rust/library/std/src/sys/unix/mutex.rs

145 lines
5.4 KiB
Rust
Raw Normal View History

2019-02-10 19:23:21 +00:00
use crate::cell::UnsafeCell;
use crate::mem::MaybeUninit;
use crate::sys::cvt_nz;
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
2019-12-22 22:42:04 +00:00
pub struct Mutex {
inner: UnsafeCell<libc::pthread_mutex_t>,
}
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
pub type MovableMutex = Box<Mutex>;
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
#[inline]
pub unsafe fn raw(m: &Mutex) -> *mut libc::pthread_mutex_t {
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
m.inner.get()
}
unsafe impl Send for Mutex {}
2014-12-21 23:49:42 +00:00
unsafe impl Sync for Mutex {}
#[allow(dead_code)] // sys isn't exported yet
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
impl Mutex {
pub const fn new() -> Mutex {
// Might be moved to a different address, so it is better to avoid
// initialization of potentially opaque OS data before it landed.
2018-08-08 16:14:06 +00:00
// Be very careful using this newly constructed `Mutex`, reentrant
// locking is undefined behavior until `init` is called!
Mutex { inner: UnsafeCell::new(libc::PTHREAD_MUTEX_INITIALIZER) }
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
}
#[inline]
pub unsafe fn init(&mut self) {
// Issue #33770
//
// A pthread mutex initialized with PTHREAD_MUTEX_INITIALIZER will have
// a type of PTHREAD_MUTEX_DEFAULT, which has undefined behavior if you
// try to re-lock it from the same thread when you already hold a lock
// (https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_mutex_init.html).
2020-05-04 18:47:46 +00:00
// This is the case even if PTHREAD_MUTEX_DEFAULT == PTHREAD_MUTEX_NORMAL
// (https://github.com/rust-lang/rust/issues/33770#issuecomment-220847521) -- in that
// case, `pthread_mutexattr_settype(PTHREAD_MUTEX_DEFAULT)` will of course be the same
// as setting it to `PTHREAD_MUTEX_NORMAL`, but not setting any mode will result in
// a Mutex where re-locking is UB.
//
// In practice, glibc takes advantage of this undefined behavior to
// implement hardware lock elision, which uses hardware transactional
2020-05-04 18:47:46 +00:00
// memory to avoid acquiring the lock. While a transaction is in
// progress, the lock appears to be unlocked. This isn't a problem for
// other threads since the transactional memory will abort if a conflict
// is detected, however no abort is generated when re-locking from the
// same thread.
//
// Since locking the same mutex twice will result in two aliasing &mut
// references, we instead create the mutex with type
// PTHREAD_MUTEX_NORMAL which is guaranteed to deadlock if we try to
// re-lock it from the same thread, thus avoiding undefined behavior.
let mut attr = MaybeUninit::<libc::pthread_mutexattr_t>::uninit();
cvt_nz(libc::pthread_mutexattr_init(attr.as_mut_ptr())).unwrap();
let attr = PthreadMutexAttr(&mut attr);
cvt_nz(libc::pthread_mutexattr_settype(attr.0.as_mut_ptr(), libc::PTHREAD_MUTEX_NORMAL))
.unwrap();
cvt_nz(libc::pthread_mutex_init(self.inner.get(), attr.0.as_ptr())).unwrap();
}
#[inline]
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
pub unsafe fn lock(&self) {
let r = libc::pthread_mutex_lock(self.inner.get());
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
debug_assert_eq!(r, 0);
}
#[inline]
pub unsafe fn unlock(&self) {
let r = libc::pthread_mutex_unlock(self.inner.get());
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
debug_assert_eq!(r, 0);
}
#[inline]
pub unsafe fn try_lock(&self) -> bool {
libc::pthread_mutex_trylock(self.inner.get()) == 0
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
}
#[inline]
#[cfg(not(target_os = "dragonfly"))]
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
pub unsafe fn destroy(&self) {
let r = libc::pthread_mutex_destroy(self.inner.get());
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
debug_assert_eq!(r, 0);
}
#[inline]
#[cfg(target_os = "dragonfly")]
pub unsafe fn destroy(&self) {
let r = libc::pthread_mutex_destroy(self.inner.get());
// On DragonFly pthread_mutex_destroy() returns EINVAL if called on a
// mutex that was just initialized with libc::PTHREAD_MUTEX_INITIALIZER.
// Once it is used (locked/unlocked) or pthread_mutex_init() is called,
// this behaviour no longer occurs.
debug_assert!(r == 0 || r == libc::EINVAL);
}
std: Rewrite the `sync` module This commit is a reimplementation of `std::sync` to be based on the system-provided primitives wherever possible. The previous implementation was fundamentally built on top of channels, and as part of the runtime reform it has become clear that this is not the level of abstraction that the standard level should be providing. This rewrite aims to provide as thin of a shim as possible on top of the system primitives in order to make them safe. The overall interface of the `std::sync` module has in general not changed, but there are a few important distinctions, highlighted below: * The condition variable type, `Condvar`, has been separated out of a `Mutex`. A condition variable is now an entirely separate type. This separation benefits users who only use one mutex, and provides a clearer distinction of who's responsible for managing condition variables (the application). * All of `Condvar`, `Mutex`, and `RWLock` are now directly built on top of system primitives rather than using a custom implementation. The `Once`, `Barrier`, and `Semaphore` types are still built upon these abstractions of the system primitives. * The `Condvar`, `Mutex`, and `RWLock` types all have a new static type and constant initializer corresponding to them. These are provided primarily for C FFI interoperation, but are often useful to otherwise simply have a global lock. The types, however, will leak memory unless `destroy()` is called on them, which is clearly documented. * The `Condvar` implementation for an `RWLock` write lock has been removed. This may be added back in the future with a userspace implementation, but this commit is focused on exposing the system primitives first. * The fundamental architecture of this design is to provide two separate layers. The first layer is that exposed by `sys_common` which is a cross-platform bare-metal abstraction of the system synchronization primitives. No attempt is made at making this layer safe, and it is quite unsafe to use! It is currently not exported as part of the API of the standard library, but the stabilization of the `sys` module will ensure that these will be exposed in time. The purpose of this layer is to provide the core cross-platform abstractions if necessary to implementors. The second layer is the layer provided by `std::sync` which is intended to be the thinnest possible layer on top of `sys_common` which is entirely safe to use. There are a few concerns which need to be addressed when making these system primitives safe: * Once used, the OS primitives can never be **moved**. This means that they essentially need to have a stable address. The static primitives use `&'static self` to enforce this, and the non-static primitives all use a `Box` to provide this guarantee. * Poisoning is leveraged to ensure that invalid data is not accessible from other tasks after one has panicked. In addition to these overall blanket safety limitations, each primitive has a few restrictions of its own: * Mutexes and rwlocks can only be unlocked from the same thread that they were locked by. This is achieved through RAII lock guards which cannot be sent across threads. * Mutexes and rwlocks can only be unlocked if they were previously locked. This is achieved by not exposing an unlocking method. * A condition variable can only be waited on with a locked mutex. This is achieved by requiring a `MutexGuard` in the `wait()` method. * A condition variable cannot be used concurrently with more than one mutex. This is guaranteed by dynamically binding a condition variable to precisely one mutex for its entire lifecycle. This restriction may be able to be relaxed in the future (a mutex is unbound when no threads are waiting on the condvar), but for now it is sufficient to guarantee safety. * Condvars now support timeouts for their blocking operations. The implementation for these operations is provided by the system. Due to the modification of the `Condvar` API, removal of the `std::sync::mutex` API, and reimplementation, this is a breaking change. Most code should be fairly easy to port using the examples in the documentation of these primitives. [breaking-change] Closes #17094 Closes #18003
2014-11-24 19:16:40 +00:00
}
2019-12-22 22:42:04 +00:00
pub struct ReentrantMutex {
inner: UnsafeCell<libc::pthread_mutex_t>,
}
unsafe impl Send for ReentrantMutex {}
unsafe impl Sync for ReentrantMutex {}
impl ReentrantMutex {
pub const unsafe fn uninitialized() -> ReentrantMutex {
ReentrantMutex { inner: UnsafeCell::new(libc::PTHREAD_MUTEX_INITIALIZER) }
}
pub unsafe fn init(&self) {
let mut attr = MaybeUninit::<libc::pthread_mutexattr_t>::uninit();
cvt_nz(libc::pthread_mutexattr_init(attr.as_mut_ptr())).unwrap();
let attr = PthreadMutexAttr(&mut attr);
cvt_nz(libc::pthread_mutexattr_settype(attr.0.as_mut_ptr(), libc::PTHREAD_MUTEX_RECURSIVE))
.unwrap();
cvt_nz(libc::pthread_mutex_init(self.inner.get(), attr.0.as_ptr())).unwrap();
}
pub unsafe fn lock(&self) {
let result = libc::pthread_mutex_lock(self.inner.get());
debug_assert_eq!(result, 0);
}
#[inline]
pub unsafe fn try_lock(&self) -> bool {
libc::pthread_mutex_trylock(self.inner.get()) == 0
}
pub unsafe fn unlock(&self) {
let result = libc::pthread_mutex_unlock(self.inner.get());
debug_assert_eq!(result, 0);
}
pub unsafe fn destroy(&self) {
let result = libc::pthread_mutex_destroy(self.inner.get());
debug_assert_eq!(result, 0);
}
}
struct PthreadMutexAttr<'a>(&'a mut MaybeUninit<libc::pthread_mutexattr_t>);
impl Drop for PthreadMutexAttr<'_> {
fn drop(&mut self) {
unsafe {
let result = libc::pthread_mutexattr_destroy(self.0.as_mut_ptr());
debug_assert_eq!(result, 0);
}
}
}