
// addition, but XOR would also work), to combine the hash of each
// `Allocation`.
self.alloc_map.iter()
.map(|(&id, alloc)| {
let mut h = FxHasher::default();
id.hash(&mut h);
alloc.hash(&mut h);
h.finish()
})
.fold(0u64, |hash, x| hash.wrapping_add(x))
.hash(state);
}
}
/// Helper function to obtain the global (tcx) allocation for a static
fn const_eval_static<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>>(
tcx: TyCtxtAt<'a, 'tcx, 'tcx>,
id: AllocId
) -> EvalResult<'tcx, &'tcx Allocation> {
let alloc = tcx.alloc_map.lock().get(id);
let def_id = match alloc {
Some(AllocType::Memory(mem)) => {
return Ok(mem)
}
Some(AllocType::Function(..)) => {
return err!(DerefFunctionPointer)
}
Some(AllocType::Static(did)) => {
did
}
None =>
return err!(DanglingPointerDeref),
};
// We got a "lazy" static that has not been computed yet, do some work
trace!("static_alloc: Need to compute {:?}", def_id);
if tcx.is_foreign_item(def_id) {
return M::find_foreign_static(tcx, def_id);
}
let instance = Instance::mono(tcx.tcx, def_id);
let gid = GlobalId {
instance,
promoted: None,
};
tcx.const_eval(ty::ParamEnv::reveal_all().and(gid)).map_err(|err| {
// no need to report anything, the const_eval call takes care of that for statics
assert!(tcx.is_static(def_id).is_some());
EvalErrorKind::ReferencedConstant(err).into()
}).map(|val| {
// FIXME We got our static (will be a ByRef), now we make a *copy*?!?
tcx.const_to_allocation(val)
})
}
2018-01-16 08:31:48 +00:00
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
pub fn new(tcx: TyCtxtAt<'a, 'tcx, 'tcx>, data: M::MemoryData) -> Self {
Memory {
2017-07-21 15:25:30 +00:00
data,
alloc_map: FxHashMap::default(),
2017-12-06 08:25:29 +00:00
tcx,
}
2016-03-05 06:48:23 +00:00
}
2018-05-20 22:37:44 +00:00
pub fn create_fn_alloc(&mut self, instance: Instance<'tcx>) -> Pointer {
self.tcx.alloc_map.lock().create_fn_alloc(instance).into()
2016-06-08 11:43:34 +00:00
}
pub fn allocate_static_bytes(&mut self, bytes: &[u8]) -> Pointer {
self.tcx.allocate_bytes(bytes).into()
}
pub fn allocate_with(
&mut self,
alloc: Allocation,
kind: MemoryKind<M::MemoryKinds>,
) -> EvalResult<'tcx, AllocId> {
let id = self.tcx.alloc_map.lock().reserve();
self.alloc_map.insert(id, (kind, alloc));
Ok(id)
}
pub fn allocate(
&mut self,
size: Size,
align: Align,
kind: MemoryKind<M::MemoryKinds>,
2018-05-20 22:37:44 +00:00
) -> EvalResult<'tcx, Pointer> {
self.allocate_with(Allocation::undef(size, align), kind).map(Pointer::from)
2016-03-05 06:48:23 +00:00
}
pub fn reallocate(
&mut self,
2018-05-20 22:37:44 +00:00
ptr: Pointer,
old_size: Size,
old_align: Align,
new_size: Size,
new_align: Align,
kind: MemoryKind<M::MemoryKinds>,
2018-05-20 22:37:44 +00:00
) -> EvalResult<'tcx, Pointer> {
if ptr.offset.bytes() != 0 {
2017-08-02 14:59:01 +00:00
return err!(ReallocateNonBasePtr);
}
2017-07-10 20:34:54 +00:00
// For simplicities' sake, we implement reallocate as "alloc, copy, dealloc"
let new_ptr = self.allocate(new_size, new_align, kind)?;
self.copy(
ptr.into(),
old_align,
new_ptr.into(),
new_align,
old_size.min(new_size),
/*nonoverlapping*/ true,
)?;
self.deallocate(ptr, Some((old_size, old_align)), kind)?;
2017-07-10 20:34:54 +00:00
Ok(new_ptr)
}
/// Deallocate a local, or do nothing if that local has been made into a static
2018-05-20 22:37:44 +00:00
pub fn deallocate_local(&mut self, ptr: Pointer) -> EvalResult<'tcx> {
// The allocation might be already removed by static interning.
// This can only really happen in the CTFE instance, not in miri.
if self.alloc_map.contains_key(&ptr.alloc_id) {
self.deallocate(ptr, None, MemoryKind::Stack)
} else {
Ok(())
2017-12-06 08:25:29 +00:00
}
}
pub fn deallocate(
&mut self,
2018-05-20 22:37:44 +00:00
ptr: Pointer,
size_and_align: Option<(Size, Align)>,
kind: MemoryKind<M::MemoryKinds>,
) -> EvalResult<'tcx> {
if ptr.offset.bytes() != 0 {
2017-08-02 14:59:01 +00:00
return err!(DeallocateNonBasePtr);
}
2016-04-07 09:02:02 +00:00
let (alloc_kind, alloc) = match self.alloc_map.remove(&ptr.alloc_id) {
2017-12-06 08:25:29 +00:00
Some(alloc) => alloc,
None => {
// Deallocating static memory -- always an error
return match self.tcx.alloc_map.lock().get(ptr.alloc_id) {
Some(AllocType::Function(..)) => err!(DeallocatedWrongMemoryKind(
"function".to_string(),
format!("{:?}", kind),
)),
Some(AllocType::Static(..)) |
Some(AllocType::Memory(..)) => err!(DeallocatedWrongMemoryKind(
"static".to_string(),
format!("{:?}", kind),
)),
None => err!(DoubleFree)
}
}
};
2017-12-06 08:25:29 +00:00
if alloc_kind != kind {
return err!(DeallocatedWrongMemoryKind(
2017-12-06 08:25:29 +00:00
format!("{:?}", alloc_kind),
format!("{:?}", kind),
));
}
if let Some((size, align)) = size_and_align {
if size.bytes() != alloc.bytes.len() as u64 || align != alloc.align {
2018-08-22 19:59:14 +00:00
let bytes = Size::from_bytes(alloc.bytes.len() as u64);
return err!(IncorrectAllocationInformation(size,
bytes,
align,
alloc.align));
}
2016-04-07 09:02:02 +00:00
}
2016-07-01 11:08:19 +00:00
debug!("deallocated : {}", ptr.alloc_id);
2016-04-07 09:02:02 +00:00
Ok(())
}
2018-08-18 09:53:15 +00:00
/// Check that the pointer is aligned AND non-NULL. This supports scalars
/// for the benefit of other parts of miri that need to check alignment even for ZST.
2018-05-20 22:30:00 +00:00
pub fn check_align(&self, ptr: Scalar, required_align: Align) -> EvalResult<'tcx> {
// Check non-NULL/Undef, extract offset
2018-05-20 22:30:00 +00:00
let (offset, alloc_align) = match ptr {
2018-05-20 21:43:16 +00:00
Scalar::Ptr(ptr) => {
let alloc = self.get(ptr.alloc_id)?;
(ptr.offset.bytes(), alloc.align)
}
Scalar::Bits { bits, size } => {
assert_eq!(size as u64, self.pointer_size().bytes());
2018-05-22 08:28:46 +00:00
// FIXME: what on earth does this line do? docs or fix needed!
let v = ((bits as u128) % (1 << self.pointer_size().bytes())) as u64;
if v == 0 {
2017-08-02 14:59:01 +00:00
return err!(InvalidNullPointerUsage);
}
// the base address if the "integer allocation" is 0 and hence always aligned
(v, required_align)
}
2017-01-31 09:36:27 +00:00
};
// Check alignment
if alloc_align.abi() < required_align.abi() {
return err!(AlignmentCheckFailed {
has: alloc_align,
required: required_align,
});
}
if offset % required_align.abi() == 0 {
2016-07-22 14:35:39 +00:00
Ok(())
} else {
let has = offset % required_align.abi();
2017-08-02 14:59:01 +00:00
err!(AlignmentCheckFailed {
has: Align::from_bytes(has, has).unwrap(),
required: required_align,
2016-07-22 14:35:39 +00:00
})
}
}
2017-01-30 08:44:52 +00:00
/// Check if the pointer is "in-bounds". Notice that a pointer pointing at the end
/// of an allocation (i.e., at the first *inaccessible* location) *is* considered
/// in-bounds! This follows C's/LLVM's rules.
2018-05-20 22:37:44 +00:00
pub fn check_bounds(&self, ptr: Pointer, access: bool) -> EvalResult<'tcx> {
let alloc = self.get(ptr.alloc_id)?;
let allocation_size = alloc.bytes.len() as u64;
if ptr.offset.bytes() > allocation_size {
return err!(PointerOutOfBounds {
ptr,
access,
allocation_size: Size::from_bytes(allocation_size),
});
}
Ok(())
}
2016-06-23 07:40:01 +00:00
}
2016-04-07 09:02:02 +00:00
2016-06-23 07:40:01 +00:00
/// Allocation accessors
2018-01-16 08:31:48 +00:00
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
2017-12-06 08:25:29 +00:00
pub fn get(&self, id: AllocId) -> EvalResult<'tcx, &Allocation> {
2018-01-05 03:12:38 +00:00
match self.alloc_map.get(&id) {
// Normal alloc?
Some(alloc) => Ok(&alloc.1),
// Static. No need to make any copies, just provide read access to the global static
// memory in tcx.
None => const_eval_static::<M>(self.tcx, id),
}
2016-03-05 06:48:23 +00:00
}
pub fn get_mut(
&mut self,
id: AllocId,
2017-12-06 08:25:29 +00:00
) -> EvalResult<'tcx, &mut Allocation> {
// Static?
if !self.alloc_map.contains_key(&id) {
// Ask the machine for what to do
if let Some(kind) = M::MUT_STATIC_KIND {
// The machine supports mutating statics. Make a copy, use that.
self.deep_copy_static(id, MemoryKind::Machine(kind))?;
} else {
return err!(ModifiedConstantMemory)
}
}
// If we come here, we know the allocation is in our map
let alloc = &mut self.alloc_map.get_mut(&id).unwrap().1;
// See if we are allowed to mutate this
if alloc.mutability == Mutability::Immutable {
err!(ModifiedConstantMemory)
} else {
Ok(alloc)
2017-07-14 03:33:06 +00:00
}
}
2018-05-20 22:37:44 +00:00
pub fn get_fn(&self, ptr: Pointer) -> EvalResult<'tcx, Instance<'tcx>> {
if ptr.offset.bytes() != 0 {
2017-08-02 14:59:01 +00:00
return err!(InvalidFunctionPointer);
}
debug!("reading fn ptr: {}", ptr.alloc_id);
match self.tcx.alloc_map.lock().get(ptr.alloc_id) {
Some(AllocType::Function(instance)) => Ok(instance),
_ => Err(EvalErrorKind::ExecuteMemory.into()),
}
2016-06-08 11:43:34 +00:00
}
/// For debugging, print an allocation and all allocations it points to, recursively.
pub fn dump_alloc(&self, id: AllocId) {
if !log_enabled!(::log::Level::Trace) {
return;
}
self.dump_allocs(vec![id]);
}
/// For debugging, print a list of allocations and all allocations they point to, recursively.
pub fn dump_allocs(&self, mut allocs: Vec<AllocId>) {
if !log_enabled!(::log::Level::Trace) {
return;
}
use std::fmt::Write;
allocs.sort();
allocs.dedup();
let mut allocs_to_print = VecDeque::from(allocs);
let mut allocs_seen = FxHashSet::default();
2016-04-06 09:45:06 +00:00
while let Some(id) = allocs_to_print.pop_front() {
let mut msg = format!("Alloc {:<5} ", format!("{}:", id));
let prefix_len = msg.len();
2016-04-06 09:45:06 +00:00
let mut relocations = vec![];
2017-12-06 08:25:29 +00:00
let (alloc, immutable) =
// normal alloc?
2018-01-05 03:12:38 +00:00
match self.alloc_map.get(&id) {
Some((kind, alloc)) => (alloc, match kind {
2017-12-06 08:25:29 +00:00
MemoryKind::Stack => " (stack)".to_owned(),
MemoryKind::Machine(m) => format!(" ({:?})", m),
}),
None => {
// static alloc?
match self.tcx.alloc_map.lock().get(id) {
Some(AllocType::Memory(a)) => (a, " (immutable)".to_owned()),
Some(AllocType::Function(func)) => {
trace!("{} {}", msg, func);
continue;
2018-01-16 08:31:48 +00:00
}
Some(AllocType::Static(did)) => {
trace!("{} {:?}", msg, did);
continue;
}
None => {
trace!("{} (deallocated)", msg);
continue;
}
}
2017-12-06 08:25:29 +00:00
},
2018-01-16 08:31:48 +00:00
};
for i in 0..(alloc.bytes.len() as u64) {
let i = Size::from_bytes(i);
2016-04-06 09:45:06 +00:00
if let Some(&target_id) = alloc.relocations.get(&i) {
2017-02-06 17:26:01 +00:00
if allocs_seen.insert(target_id) {
2016-04-06 09:45:06 +00:00
allocs_to_print.push_back(target_id);
}
relocations.push((i, target_id));
2016-04-06 09:45:06 +00:00
}
if alloc.undef_mask.is_range_defined(i, i + Size::from_bytes(1)) {
// this `as usize` is fine, since `i` came from a `usize`
write!(msg, "{:02x} ", alloc.bytes[i.bytes() as usize]).unwrap();
2016-04-06 09:45:06 +00:00
} else {
msg.push_str("__ ");
2016-04-06 09:45:06 +00:00
}
}
trace!(
"{}({} bytes, alignment {}){}",
msg,
alloc.bytes.len(),
alloc.align.abi(),
immutable
);
2016-04-06 09:45:06 +00:00
if !relocations.is_empty() {
msg.clear();
write!(msg, "{:1$}", "", prefix_len).unwrap(); // Print spaces.
2018-05-20 12:14:39 +00:00
let mut pos = Size::ZERO;
let relocation_width = (self.pointer_size().bytes() - 1) * 3;
2016-04-06 09:45:06 +00:00
for (i, target_id) in relocations {
// this `as usize` is fine, since we can't print more chars than `usize::MAX`
write!(msg, "{:1$}", "", ((i - pos) * 3).bytes() as usize).unwrap();
2017-06-23 10:55:49 +00:00
let target = format!("({})", target_id);
// this `as usize` is fine, since we can't print more chars than `usize::MAX`
write!(msg, "└{0:─^1$}┘ ", target, relocation_width as usize).unwrap();
pos = i + self.pointer_size();
2016-04-06 09:45:06 +00:00
}
trace!("{}", msg);
2016-04-06 09:45:06 +00:00
}
}
}
2017-02-14 14:35:13 +00:00
pub fn leak_report(&self) -> usize {
trace!("### LEAK REPORT ###");
let mut_static_kind = M::MUT_STATIC_KIND.map(|k| MemoryKind::Machine(k));
2017-02-14 14:35:13 +00:00
let leaks: Vec<_> = self.alloc_map
.iter()
.filter_map(|(&id, &(kind, _))|
// exclude mutable statics
if Some(kind) == mut_static_kind { None } else { Some(id) } )
2017-02-14 14:35:13 +00:00
.collect();
let n = leaks.len();
self.dump_allocs(leaks);
n
}
2016-06-23 07:40:01 +00:00
}
2016-04-06 09:45:06 +00:00
2016-06-23 07:40:01 +00:00
/// Byte accessors
2018-01-16 08:31:48 +00:00
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
/// This checks alignment!
fn get_bytes_unchecked(
&self,
2018-05-20 22:37:44 +00:00
ptr: Pointer,
size: Size,
align: Align,
) -> EvalResult<'tcx, &[u8]> {
2018-08-22 19:58:39 +00:00
// Zero-sized accesses can use dangling pointers,
// but they still have to be aligned and non-NULL
self.check_align(ptr.into(), align)?;
if size.bytes() == 0 {
2017-07-20 20:20:33 +00:00
return Ok(&[]);
}
2018-08-22 19:58:39 +00:00
// if ptr.offset is in bounds, then so is ptr (because offset checks for overflow)
self.check_bounds(ptr.offset(size, self)?, true)?;
2016-05-10 00:52:44 +00:00
let alloc = self.get(ptr.alloc_id)?;
assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes());
assert_eq!(size.bytes() as usize as u64, size.bytes());
let offset = ptr.offset.bytes() as usize;
Ok(&alloc.bytes[offset..offset + size.bytes() as usize])
2016-03-05 06:48:23 +00:00
}
/// This checks alignment!
fn get_bytes_unchecked_mut(
&mut self,
2018-05-20 22:37:44 +00:00
ptr: Pointer,
size: Size,
align: Align,
) -> EvalResult<'tcx, &mut [u8]> {
2018-08-22 19:58:39 +00:00
// Zero-sized accesses can use dangling pointers,
// but they still have to be aligned and non-NULL
self.check_align(ptr.into(), align)?;
if size.bytes() == 0 {
2017-07-20 20:20:33 +00:00
return Ok(&mut []);
}
2018-08-22 19:58:39 +00:00
// if ptr.offset is in bounds, then so is ptr (because offset checks for overflow)
self.check_bounds(ptr.offset(size, &*self)?, true)?;
2016-05-10 00:52:44 +00:00
let alloc = self.get_mut(ptr.alloc_id)?;
assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes());
assert_eq!(size.bytes() as usize as u64, size.bytes());
let offset = ptr.offset.bytes() as usize;
Ok(&mut alloc.bytes[offset..offset + size.bytes() as usize])
2016-03-05 06:48:23 +00:00
}
2018-05-20 22:37:44 +00:00
fn get_bytes(&self, ptr: Pointer, size: Size, align: Align) -> EvalResult<'tcx, &[u8]> {
assert_ne!(size.bytes(), 0);
if self.relocations(ptr, size)?.len() != 0 {
2017-08-02 14:59:01 +00:00
return err!(ReadPointerAsBytes);
2016-03-21 11:27:34 +00:00
}
2016-05-10 00:52:44 +00:00
self.check_defined(ptr, size)?;
2017-01-31 09:36:46 +00:00
self.get_bytes_unchecked(ptr, size, align)
2016-03-24 01:44:05 +00:00
}
fn get_bytes_mut(
&mut self,
2018-05-20 22:37:44 +00:00
ptr: Pointer,
size: Size,
align: Align,
) -> EvalResult<'tcx, &mut [u8]> {
assert_ne!(size.bytes(), 0);
2016-05-10 00:52:44 +00:00
self.clear_relocations(ptr, size)?;
self.mark_definedness(ptr, size, true)?;
2017-01-31 09:36:46 +00:00
self.get_bytes_unchecked_mut(ptr, size, align)
2016-03-21 11:27:34 +00:00
}
2016-06-23 07:40:01 +00:00
}
2016-03-21 11:27:34 +00:00
2016-06-23 07:40:01 +00:00
/// Reading and writing
2018-01-16 08:31:48 +00:00
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
/// mark an allocation as static and initialized, either mutable or not
pub fn intern_static(
&mut self,
alloc_id: AllocId,
mutability: Mutability,
) -> EvalResult<'tcx> {
trace!(
"mark_static_initialized {:?}, mutability: {:?}",
alloc_id,
mutability
);
// remove allocation
let (kind, mut alloc) = self.alloc_map.remove(&alloc_id).unwrap();
match kind {
MemoryKind::Machine(_) => bug!("Static cannot refer to machine memory"),
MemoryKind::Stack => {},
}
// ensure llvm knows not to put this into immutable memory
alloc.mutability = mutability;
let alloc = self.tcx.intern_const_alloc(alloc);
self.tcx.alloc_map.lock().set_id_memory(alloc_id, alloc);
// recurse into inner allocations
for &alloc in alloc.relocations.values() {
// FIXME: Reusing the mutability here is likely incorrect. It is originally
// determined via `is_freeze`, and data is considered frozen if there is no
// `UnsafeCell` *immediately* in that data -- however, this search stops
// at references. So whenever we follow a reference, we should likely
// assume immutability -- and we should make sure that the compiler
// does not permit code that would break this!
if self.alloc_map.contains_key(&alloc) {
// Not yet interned, so proceed recursively
self.intern_static(alloc, mutability)?;
}
2017-12-06 08:25:29 +00:00
}
Ok(())
}
/// The alloc_id must refer to a (mutable) static; a deep copy of that
/// static is made into this memory.
fn deep_copy_static(
&mut self,
id: AllocId,
kind: MemoryKind<M::MemoryKinds>,
) -> EvalResult<'tcx> {
let alloc = const_eval_static::<M>(self.tcx, id)?;
if alloc.mutability == Mutability::Immutable {
return err!(ModifiedConstantMemory);
}
let old = self.alloc_map.insert(id, (kind, alloc.clone()));
assert!(old.is_none(), "deep_copy_static: must not overwrite existing memory");
Ok(())
}
pub fn copy(
&mut self,
2018-05-20 22:30:00 +00:00
src: Scalar,
src_align: Align,
2018-05-20 22:30:00 +00:00
dest: Scalar,
dest_align: Align,
size: Size,
nonoverlapping: bool,
) -> EvalResult<'tcx> {
self.copy_repeatedly(src, src_align, dest, dest_align, size, 1, nonoverlapping)
}
pub fn copy_repeatedly(
&mut self,
src: Scalar,
src_align: Align,
dest: Scalar,
dest_align: Align,
size: Size,
length: u64,
nonoverlapping: bool,
) -> EvalResult<'tcx> {
if size.bytes() == 0 {
2018-08-18 09:53:15 +00:00
// Nothing to do for ZST, other than checking alignment and non-NULLness.
self.check_align(src, src_align)?;
self.check_align(dest, dest_align)?;
return Ok(());
}
let src = src.to_ptr()?;
let dest = dest.to_ptr()?;
2016-05-10 00:52:44 +00:00
self.check_relocation_edges(src, size)?;
2016-03-21 11:27:34 +00:00
// first copy the relocations to a temporary buffer, because
// `get_bytes_mut` will clear the relocations, which is correct,
// since we don't want to keep any relocations at the target.
let relocations = {
let relocations = self.relocations(src, size)?;
let mut new_relocations = Vec::with_capacity(relocations.len() * (length as usize));
for i in 0..length {
new_relocations.extend(
relocations
.iter()
.map(|&(offset, alloc_id)| {
2018-08-22 19:59:14 +00:00
(offset + dest.offset - src.offset + (i * size * relocations.len() as u64),
alloc_id)
})
);
}
new_relocations
};
2018-08-18 09:53:15 +00:00
// This also checks alignment.
let src_bytes = self.get_bytes_unchecked(src, size, src_align)?.as_ptr();
let dest_bytes = self.get_bytes_mut(dest, size * length, dest_align)?.as_mut_ptr();
2016-03-05 06:48:23 +00:00
// SAFE: The above indexing would have panicked if there weren't at least `size` bytes
// behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and
// `dest` could possibly overlap.
unsafe {
assert_eq!(size.bytes() as usize as u64, size.bytes());
2016-03-05 06:48:23 +00:00
if src.alloc_id == dest.alloc_id {
if nonoverlapping {
if (src.offset <= dest.offset && src.offset + size > dest.offset) ||
(dest.offset <= src.offset && dest.offset + size > src.offset)
{
return err!(Intrinsic(
2018-07-28 12:40:32 +00:00
"copy_nonoverlapping called on overlapping ranges".to_string(),
));
}
}
for i in 0..length {
2018-08-22 19:59:14 +00:00
ptr::copy(src_bytes,
dest_bytes.offset((size.bytes() * i) as isize),
size.bytes() as usize);
}
2016-03-05 06:48:23 +00:00
} else {
for i in 0..length {
2018-08-22 19:59:14 +00:00
ptr::copy_nonoverlapping(src_bytes,
dest_bytes.offset((size.bytes() * i) as isize),
size.bytes() as usize);
}
2016-03-05 06:48:23 +00:00
}
}
self.copy_undef_mask(src, dest, size, length)?;
// copy back the relocations
self.get_mut(dest.alloc_id)?.relocations.insert_presorted(relocations);
Ok(())
2016-03-05 06:48:23 +00:00
}
2018-05-20 22:37:44 +00:00
pub fn read_c_str(&self, ptr: Pointer) -> EvalResult<'tcx, &[u8]> {
let alloc = self.get(ptr.alloc_id)?;
assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes());
let offset = ptr.offset.bytes() as usize;
match alloc.bytes[offset..].iter().position(|&c| c == 0) {
Some(size) => {
let p1 = Size::from_bytes((size + 1) as u64);
if self.relocations(ptr, p1)?.len() != 0 {
2017-08-02 14:59:01 +00:00
return err!(ReadPointerAsBytes);
}
self.check_defined(ptr, p1)?;
Ok(&alloc.bytes[offset..offset + size])
}
2017-08-02 14:59:01 +00:00
None => err!(UnterminatedCString(ptr)),
}
}
2018-05-20 22:30:00 +00:00
pub fn read_bytes(&self, ptr: Scalar, size: Size) -> EvalResult<'tcx, &[u8]> {
// Empty accesses don't need to be valid pointers, but they should still be non-NULL
let align = Align::from_bytes(1, 1).unwrap();
if size.bytes() == 0 {
2018-08-18 09:53:15 +00:00
self.check_align(ptr, align)?;
2017-06-20 14:26:53 +00:00
return Ok(&[]);
}
self.get_bytes(ptr.to_ptr()?, size, align)
}
2018-05-20 22:30:00 +00:00
pub fn write_bytes(&mut self, ptr: Scalar, src: &[u8]) -> EvalResult<'tcx> {
// Empty accesses don't need to be valid pointers, but they should still be non-NULL
let align = Align::from_bytes(1, 1).unwrap();
2017-06-20 14:26:53 +00:00
if src.is_empty() {
2018-08-18 09:53:15 +00:00
self.check_align(ptr, align)?;
2017-06-20 14:26:53 +00:00
return Ok(());
}
let bytes = self.get_bytes_mut(ptr.to_ptr()?, Size::from_bytes(src.len() as u64), align)?;
2016-04-07 11:56:07 +00:00
bytes.clone_from_slice(src);
Ok(())
}
2018-05-20 22:30:00 +00:00
pub fn write_repeat(&mut self, ptr: Scalar, val: u8, count: Size) -> EvalResult<'tcx> {
// Empty accesses don't need to be valid pointers, but they should still be non-NULL
let align = Align::from_bytes(1, 1).unwrap();
if count.bytes() == 0 {
2018-08-18 09:53:15 +00:00
self.check_align(ptr, align)?;
2017-06-20 14:26:53 +00:00
return Ok(());
}
let bytes = self.get_bytes_mut(ptr.to_ptr()?, count, align)?;
for b in bytes {
*b = val;
}
2016-04-07 11:56:07 +00:00
Ok(())
}
/// Read a *non-ZST* scalar
2018-08-23 16:34:21 +00:00
pub fn read_scalar(
&self,
ptr: Pointer,
ptr_align: Align,
size: Size
) -> EvalResult<'tcx, ScalarMaybeUndef> {
2018-08-22 19:58:39 +00:00
// Make sure we don't read part of a pointer as a pointer
self.check_relocation_edges(ptr, size)?;
// get_bytes_unchecked tests alignment
let bytes = self.get_bytes_unchecked(ptr, size, ptr_align.min(self.int_align(size)))?;
// Undef check happens *after* we established that the alignment is correct.
// We must not return Ok() for unaligned pointers!
if !self.is_defined(ptr, size)? {
// this inflates undefined bytes to the entire scalar, even if only a few
// bytes are undefined
return Ok(ScalarMaybeUndef::Undef);
}
// Now we do the actual reading
let bits = read_target_uint(self.tcx.data_layout.endian, bytes).unwrap();
// See if we got a pointer
if size != self.pointer_size() {
if self.relocations(ptr, size)?.len() != 0 {
return err!(ReadPointerAsBytes);
}
} else {
let alloc = self.get(ptr.alloc_id)?;
match alloc.relocations.get(&ptr.offset) {
2018-08-22 19:59:14 +00:00
Some(&alloc_id) => {
let ptr = Pointer::new(alloc_id, Size::from_bytes(bits as u64));
return Ok(ScalarMaybeUndef::Scalar(ptr.into()))
}
None => {},
}
}
2018-05-22 08:28:46 +00:00
// We don't. Just return the bits.
Ok(ScalarMaybeUndef::Scalar(Scalar::from_uint(bits, size)))
}
2018-08-22 19:59:14 +00:00
pub fn read_ptr_sized(&self, ptr: Pointer, ptr_align: Align)
-> EvalResult<'tcx, ScalarMaybeUndef> {
2018-05-22 17:30:16 +00:00
self.read_scalar(ptr, ptr_align, self.pointer_size())
2016-03-13 20:36:25 +00:00
}
/// Write a *non-ZST* scalar
pub fn write_scalar(
&mut self,
ptr: Pointer,
ptr_align: Align,
val: ScalarMaybeUndef,
type_size: Size,
) -> EvalResult<'tcx> {
let val = match val {
ScalarMaybeUndef::Scalar(scalar) => scalar,
ScalarMaybeUndef::Undef => return self.mark_definedness(ptr, type_size, false),
};
let bytes = match val {
2018-05-20 21:43:16 +00:00
Scalar::Ptr(val) => {
assert_eq!(type_size, self.pointer_size());
val.offset.bytes() as u128
}
Scalar::Bits { bits, size } => {
assert_eq!(size as u64, type_size.bytes());
debug_assert_eq!(truncate(bits, Size::from_bytes(size.into())), bits,
"Unexpected value of size {} when writing to memory", size);
bits
},
};
{
// get_bytes_mut checks alignment
let endian = self.tcx.data_layout.endian;
let dst = self.get_bytes_mut(ptr, type_size, ptr_align)?;
write_target_uint(endian, dst, bytes).unwrap();
}
// See if we have to also write a relocation
match val {
2018-05-20 21:43:16 +00:00
Scalar::Ptr(val) => {
self.get_mut(ptr.alloc_id)?.relocations.insert(
ptr.offset,
val.alloc_id,
);
}
_ => {}
}
Ok(())
}
2018-08-22 19:59:14 +00:00
pub fn write_ptr_sized(&mut self, ptr: Pointer, ptr_align: Align, val: ScalarMaybeUndef)
-> EvalResult<'tcx> {
let ptr_size = self.pointer_size();
self.write_scalar(ptr.into(), ptr_align, val, ptr_size)
2016-03-07 10:44:03 +00:00
}
fn int_align(&self, size: Size) -> Align {
// We assume pointer-sized integers have the same alignment as pointers.
2017-08-28 13:58:58 +00:00
// We also assume signed and unsigned integers of the same size have the same alignment.
let ity = match size.bytes() {
1 => layout::I8,
2 => layout::I16,
4 => layout::I32,
8 => layout::I64,
16 => layout::I128,
_ => bug!("bad integer size: {}", size.bytes()),
};
ity.align(self)
2016-07-06 09:12:44 +00:00
}
2016-06-23 07:40:01 +00:00
}
2016-03-05 06:48:23 +00:00
2016-06-23 07:40:01 +00:00
/// Relocations
2018-01-16 08:31:48 +00:00
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
fn relocations(
&self,
2018-05-20 22:37:44 +00:00
ptr: Pointer,
size: Size,
) -> EvalResult<'tcx, &[(Size, AllocId)]> {
let start = ptr.offset.bytes().saturating_sub(self.pointer_size().bytes() - 1);
let end = ptr.offset + size;
Ok(self.get(ptr.alloc_id)?.relocations.range(Size::from_bytes(start)..end))
2016-03-05 06:48:23 +00:00
}
2018-05-20 22:37:44 +00:00
fn clear_relocations(&mut self, ptr: Pointer, size: Size) -> EvalResult<'tcx> {
// Find the start and end of the given range and its outermost relocations.
let (first, last) = {
// Find all relocations overlapping the given range.
let relocations = self.relocations(ptr, size)?;
if relocations.is_empty() {
return Ok(());
}
(relocations.first().unwrap().0,
relocations.last().unwrap().0 + self.pointer_size())
};
let start = ptr.offset;
let end = start + size;
2016-05-10 00:52:44 +00:00
let alloc = self.get_mut(ptr.alloc_id)?;
// Mark parts of the outermost relocations as undefined if they partially fall outside the
// given range.
if first < start {
alloc.undef_mask.set_range(first, start, false);
}
if last > end {
alloc.undef_mask.set_range(end, last, false);
}
// Forget all the relocations.
2018-05-30 13:59:42 +00:00
alloc.relocations.remove_range(first..last);
2016-03-24 03:40:58 +00:00
Ok(())
}
2018-05-20 22:37:44 +00:00
fn check_relocation_edges(&self, ptr: Pointer, size: Size) -> EvalResult<'tcx> {
2018-05-20 12:14:39 +00:00
let overlapping_start = self.relocations(ptr, Size::ZERO)?.len();
let overlapping_end = self.relocations(ptr.offset(size, self)?, Size::ZERO)?.len();
2016-03-24 03:40:58 +00:00
if overlapping_start + overlapping_end != 0 {
2017-08-02 14:59:01 +00:00
return err!(ReadPointerAsBytes);
2016-03-24 03:40:58 +00:00
}
Ok(())
}
2016-06-23 07:40:01 +00:00
}
2016-03-27 04:25:08 +00:00
2016-06-23 07:40:01 +00:00
/// Undefined bytes
2018-01-16 08:31:48 +00:00
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
2016-05-10 02:08:37 +00:00
// FIXME(solson): This is a very naive, slow version.
fn copy_undef_mask(
&mut self,
2018-05-20 22:37:44 +00:00
src: Pointer,
dest: Pointer,
size: Size,
repeat: u64,
) -> EvalResult<'tcx> {
// The bits have to be saved locally before writing to dest in case src and dest overlap.
assert_eq!(size.bytes() as usize as u64, size.bytes());
let undef_mask = self.get(src.alloc_id)?.undef_mask.clone();
let dest_allocation = self.get_mut(dest.alloc_id)?;
for i in 0..size.bytes() {
let defined = undef_mask.get(src.offset + Size::from_bytes(i));
for j in 0..repeat {
dest_allocation.undef_mask.set(
dest.offset + Size::from_bytes(i + (size.bytes() * j)),
defined
);
}
}
Ok(())
}
fn is_defined(&self, ptr: Pointer, size: Size) -> EvalResult<'tcx, bool> {
2016-05-10 00:52:44 +00:00
let alloc = self.get(ptr.alloc_id)?;
Ok(alloc.undef_mask.is_range_defined(
ptr.offset,
ptr.offset + size,
))
}
#[inline]
fn check_defined(&self, ptr: Pointer, size: Size) -> EvalResult<'tcx> {
if self.is_defined(ptr, size)? {
Ok(())
} else {
err!(ReadUndefBytes)
}
}
pub fn mark_definedness(
&mut self,
ptr: Pointer,
size: Size,
new_state: bool,
) -> EvalResult<'tcx> {
if size.bytes() == 0 {
return Ok(());
}
let alloc = self.get_mut(ptr.alloc_id)?;
alloc.undef_mask.set_range(
ptr.offset,
ptr.offset + size,
new_state,
);
2016-03-27 04:25:08 +00:00
Ok(())
}
}