rust/src/librustc/traits/error_reporting.rs

1186 lines
51 KiB
Rust
Raw Normal View History

2014-12-06 16:39:25 +00:00
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::{
FulfillmentError,
FulfillmentErrorCode,
MismatchedProjectionTypes,
Obligation,
ObligationCause,
ObligationCauseCode,
OutputTypeParameterMismatch,
TraitNotObjectSafe,
PredicateObligation,
SelectionContext,
SelectionError,
ObjectSafetyViolation,
};
2014-12-06 16:39:25 +00:00
use errors::DiagnosticBuilder;
use fmt_macros::{Parser, Piece, Position};
2017-04-11 21:37:40 +00:00
use hir::{self, intravisit, Local, Pat, Body};
use hir::intravisit::{Visitor, NestedVisitorMap};
use hir::map::NodeExpr;
use hir::def_id::DefId;
use infer::{self, InferCtxt};
2016-11-28 18:08:08 +00:00
use infer::type_variable::TypeVariableOrigin;
2016-10-12 20:38:58 +00:00
use rustc::lint::builtin::EXTRA_REQUIREMENT_IN_IMPL;
use std::fmt;
2017-04-11 21:37:40 +00:00
use syntax::ast::{self, NodeId};
use ty::{self, AdtKind, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable, TyInfer, TyVar};
2017-04-23 22:36:35 +00:00
use ty::error::{ExpectedFound, TypeError};
use ty::fast_reject;
use ty::fold::TypeFolder;
2016-08-17 03:32:00 +00:00
use ty::subst::Subst;
2017-03-10 02:47:09 +00:00
use ty::SubtypePredicate;
use util::nodemap::{FxHashMap, FxHashSet};
2016-11-28 18:08:08 +00:00
use syntax_pos::{DUMMY_SP, Span};
2014-12-06 16:39:25 +00:00
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct TraitErrorKey<'tcx> {
span: Span,
predicate: ty::Predicate<'tcx>
}
impl<'a, 'gcx, 'tcx> TraitErrorKey<'tcx> {
fn from_error(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
e: &FulfillmentError<'tcx>) -> Self {
let predicate =
infcx.resolve_type_vars_if_possible(&e.obligation.predicate);
TraitErrorKey {
span: e.obligation.cause.span,
predicate: infcx.tcx.erase_regions(&predicate)
}
}
}
struct FindLocalByTypeVisitor<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
target_ty: &'a Ty<'tcx>,
2017-04-11 21:37:40 +00:00
hir_map: &'a hir::map::Map<'gcx>,
found_local_pattern: Option<&'gcx Pat>,
found_arg_pattern: Option<&'gcx Pat>,
}
impl<'a, 'gcx, 'tcx> FindLocalByTypeVisitor<'a, 'gcx, 'tcx> {
2017-04-11 21:37:40 +00:00
fn node_matches_type(&mut self, node_id: &'gcx NodeId) -> bool {
match self.infcx.tables.borrow().node_types.get(node_id) {
Some(&ty) => {
let ty = self.infcx.resolve_type_vars_if_possible(&ty);
ty.walk().any(|inner_ty| {
inner_ty == *self.target_ty || match (&inner_ty.sty, &self.target_ty.sty) {
(&TyInfer(TyVar(a_vid)), &TyInfer(TyVar(b_vid))) => {
self.infcx
.type_variables
.borrow_mut()
.sub_unified(a_vid, b_vid)
}
_ => false,
}
})
}
_ => false,
}
}
}
2017-04-11 21:37:40 +00:00
impl<'a, 'gcx, 'tcx> Visitor<'gcx> for FindLocalByTypeVisitor<'a, 'gcx, 'tcx> {
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'gcx> {
NestedVisitorMap::OnlyBodies(&self.hir_map)
}
2017-04-11 21:37:40 +00:00
fn visit_local(&mut self, local: &'gcx Local) {
if self.found_local_pattern.is_none() && self.node_matches_type(&local.id) {
self.found_local_pattern = Some(&*local.pat);
}
intravisit::walk_local(self, local);
}
2017-04-11 21:37:40 +00:00
fn visit_body(&mut self, body: &'gcx Body) {
for argument in &body.arguments {
if self.found_arg_pattern.is_none() && self.node_matches_type(&argument.id) {
self.found_arg_pattern = Some(&*argument.pat);
}
}
2017-04-11 21:37:40 +00:00
intravisit::walk_body(self, body);
}
}
impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
pub fn report_fulfillment_errors(&self, errors: &Vec<FulfillmentError<'tcx>>) {
for error in errors {
self.report_fulfillment_error(error);
}
2014-12-06 16:39:25 +00:00
}
fn report_fulfillment_error(&self,
error: &FulfillmentError<'tcx>) {
let error_key = TraitErrorKey::from_error(self, error);
debug!("report_fulfillment_errors({:?}) - key={:?}",
error, error_key);
if !self.reported_trait_errors.borrow_mut().insert(error_key) {
debug!("report_fulfillment_errors: skipping duplicate");
return;
}
match error.code {
FulfillmentErrorCode::CodeSelectionError(ref e) => {
self.report_selection_error(&error.obligation, e);
}
FulfillmentErrorCode::CodeProjectionError(ref e) => {
self.report_projection_error(&error.obligation, e);
}
FulfillmentErrorCode::CodeAmbiguity => {
self.maybe_report_ambiguity(&error.obligation);
}
2017-03-10 02:47:09 +00:00
FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
self.report_mismatched_types(&error.obligation.cause,
expected_found.expected,
expected_found.found,
err.clone())
.emit();
}
2014-12-06 16:39:25 +00:00
}
}
fn report_projection_error(&self,
obligation: &PredicateObligation<'tcx>,
error: &MismatchedProjectionTypes<'tcx>)
{
let predicate =
self.resolve_type_vars_if_possible(&obligation.predicate);
if predicate.references_error() {
return
}
self.probe(|_| {
let err_buf;
let mut err = &error.err;
let mut values = None;
// try to find the mismatched types to report the error with.
//
// this can fail if the problem was higher-ranked, in which
// cause I have no idea for a good error message.
if let ty::Predicate::Projection(ref data) = predicate {
let mut selcx = SelectionContext::new(self);
let (data, _) = self.replace_late_bound_regions_with_fresh_var(
obligation.cause.span,
infer::LateBoundRegionConversionTime::HigherRankedType,
data);
let normalized = super::normalize_projection_type(
&mut selcx,
2017-05-23 08:19:47 +00:00
obligation.param_env,
data.projection_ty,
obligation.cause.clone(),
0
);
if let Err(error) = self.at(&obligation.cause, obligation.param_env)
.eq(normalized.value, data.ty) {
values = Some(infer::ValuePairs::Types(ExpectedFound {
expected: normalized.value,
found: data.ty,
}));
err_buf = error;
err = &err_buf;
}
}
let mut diag = struct_span_err!(
self.tcx.sess, obligation.cause.span, E0271,
"type mismatch resolving `{}`", predicate
);
self.note_type_err(&mut diag, &obligation.cause, None, values, err);
self.note_obligation_cause(&mut diag, obligation);
diag.emit();
});
}
fn fuzzy_match_tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
/// returns the fuzzy category of a given type, or None
/// if the type can be equated to any type.
fn type_category<'tcx>(t: Ty<'tcx>) -> Option<u32> {
match t.sty {
ty::TyBool => Some(0),
ty::TyChar => Some(1),
ty::TyStr => Some(2),
ty::TyInt(..) | ty::TyUint(..) | ty::TyInfer(ty::IntVar(..)) => Some(3),
ty::TyFloat(..) | ty::TyInfer(ty::FloatVar(..)) => Some(4),
2017-01-21 14:40:31 +00:00
ty::TyRef(..) | ty::TyRawPtr(..) => Some(5),
ty::TyArray(..) | ty::TySlice(..) => Some(6),
ty::TyFnDef(..) | ty::TyFnPtr(..) => Some(7),
ty::TyDynamic(..) => Some(8),
ty::TyClosure(..) => Some(9),
ty::TyTuple(..) => Some(10),
ty::TyProjection(..) => Some(11),
ty::TyParam(..) => Some(12),
ty::TyAnon(..) => Some(13),
ty::TyNever => Some(14),
ty::TyAdt(adt, ..) => match adt.adt_kind() {
AdtKind::Struct => Some(15),
AdtKind::Union => Some(16),
AdtKind::Enum => Some(17),
},
ty::TyInfer(..) | ty::TyError => None
}
}
match (type_category(a), type_category(b)) {
(Some(cat_a), Some(cat_b)) => match (&a.sty, &b.sty) {
(&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) => def_a == def_b,
_ => cat_a == cat_b
},
// infer and error can be equated to all types
_ => true
}
}
fn impl_similar_to(&self,
trait_ref: ty::PolyTraitRef<'tcx>,
obligation: &PredicateObligation<'tcx>)
-> Option<DefId>
{
let tcx = self.tcx;
2017-05-23 08:19:47 +00:00
let param_env = obligation.param_env;
let trait_ref = tcx.erase_late_bound_regions(&trait_ref);
let trait_self_ty = trait_ref.self_ty();
let mut self_match_impls = vec![];
let mut fuzzy_match_impls = vec![];
2016-05-16 20:16:52 +00:00
self.tcx.trait_def(trait_ref.def_id)
.for_each_relevant_impl(self.tcx, trait_self_ty, |def_id| {
let impl_substs = self.fresh_substs_for_item(obligation.cause.span, def_id);
let impl_trait_ref = tcx
.impl_trait_ref(def_id)
.unwrap()
.subst(tcx, impl_substs);
let impl_self_ty = impl_trait_ref.self_ty();
2016-05-16 20:16:52 +00:00
if let Ok(..) = self.can_eq(param_env, trait_self_ty, impl_self_ty) {
self_match_impls.push(def_id);
if trait_ref.substs.types().skip(1)
.zip(impl_trait_ref.substs.types().skip(1))
.all(|(u,v)| self.fuzzy_match_tys(u, v))
{
fuzzy_match_impls.push(def_id);
}
2016-05-11 12:33:14 +00:00
}
});
2016-05-11 12:33:14 +00:00
let impl_def_id = if self_match_impls.len() == 1 {
self_match_impls[0]
} else if fuzzy_match_impls.len() == 1 {
fuzzy_match_impls[0]
2016-05-16 20:16:52 +00:00
} else {
return None
};
if tcx.has_attr(impl_def_id, "rustc_on_unimplemented") {
Some(impl_def_id)
} else {
None
2016-05-11 12:33:14 +00:00
}
}
fn on_unimplemented_note(&self,
trait_ref: ty::PolyTraitRef<'tcx>,
2016-05-11 12:33:14 +00:00
obligation: &PredicateObligation<'tcx>) -> Option<String> {
let def_id = self.impl_similar_to(trait_ref, obligation)
.unwrap_or(trait_ref.def_id());
let trait_ref = trait_ref.skip_binder();
2016-05-11 12:33:14 +00:00
let span = obligation.cause.span;
let mut report = None;
if let Some(item) = self.tcx
.get_attrs(def_id)
.into_iter()
.filter(|a| a.check_name("rustc_on_unimplemented"))
.next()
{
let err_sp = item.span.substitute_dummy(span);
let trait_str = self.tcx.item_path_str(trait_ref.def_id);
if let Some(istring) = item.value_str() {
let istring = &*istring.as_str();
let generics = self.tcx.generics_of(trait_ref.def_id);
let generic_map = generics.types.iter().map(|param| {
(param.name.as_str().to_string(),
trait_ref.substs.type_for_def(param).to_string())
}).collect::<FxHashMap<String, String>>();
let parser = Parser::new(istring);
let mut errored = false;
let err: String = parser.filter_map(|p| {
match p {
Piece::String(s) => Some(s),
Piece::NextArgument(a) => match a.position {
Position::ArgumentNamed(s) => match generic_map.get(s) {
Some(val) => Some(val),
None => {
span_err!(self.tcx.sess, err_sp, E0272,
"the #[rustc_on_unimplemented] attribute on trait \
definition for {} refers to non-existent type \
parameter {}",
trait_str, s);
errored = true;
None
}
},
_ => {
span_err!(self.tcx.sess, err_sp, E0273,
"the #[rustc_on_unimplemented] attribute on trait \
definition for {} must have named format arguments, eg \
`#[rustc_on_unimplemented = \"foo {{T}}\"]`",
trait_str);
errored = true;
None
}
}
}
}).collect();
// Report only if the format string checks out
if !errored {
report = Some(err);
}
} else {
span_err!(self.tcx.sess, err_sp, E0274,
"the #[rustc_on_unimplemented] attribute on \
trait definition for {} must have a value, \
eg `#[rustc_on_unimplemented = \"foo\"]`",
trait_str);
}
}
report
2015-01-11 19:03:20 +00:00
}
2016-05-11 12:33:14 +00:00
fn find_similar_impl_candidates(&self,
trait_ref: ty::PolyTraitRef<'tcx>)
-> Vec<ty::TraitRef<'tcx>>
{
let simp = fast_reject::simplify_type(self.tcx,
trait_ref.skip_binder().self_ty(),
true);
let mut impl_candidates = Vec::new();
let trait_def = self.tcx.trait_def(trait_ref.def_id());
2016-05-11 12:33:14 +00:00
match simp {
Some(simp) => trait_def.for_each_impl(self.tcx, |def_id| {
let imp = self.tcx.impl_trait_ref(def_id).unwrap();
let imp_simp = fast_reject::simplify_type(self.tcx,
imp.self_ty(),
true);
if let Some(imp_simp) = imp_simp {
if simp != imp_simp {
return;
}
}
impl_candidates.push(imp);
}),
None => trait_def.for_each_impl(self.tcx, |def_id| {
impl_candidates.push(
self.tcx.impl_trait_ref(def_id).unwrap());
})
};
impl_candidates
}
fn report_similar_impl_candidates(&self,
impl_candidates: Vec<ty::TraitRef<'tcx>>,
err: &mut DiagnosticBuilder)
{
if impl_candidates.is_empty() {
return;
}
let end = if impl_candidates.len() <= 5 {
impl_candidates.len()
} else {
4
};
err.help(&format!("the following implementations were found:{}{}",
&impl_candidates[0..end].iter().map(|candidate| {
format!("\n {:?}", candidate)
}).collect::<String>(),
if impl_candidates.len() > 5 {
format!("\nand {} others", impl_candidates.len() - 4)
} else {
"".to_owned()
}
));
}
/// Reports that an overflow has occurred and halts compilation. We
/// halt compilation unconditionally because it is important that
/// overflows never be masked -- they basically represent computations
/// whose result could not be truly determined and thus we can't say
/// if the program type checks or not -- and they are unusual
/// occurrences in any case.
pub fn report_overflow_error<T>(&self,
obligation: &Obligation<'tcx, T>,
suggest_increasing_limit: bool) -> !
where T: fmt::Display + TypeFoldable<'tcx>
{
let predicate =
self.resolve_type_vars_if_possible(&obligation.predicate);
let mut err = struct_span_err!(self.tcx.sess, obligation.cause.span, E0275,
"overflow evaluating the requirement `{}`",
predicate);
if suggest_increasing_limit {
self.suggest_new_overflow_limit(&mut err);
}
self.note_obligation_cause(&mut err, obligation);
err.emit();
self.tcx.sess.abort_if_errors();
bug!();
}
/// Reports that a cycle was detected which led to overflow and halts
/// compilation. This is equivalent to `report_overflow_error` except
/// that we can give a more helpful error message (and, in particular,
/// we do not suggest increasing the overflow limit, which is not
/// going to help).
pub fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
let cycle = self.resolve_type_vars_if_possible(&cycle.to_owned());
2016-05-07 21:52:45 +00:00
assert!(cycle.len() > 0);
debug!("report_overflow_error_cycle: cycle={:?}", cycle);
self.report_overflow_error(&cycle[0], false);
}
pub fn report_extra_impl_obligation(&self,
error_span: Span,
item_name: ast::Name,
_impl_item_def_id: DefId,
trait_item_def_id: DefId,
2016-10-12 20:38:58 +00:00
requirement: &fmt::Display,
lint_id: Option<ast::NodeId>) // (*)
-> DiagnosticBuilder<'tcx>
{
2016-10-12 20:38:58 +00:00
// (*) This parameter is temporary and used only for phasing
// in the bug fix to #18937. If it is `Some`, it has a kind of
// weird effect -- the diagnostic is reported as a lint, and
// the builder which is returned is marked as canceled.
let mut err =
struct_span_err!(self.tcx.sess,
error_span,
E0276,
"impl has stricter requirements than trait");
if let Some(trait_item_span) = self.tcx.hir.span_if_local(trait_item_def_id) {
let span = self.tcx.sess.codemap().def_span(trait_item_span);
err.span_label(span, format!("definition of `{}` from trait", item_name));
}
err.span_label(
error_span,
format!("impl has extra requirement {}", requirement));
2016-10-12 20:38:58 +00:00
if let Some(node_id) = lint_id {
2016-10-13 16:09:05 +00:00
self.tcx.sess.add_lint_diagnostic(EXTRA_REQUIREMENT_IN_IMPL,
node_id,
(*err).clone());
2016-10-12 20:38:58 +00:00
err.cancel();
}
err
}
2016-12-12 22:51:40 +00:00
/// Get the parent trait chain start
fn get_parent_trait_ref(&self, code: &ObligationCauseCode<'tcx>) -> Option<String> {
match code {
&ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
let parent_trait_ref = self.resolve_type_vars_if_possible(
&data.parent_trait_ref);
match self.get_parent_trait_ref(&data.parent_code) {
Some(t) => Some(t),
None => Some(format!("{}", parent_trait_ref.0.self_ty())),
}
}
_ => None,
}
}
pub fn report_selection_error(&self,
obligation: &PredicateObligation<'tcx>,
error: &SelectionError<'tcx>)
{
let span = obligation.cause.span;
2016-12-12 22:51:40 +00:00
let mut err = match *error {
SelectionError::Unimplemented => {
if let ObligationCauseCode::CompareImplMethodObligation {
2016-10-12 20:38:58 +00:00
item_name, impl_item_def_id, trait_item_def_id, lint_id
} = obligation.cause.code {
self.report_extra_impl_obligation(
span,
item_name,
impl_item_def_id,
trait_item_def_id,
2016-10-12 20:38:58 +00:00
&format!("`{}`", obligation.predicate),
lint_id)
.emit();
return;
2017-02-19 03:48:36 +00:00
}
match obligation.predicate {
ty::Predicate::Trait(ref trait_predicate) => {
let trait_predicate =
self.resolve_type_vars_if_possible(trait_predicate);
2017-02-19 03:48:36 +00:00
if self.tcx.sess.has_errors() && trait_predicate.references_error() {
return;
2017-02-19 15:46:43 +00:00
}
let trait_ref = trait_predicate.to_poly_trait_ref();
let (post_message, pre_message) =
self.get_parent_trait_ref(&obligation.cause.code)
.map(|t| (format!(" in `{}`", t), format!("within `{}`, ", t)))
.unwrap_or((String::new(), String::new()));
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0277,
"the trait bound `{}` is not satisfied{}",
trait_ref.to_predicate(),
post_message);
let unimplemented_note = self.on_unimplemented_note(trait_ref, obligation);
if let Some(ref s) = unimplemented_note {
// If it has a custom "#[rustc_on_unimplemented]"
// error message, let's display it as the label!
err.span_label(span, s.as_str());
err.help(&format!("{}the trait `{}` is not implemented for `{}`",
pre_message,
trait_ref,
trait_ref.self_ty()));
} else {
err.span_label(span,
&*format!("{}the trait `{}` is not implemented for `{}`",
pre_message,
trait_ref,
trait_ref.self_ty()));
}
2017-02-19 15:46:43 +00:00
// Try to report a help message
if !trait_ref.has_infer_types() &&
2017-05-23 08:19:47 +00:00
self.predicate_can_apply(obligation.param_env, trait_ref) {
2017-02-19 15:46:43 +00:00
// If a where-clause may be useful, remind the
// user that they can add it.
//
// don't display an on-unimplemented note, as
// these notes will often be of the form
// "the type `T` can't be frobnicated"
// which is somewhat confusing.
err.help(&format!("consider adding a `where {}` bound",
trait_ref.to_predicate()));
} else if unimplemented_note.is_none() {
// Can't show anything else useful, try to find similar impls.
let impl_candidates = self.find_similar_impl_candidates(trait_ref);
self.report_similar_impl_candidates(impl_candidates, &mut err);
}
2017-02-19 15:46:43 +00:00
err
2017-02-19 03:48:36 +00:00
}
2017-03-10 02:47:09 +00:00
ty::Predicate::Subtype(ref predicate) => {
// Errors for Subtype predicates show up as
// `FulfillmentErrorCode::CodeSubtypeError`,
// not selection error.
span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
2017-03-10 02:47:09 +00:00
}
2017-02-19 03:48:36 +00:00
ty::Predicate::Equate(ref predicate) => {
let predicate = self.resolve_type_vars_if_possible(predicate);
let err = self.equality_predicate(&obligation.cause,
2017-05-23 08:19:47 +00:00
obligation.param_env,
&predicate).err().unwrap();
2017-02-19 03:48:36 +00:00
struct_span_err!(self.tcx.sess, span, E0278,
"the requirement `{}` is not satisfied (`{}`)",
predicate, err)
}
2017-02-19 03:48:36 +00:00
ty::Predicate::RegionOutlives(ref predicate) => {
let predicate = self.resolve_type_vars_if_possible(predicate);
let err = self.region_outlives_predicate(&obligation.cause,
&predicate).err().unwrap();
struct_span_err!(self.tcx.sess, span, E0279,
"the requirement `{}` is not satisfied (`{}`)",
predicate, err)
}
2017-02-19 03:48:36 +00:00
ty::Predicate::Projection(..) | ty::Predicate::TypeOutlives(..) => {
let predicate =
self.resolve_type_vars_if_possible(&obligation.predicate);
struct_span_err!(self.tcx.sess, span, E0280,
"the requirement `{}` is not satisfied",
predicate)
}
2017-02-19 03:48:36 +00:00
ty::Predicate::ObjectSafe(trait_def_id) => {
let violations = self.tcx.object_safety_violations(trait_def_id);
self.tcx.report_object_safety_error(span,
trait_def_id,
violations)
}
2017-02-19 03:48:36 +00:00
ty::Predicate::ClosureKind(closure_def_id, kind) => {
let found_kind = self.closure_kind(closure_def_id).unwrap();
let closure_span = self.tcx.hir.span_if_local(closure_def_id).unwrap();
let mut err = struct_span_err!(
self.tcx.sess, closure_span, E0525,
"expected a closure that implements the `{}` trait, \
but this closure only implements `{}`",
kind,
found_kind);
err.span_note(
obligation.cause.span,
&format!("the requirement to implement \
`{}` derives from here", kind));
err.emit();
return;
}
2017-02-19 03:48:36 +00:00
ty::Predicate::WellFormed(ty) => {
// WF predicates cannot themselves make
// errors. They can only block due to
// ambiguity; otherwise, they always
// degenerate into other obligations
// (which may fail).
span_bug!(span, "WF predicate not satisfied for {:?}", ty);
}
2014-12-06 16:39:25 +00:00
}
}
OutputTypeParameterMismatch(ref expected_trait_ref, ref actual_trait_ref, ref e) => {
let expected_trait_ref = self.resolve_type_vars_if_possible(&*expected_trait_ref);
let actual_trait_ref = self.resolve_type_vars_if_possible(&*actual_trait_ref);
if actual_trait_ref.self_ty().references_error() {
return;
}
2017-04-23 22:36:35 +00:00
let expected_trait_ty = expected_trait_ref.self_ty();
2017-04-24 00:54:32 +00:00
let found_span = expected_trait_ty.ty_to_def_id().and_then(|did| {
self.tcx.hir.span_if_local(did)
});
if let &TypeError::TupleSize(ref expected_found) = e {
// Expected `|x| { }`, found `|x, y| { }`
self.report_arg_count_mismatch(span,
found_span,
expected_found.expected,
expected_found.found,
expected_trait_ty.is_closure())
} else if let &TypeError::Sorts(ref expected_found) = e {
let expected = if let ty::TyTuple(tys, _) = expected_found.expected.sty {
tys.len()
2017-04-23 22:36:35 +00:00
} else {
2017-04-24 00:54:32 +00:00
1
};
let found = if let ty::TyTuple(tys, _) = expected_found.found.sty {
tys.len()
} else {
1
};
if expected != found {
// Expected `|| { }`, found `|x, y| { }`
// Expected `fn(x) -> ()`, found `|| { }`
self.report_arg_count_mismatch(span,
found_span,
expected,
found,
expected_trait_ty.is_closure())
} else {
self.report_type_argument_mismatch(span,
found_span,
expected_trait_ty,
expected_trait_ref,
actual_trait_ref,
e)
2017-04-23 22:36:35 +00:00
}
} else {
2017-04-24 00:54:32 +00:00
self.report_type_argument_mismatch(span,
found_span,
expected_trait_ty,
expected_trait_ref,
actual_trait_ref,
e)
2017-04-23 22:36:35 +00:00
}
}
TraitNotObjectSafe(did) => {
let violations = self.tcx.object_safety_violations(did);
self.tcx.report_object_safety_error(span, did,
violations)
}
};
self.note_obligation_cause(&mut err, obligation);
err.emit();
}
2017-04-24 00:54:32 +00:00
fn report_type_argument_mismatch(&self,
span: Span,
found_span: Option<Span>,
expected_ty: Ty<'tcx>,
expected_ref: ty::PolyTraitRef<'tcx>,
found_ref: ty::PolyTraitRef<'tcx>,
type_error: &TypeError<'tcx>)
-> DiagnosticBuilder<'tcx>
{
let mut err = struct_span_err!(self.tcx.sess, span, E0281,
"type mismatch: `{}` implements the trait `{}`, but the trait `{}` is required",
expected_ty,
expected_ref,
found_ref);
err.span_label(span, format!("{}", type_error));
2017-04-24 00:54:32 +00:00
if let Some(sp) = found_span {
err.span_label(span, format!("requires `{}`", found_ref));
err.span_label(sp, format!("implements `{}`", expected_ref));
2017-04-24 00:54:32 +00:00
}
err
}
fn report_arg_count_mismatch(&self,
span: Span,
found_span: Option<Span>,
expected: usize,
found: usize,
is_closure: bool)
-> DiagnosticBuilder<'tcx>
{
let mut err = struct_span_err!(self.tcx.sess, span, E0593,
"{} takes {} argument{} but {} argument{} {} required",
if is_closure { "closure" } else { "function" },
found,
if found == 1 { "" } else { "s" },
expected,
if expected == 1 { "" } else { "s" },
if expected == 1 { "is" } else { "are" });
err.span_label(span, format!("expected {} that takes {} argument{}",
2017-04-24 00:54:32 +00:00
if is_closure { "closure" } else { "function" },
expected,
if expected == 1 { "" } else { "s" }));
if let Some(span) = found_span {
err.span_label(span, format!("takes {} argument{}",
2017-04-24 00:54:32 +00:00
found,
if found == 1 { "" } else { "s" }));
}
err
}
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
pub fn recursive_type_with_infinite_size_error(self,
type_def_id: DefId)
-> DiagnosticBuilder<'tcx>
{
assert!(type_def_id.is_local());
let span = self.hir.span_if_local(type_def_id).unwrap();
let span = self.sess.codemap().def_span(span);
let mut err = struct_span_err!(self.sess, span, E0072,
"recursive type `{}` has infinite size",
self.item_path_str(type_def_id));
err.span_label(span, "recursive type has infinite size");
err.help(&format!("insert indirection (e.g., a `Box`, `Rc`, or `&`) \
at some point to make `{}` representable",
self.item_path_str(type_def_id)));
err
}
pub fn report_object_safety_error(self,
span: Span,
trait_def_id: DefId,
violations: Vec<ObjectSafetyViolation>)
-> DiagnosticBuilder<'tcx>
{
let trait_str = self.item_path_str(trait_def_id);
let span = self.sess.codemap().def_span(span);
let mut err = struct_span_err!(
self.sess, span, E0038,
"the trait `{}` cannot be made into an object",
trait_str);
err.span_label(span, format!("the trait `{}` cannot be made into an object", trait_str));
let mut reported_violations = FxHashSet();
for violation in violations {
if !reported_violations.insert(violation.clone()) {
continue;
}
2017-02-19 18:00:25 +00:00
err.note(&violation.error_msg());
}
err
2014-12-06 16:39:25 +00:00
}
}
2014-12-06 16:39:25 +00:00
impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
fn maybe_report_ambiguity(&self, obligation: &PredicateObligation<'tcx>) {
// Unable to successfully determine, probably means
// insufficient type information, but could mean
// ambiguous impls. The latter *ought* to be a
// coherence violation, so we don't report it here.
let predicate = self.resolve_type_vars_if_possible(&obligation.predicate);
2017-04-11 21:37:40 +00:00
let body_id = hir::BodyId { node_id: obligation.cause.body_id };
let span = obligation.cause.span;
debug!("maybe_report_ambiguity(predicate={:?}, obligation={:?})",
predicate,
obligation);
// Ambiguity errors are often caused as fallout from earlier
// errors. So just ignore them if this infcx is tainted.
if self.is_tainted_by_errors() {
return;
}
match predicate {
ty::Predicate::Trait(ref data) => {
let trait_ref = data.to_poly_trait_ref();
let self_ty = trait_ref.self_ty();
if predicate.references_error() {
return;
}
// Typically, this ambiguity should only happen if
// there are unresolved type inference variables
// (otherwise it would suggest a coherence
// failure). But given #21974 that is not necessarily
// the case -- we can have multiple where clauses that
// are only distinguished by a region, which results
// in an ambiguity even when all types are fully
// known, since we don't dispatch based on region
// relationships.
// This is kind of a hack: it frequently happens that some earlier
// error prevents types from being fully inferred, and then we get
// a bunch of uninteresting errors saying something like "<generic
// #0> doesn't implement Sized". It may even be true that we
// could just skip over all checks where the self-ty is an
// inference variable, but I was afraid that there might be an
// inference variable created, registered as an obligation, and
// then never forced by writeback, and hence by skipping here we'd
// be ignoring the fact that we don't KNOW the type works
// out. Though even that would probably be harmless, given that
// we're only talking about builtin traits, which are known to be
// inhabited. But in any case I just threw in this check for
// has_errors() to be sure that compilation isn't happening
// anyway. In that case, why inundate the user.
if !self.tcx.sess.has_errors() {
if
self.tcx.lang_items.sized_trait()
.map_or(false, |sized_id| sized_id == trait_ref.def_id())
{
2017-04-11 21:37:40 +00:00
self.need_type_info(body_id, span, self_ty);
} else {
let mut err = struct_span_err!(self.tcx.sess,
2017-04-11 21:37:40 +00:00
span, E0283,
"type annotations required: \
cannot resolve `{}`",
predicate);
self.note_obligation_cause(&mut err, obligation);
err.emit();
}
}
}
ty::Predicate::WellFormed(ty) => {
// Same hacky approach as above to avoid deluging user
// with error messages.
if !ty.references_error() && !self.tcx.sess.has_errors() {
2017-04-11 21:37:40 +00:00
self.need_type_info(body_id, span, ty);
}
}
2017-03-10 02:47:09 +00:00
ty::Predicate::Subtype(ref data) => {
if data.references_error() || self.tcx.sess.has_errors() {
// no need to overload user in such cases
} else {
let &SubtypePredicate { a_is_expected: _, a, b } = data.skip_binder();
// both must be type variables, or the other would've been instantiated
assert!(a.is_ty_var() && b.is_ty_var());
2017-04-11 21:37:40 +00:00
self.need_type_info(hir::BodyId { node_id: obligation.cause.body_id },
obligation.cause.span,
a);
2017-03-10 02:47:09 +00:00
}
}
_ => {
if !self.tcx.sess.has_errors() {
let mut err = struct_span_err!(self.tcx.sess,
obligation.cause.span, E0284,
"type annotations required: \
cannot resolve `{}`",
predicate);
self.note_obligation_cause(&mut err, obligation);
err.emit();
}
2014-12-06 16:39:25 +00:00
}
}
}
/// Returns whether the trait predicate may apply for *some* assignment
/// to the type parameters.
2017-05-23 08:19:47 +00:00
fn predicate_can_apply(&self,
param_env: ty::ParamEnv<'tcx>,
pred: ty::PolyTraitRef<'tcx>)
-> bool {
struct ParamToVarFolder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>
}
impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for ParamToVarFolder<'a, 'gcx, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.infcx.tcx }
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
2016-11-28 18:08:08 +00:00
if let ty::TyParam(ty::ParamTy {name, ..}) = ty.sty {
let infcx = self.infcx;
2016-11-28 18:08:08 +00:00
self.var_map.entry(ty).or_insert_with(||
infcx.next_ty_var(
TypeVariableOrigin::TypeParameterDefinition(DUMMY_SP, name)))
} else {
ty.super_fold_with(self)
}
}
}
self.probe(|_| {
let mut selcx = SelectionContext::new(self);
let cleaned_pred = pred.fold_with(&mut ParamToVarFolder {
infcx: self,
var_map: FxHashMap()
});
let cleaned_pred = super::project::normalize(
&mut selcx,
2017-05-23 08:19:47 +00:00
param_env,
ObligationCause::dummy(),
&cleaned_pred
).value;
let obligation = Obligation::new(
ObligationCause::dummy(),
2017-05-23 08:19:47 +00:00
param_env,
cleaned_pred.to_predicate()
);
selcx.evaluate_obligation(&obligation)
})
}
fn extract_type_name(&self, ty: &'a Ty<'tcx>) -> String {
if let ty::TyInfer(ty::TyVar(ty_vid)) = (*ty).sty {
let ty_vars = self.type_variables.borrow();
if let TypeVariableOrigin::TypeParameterDefinition(_, name) =
*ty_vars.var_origin(ty_vid) {
name.to_string()
} else {
ty.to_string()
}
} else {
ty.to_string()
}
}
2017-04-11 21:37:40 +00:00
pub fn need_type_info(&self, body_id: hir::BodyId, span: Span, ty: Ty<'tcx>) {
let ty = self.resolve_type_vars_if_possible(&ty);
let name = self.extract_type_name(&ty);
2017-04-11 21:37:40 +00:00
let mut err_span = span;
let mut labels = vec![(span, format!("cannot infer type for `{}`", name))];
let mut local_visitor = FindLocalByTypeVisitor {
infcx: &self,
target_ty: &ty,
2017-04-11 21:37:40 +00:00
hir_map: &self.tcx.hir,
found_local_pattern: None,
found_arg_pattern: None,
};
// #40294: cause.body_id can also be a fn declaration.
// Currently, if it's anything other than NodeExpr, we just ignore it
2017-04-11 21:37:40 +00:00
match self.tcx.hir.find(body_id.node_id) {
Some(NodeExpr(expr)) => local_visitor.visit_expr(expr),
_ => ()
}
2017-04-11 21:37:40 +00:00
if let Some(pattern) = local_visitor.found_arg_pattern {
err_span = pattern.span;
// We don't want to show the default label for closures.
//
// So, before clearing, the output would look something like this:
// ```
// let x = |_| { };
// - ^^^^ cannot infer type for `[_; 0]`
// |
// consider giving this closure parameter a type
// ```
//
// After clearing, it looks something like this:
// ```
// let x = |_| { };
// ^ consider giving this closure parameter a type
// ```
labels.clear();
labels.push((pattern.span, format!("consider giving this closure parameter a type")));
}
if let Some(pattern) = local_visitor.found_local_pattern {
if let Some(simple_name) = pattern.simple_name() {
2017-04-11 21:37:40 +00:00
labels.push((pattern.span, format!("consider giving `{}` a type", simple_name)));
} else {
2017-04-18 18:42:55 +00:00
labels.push((pattern.span, format!("consider giving the pattern a type")));
}
}
2017-04-11 21:37:40 +00:00
let mut err = struct_span_err!(self.tcx.sess,
err_span,
E0282,
"type annotations needed");
for (target_span, label_message) in labels {
err.span_label(target_span, label_message);
2017-04-11 21:37:40 +00:00
}
err.emit();
}
fn note_obligation_cause<T>(&self,
err: &mut DiagnosticBuilder,
obligation: &Obligation<'tcx, T>)
where T: fmt::Display
{
self.note_obligation_cause_code(err,
&obligation.predicate,
&obligation.cause.code);
}
2014-12-06 16:39:25 +00:00
fn note_obligation_cause_code<T>(&self,
err: &mut DiagnosticBuilder,
predicate: &T,
cause_code: &ObligationCauseCode<'tcx>)
where T: fmt::Display
{
let tcx = self.tcx;
match *cause_code {
ObligationCauseCode::ExprAssignable |
ObligationCauseCode::MatchExpressionArm { .. } |
ObligationCauseCode::IfExpression |
ObligationCauseCode::IfExpressionWithNoElse |
ObligationCauseCode::EquatePredicate |
ObligationCauseCode::MainFunctionType |
ObligationCauseCode::StartFunctionType |
ObligationCauseCode::IntrinsicType |
ObligationCauseCode::MethodReceiver |
ObligationCauseCode::ReturnNoExpression |
ObligationCauseCode::MiscObligation => {
}
ObligationCauseCode::SliceOrArrayElem => {
err.note("slice and array elements must have `Sized` type");
}
ObligationCauseCode::TupleElem => {
err.note("tuple elements must have `Sized` type");
}
ObligationCauseCode::ProjectionWf(data) => {
err.note(&format!("required so that the projection `{}` is well-formed",
data));
}
ObligationCauseCode::ReferenceOutlivesReferent(ref_ty) => {
err.note(&format!("required so that reference `{}` does not outlive its referent",
ref_ty));
}
ObligationCauseCode::ObjectTypeBound(object_ty, region) => {
err.note(&format!("required so that the lifetime bound of `{}` for `{}` \
is satisfied",
region, object_ty));
}
ObligationCauseCode::ItemObligation(item_def_id) => {
let item_name = tcx.item_path_str(item_def_id);
err.note(&format!("required by `{}`", item_name));
}
ObligationCauseCode::ObjectCastObligation(object_ty) => {
err.note(&format!("required for the cast to the object type `{}`",
self.ty_to_string(object_ty)));
}
ObligationCauseCode::RepeatVec => {
err.note("the `Copy` trait is required because the \
repeated element will be copied");
}
ObligationCauseCode::VariableType(_) => {
err.note("all local variables must have a statically known size");
}
ObligationCauseCode::ReturnType => {
err.note("the return type of a function must have a \
statically known size");
}
ObligationCauseCode::AssignmentLhsSized => {
err.note("the left-hand-side of an assignment must have a statically known size");
}
ObligationCauseCode::StructInitializerSized => {
err.note("structs must have a statically known size to be initialized");
}
ObligationCauseCode::FieldSized => {
2016-10-12 10:40:48 +00:00
err.note("only the last field of a struct may have a dynamically sized type");
}
ObligationCauseCode::ConstSized => {
err.note("constant expressions must have a statically known size");
}
ObligationCauseCode::SharedStatic => {
err.note("shared static variables must have a type that implements `Sync`");
}
ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
let parent_trait_ref = self.resolve_type_vars_if_possible(&data.parent_trait_ref);
err.note(&format!("required because it appears within the type `{}`",
parent_trait_ref.0.self_ty()));
let parent_predicate = parent_trait_ref.to_predicate();
self.note_obligation_cause_code(err,
&parent_predicate,
&data.parent_code);
}
ObligationCauseCode::ImplDerivedObligation(ref data) => {
let parent_trait_ref = self.resolve_type_vars_if_possible(&data.parent_trait_ref);
err.note(
&format!("required because of the requirements on the impl of `{}` for `{}`",
parent_trait_ref,
parent_trait_ref.0.self_ty()));
let parent_predicate = parent_trait_ref.to_predicate();
self.note_obligation_cause_code(err,
&parent_predicate,
&data.parent_code);
}
ObligationCauseCode::CompareImplMethodObligation { .. } => {
err.note(
&format!("the requirement `{}` appears on the impl method \
but not on the corresponding trait method",
predicate));
}
}
2014-12-06 16:39:25 +00:00
}
fn suggest_new_overflow_limit(&self, err: &mut DiagnosticBuilder) {
let current_limit = self.tcx.sess.recursion_limit.get();
let suggested_limit = current_limit * 2;
2017-02-28 18:18:54 +00:00
err.help(&format!(
"consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate",
suggested_limit));
}
}