rust/library/std/src/thread/local.rs

1139 lines
41 KiB
Rust
Raw Normal View History

//! Thread local storage
#![unstable(feature = "thread_local_internals", issue = "none")]
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests;
#[cfg(test)]
mod dynamic_tests;
use crate::cell::{Cell, RefCell};
2019-06-03 16:20:38 +00:00
use crate::error::Error;
2019-02-10 19:23:21 +00:00
use crate::fmt;
/// A thread local storage key which owns its contents.
///
/// This key uses the fastest possible implementation available to it for the
/// target platform. It is instantiated with the [`thread_local!`] macro and the
/// primary method is the [`with`] method.
///
/// The [`with`] method yields a reference to the contained value which cannot be
/// sent across threads or escape the given closure.
///
/// # Initialization and Destruction
///
/// Initialization is dynamically performed on the first call to [`with`]
/// within a thread, and values that implement [`Drop`] get destructed when a
2017-02-15 22:26:29 +00:00
/// thread exits. Some caveats apply, which are explained below.
///
/// A `LocalKey`'s initializer cannot recursively depend on itself, and using
/// a `LocalKey` in this way will cause the initializer to infinitely recurse
/// on the first call to `with`.
///
/// # Examples
///
/// ```
/// use std::cell::RefCell;
2015-02-17 23:10:25 +00:00
/// use std::thread;
///
/// thread_local!(static FOO: RefCell<u32> = RefCell::new(1));
///
/// FOO.with(|f| {
/// assert_eq!(*f.borrow(), 1);
/// *f.borrow_mut() = 2;
/// });
///
/// // each thread starts out with the initial value of 1
/// let t = thread::spawn(move|| {
/// FOO.with(|f| {
/// assert_eq!(*f.borrow(), 1);
/// *f.borrow_mut() = 3;
/// });
2015-01-06 05:59:45 +00:00
/// });
///
/// // wait for the thread to complete and bail out on panic
/// t.join().unwrap();
///
/// // we retain our original value of 2 despite the child thread
/// FOO.with(|f| {
/// assert_eq!(*f.borrow(), 2);
/// });
/// ```
///
/// # Platform-specific behavior
///
/// Note that a "best effort" is made to ensure that destructors for types
/// stored in thread local storage are run, but not all platforms can guarantee
/// that destructors will be run for all types in thread local storage. For
/// example, there are a number of known caveats where destructors are not run:
///
/// 1. On Unix systems when pthread-based TLS is being used, destructors will
/// not be run for TLS values on the main thread when it exits. Note that the
/// application will exit immediately after the main thread exits as well.
/// 2. On all platforms it's possible for TLS to re-initialize other TLS slots
/// during destruction. Some platforms ensure that this cannot happen
/// infinitely by preventing re-initialization of any slot that has been
/// destroyed, but not all platforms have this guard. Those platforms that do
/// not guard typically have a synthetic limit after which point no more
/// destructors are run.
2021-12-02 13:52:35 +00:00
/// 3. When the process exits on Windows systems, TLS destructors may only be
/// run on the thread that causes the process to exit. This is because the
/// other threads may be forcibly terminated.
///
2021-12-02 13:52:35 +00:00
/// ## Synchronization in thread-local destructors
///
/// On Windows, synchronization operations (such as [`JoinHandle::join`]) in
/// thread local destructors are prone to deadlocks and so should be avoided.
/// This is because the [loader lock] is held while a destructor is run. The
/// lock is acquired whenever a thread starts or exits or when a DLL is loaded
/// or unloaded. Therefore these events are blocked for as long as a thread
/// local destructor is running.
///
/// [loader lock]: https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-best-practices
/// [`JoinHandle::join`]: crate::thread::JoinHandle::join
/// [`with`]: LocalKey::with
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct LocalKey<T: 'static> {
// This outer `LocalKey<T>` type is what's going to be stored in statics,
// but actual data inside will sometimes be tagged with #[thread_local].
// It's not valid for a true static to reference a #[thread_local] static,
// so we get around that by exposing an accessor through a layer of function
// indirection (this thunk).
//
// Note that the thunk is itself unsafe because the returned lifetime of the
// slot where data lives, `'static`, is not actually valid. The lifetime
// here is actually slightly shorter than the currently running thread!
//
// Although this is an extra layer of indirection, it should in theory be
// trivially devirtualizable by LLVM because the value of `inner` never
// changes and the constant should be readonly within a crate. This mainly
// only runs into problems when TLS statics are exported across crates.
inner: unsafe fn(Option<&mut Option<T>>) -> Option<&'static T>,
}
#[stable(feature = "std_debug", since = "1.16.0")]
impl<T: 'static> fmt::Debug for LocalKey<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("LocalKey").finish_non_exhaustive()
}
}
/// Declare a new thread local storage key of type [`std::thread::LocalKey`].
///
/// # Syntax
///
/// The macro wraps any number of static declarations and makes them thread local.
/// Publicity and attributes for each static are allowed. Example:
///
/// ```
/// use std::cell::RefCell;
/// thread_local! {
/// pub static FOO: RefCell<u32> = RefCell::new(1);
///
/// #[allow(unused)]
/// static BAR: RefCell<f32> = RefCell::new(1.0);
/// }
/// # fn main() {}
/// ```
///
/// See [`LocalKey` documentation][`std::thread::LocalKey`] for more
/// information.
///
/// [`std::thread::LocalKey`]: crate::thread::LocalKey
#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
2022-01-06 14:50:46 +00:00
#[cfg_attr(not(test), rustc_diagnostic_item = "thread_local_macro")]
#[allow_internal_unstable(thread_local_internals)]
macro_rules! thread_local {
// empty (base case for the recursion)
() => {};
($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = const { $init:expr }; $($rest:tt)*) => (
$crate::__thread_local_inner!($(#[$attr])* $vis $name, $t, const $init);
$crate::thread_local!($($rest)*);
);
($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = const { $init:expr }) => (
$crate::__thread_local_inner!($(#[$attr])* $vis $name, $t, const $init);
);
2017-04-19 02:29:40 +00:00
// process multiple declarations
($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = $init:expr; $($rest:tt)*) => (
$crate::__thread_local_inner!($(#[$attr])* $vis $name, $t, $init);
$crate::thread_local!($($rest)*);
);
2017-04-19 02:29:40 +00:00
// handle a single declaration
($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = $init:expr) => (
$crate::__thread_local_inner!($(#[$attr])* $vis $name, $t, $init);
);
}
#[doc(hidden)]
#[unstable(feature = "thread_local_internals", reason = "should not be necessary", issue = "none")]
#[macro_export]
#[allow_internal_unstable(thread_local_internals, cfg_target_thread_local, thread_local)]
#[allow_internal_unsafe]
macro_rules! __thread_local_inner {
// used to generate the `LocalKey` value for const-initialized thread locals
(@key $t:ty, const $init:expr) => {{
#[cfg_attr(not(windows), inline(always))] // see comments below
unsafe fn __getit(
_init: $crate::option::Option<&mut $crate::option::Option<$t>>,
) -> $crate::option::Option<&'static $t> {
const INIT_EXPR: $t = $init;
// wasm without atomics maps directly to `static mut`, and dtors
// aren't implemented because thread dtors aren't really a thing
// on wasm right now
//
// FIXME(#84224) this should come after the `target_thread_local`
// block.
2021-10-28 23:28:21 +00:00
#[cfg(all(target_family = "wasm", not(target_feature = "atomics")))]
{
static mut VAL: $t = INIT_EXPR;
Some(&VAL)
}
// If the platform has support for `#[thread_local]`, use it.
#[cfg(all(
target_thread_local,
2021-10-28 23:28:21 +00:00
not(all(target_family = "wasm", not(target_feature = "atomics"))),
))]
{
#[thread_local]
static mut VAL: $t = INIT_EXPR;
// If a dtor isn't needed we can do something "very raw" and
// just get going.
if !$crate::mem::needs_drop::<$t>() {
unsafe {
return Some(&VAL)
}
}
// 0 == dtor not registered
// 1 == dtor registered, dtor not run
// 2 == dtor registered and is running or has run
#[thread_local]
static mut STATE: u8 = 0;
unsafe extern "C" fn destroy(ptr: *mut u8) {
let ptr = ptr as *mut $t;
unsafe {
debug_assert_eq!(STATE, 1);
STATE = 2;
$crate::ptr::drop_in_place(ptr);
}
}
unsafe {
match STATE {
// 0 == we haven't registered a destructor, so do
// so now.
0 => {
$crate::thread::__FastLocalKeyInner::<$t>::register_dtor(
$crate::ptr::addr_of_mut!(VAL) as *mut u8,
destroy,
);
STATE = 1;
Some(&VAL)
}
// 1 == the destructor is registered and the value
// is valid, so return the pointer.
1 => Some(&VAL),
// otherwise the destructor has already run, so we
// can't give access.
_ => None,
}
}
}
// On platforms without `#[thread_local]` we fall back to the
// same implementation as below for os thread locals.
#[cfg(all(
not(target_thread_local),
2021-10-28 23:28:21 +00:00
not(all(target_family = "wasm", not(target_feature = "atomics"))),
))]
{
#[inline]
const fn __init() -> $t { INIT_EXPR }
static __KEY: $crate::thread::__OsLocalKeyInner<$t> =
$crate::thread::__OsLocalKeyInner::new();
#[allow(unused_unsafe)]
unsafe {
__KEY.get(move || {
if let $crate::option::Option::Some(init) = _init {
if let $crate::option::Option::Some(value) = init.take() {
return value;
} else if $crate::cfg!(debug_assertions) {
unreachable!("missing initial value");
}
}
__init()
})
}
}
}
unsafe {
$crate::thread::LocalKey::new(__getit)
}
}};
// used to generate the `LocalKey` value for `thread_local!`
(@key $t:ty, $init:expr) => {
{
#[inline]
fn __init() -> $t { $init }
// When reading this function you might ask "why is this inlined
// everywhere other than Windows?", and that's a very reasonable
// question to ask. The short story is that it segfaults rustc if
// this function is inlined. The longer story is that Windows looks
// to not support `extern` references to thread locals across DLL
// boundaries. This appears to at least not be supported in the ABI
// that LLVM implements.
//
// Because of this we never inline on Windows, but we do inline on
// other platforms (where external references to thread locals
// across DLLs are supported). A better fix for this would be to
// inline this function on Windows, but only for "statically linked"
// components. For example if two separately compiled rlibs end up
// getting linked into a DLL then it's fine to inline this function
// across that boundary. It's only not fine to inline this function
// across a DLL boundary. Unfortunately rustc doesn't currently
// have this sort of logic available in an attribute, and it's not
// clear that rustc is even equipped to answer this (it's more of a
// Cargo question kinda). This means that, unfortunately, Windows
// gets the pessimistic path for now where it's never inlined.
//
// The issue of "should enable on Windows sometimes" is #84933
#[cfg_attr(not(windows), inline(always))]
unsafe fn __getit(
init: $crate::option::Option<&mut $crate::option::Option<$t>>,
) -> $crate::option::Option<&'static $t> {
2021-10-28 23:28:21 +00:00
#[cfg(all(target_family = "wasm", not(target_feature = "atomics")))]
static __KEY: $crate::thread::__StaticLocalKeyInner<$t> =
$crate::thread::__StaticLocalKeyInner::new();
#[thread_local]
std: Implement TLS for wasm32-unknown-unknown This adds an implementation of thread local storage for the `wasm32-unknown-unknown` target when the `atomics` feature is implemented. This, however, comes with a notable caveat of that it requires a new feature of the standard library, `wasm-bindgen-threads`, to be enabled. Thread local storage for wasm (when `atomics` are enabled and there's actually more than one thread) is powered by the assumption that an external entity can fill in some information for us. It's not currently clear who will fill in this information nor whose responsibility it should be long-term. In the meantime there's a strategy being gamed out in the `wasm-bindgen` project specifically, and the hope is that we can continue to test and iterate on the standard library without committing to a particular strategy yet. As to the details of `wasm-bindgen`'s strategy, LLVM doesn't currently have the ability to emit custom `global` values (thread locals in a `WebAssembly.Module`) so we leverage the `wasm-bindgen` CLI tool to do it for us. To that end we have a few intrinsics, assuming two global values: * `__wbindgen_current_id` - gets the current thread id as a 32-bit integer. It's `wasm-bindgen`'s responsibility to initialize this per-thread and then inform libstd of the id. Currently `wasm-bindgen` performs this initialization as part of the `start` function. * `__wbindgen_tcb_{get,set}` - in addition to a thread id it's assumed that there's a global available for simply storing a pointer's worth of information (a thread control block, which currently only contains thread local storage). This would ideally be a native `global` injected by LLVM, but we don't have a great way to support that right now. To reiterate, this is all intended to be unstable and purely intended for testing out Rust on the web with threads. The story is very likely to change in the future and we want to make sure that we're able to do that!
2018-10-10 06:10:25 +00:00
#[cfg(all(
target_thread_local,
2021-10-28 23:28:21 +00:00
not(all(target_family = "wasm", not(target_feature = "atomics"))),
std: Implement TLS for wasm32-unknown-unknown This adds an implementation of thread local storage for the `wasm32-unknown-unknown` target when the `atomics` feature is implemented. This, however, comes with a notable caveat of that it requires a new feature of the standard library, `wasm-bindgen-threads`, to be enabled. Thread local storage for wasm (when `atomics` are enabled and there's actually more than one thread) is powered by the assumption that an external entity can fill in some information for us. It's not currently clear who will fill in this information nor whose responsibility it should be long-term. In the meantime there's a strategy being gamed out in the `wasm-bindgen` project specifically, and the hope is that we can continue to test and iterate on the standard library without committing to a particular strategy yet. As to the details of `wasm-bindgen`'s strategy, LLVM doesn't currently have the ability to emit custom `global` values (thread locals in a `WebAssembly.Module`) so we leverage the `wasm-bindgen` CLI tool to do it for us. To that end we have a few intrinsics, assuming two global values: * `__wbindgen_current_id` - gets the current thread id as a 32-bit integer. It's `wasm-bindgen`'s responsibility to initialize this per-thread and then inform libstd of the id. Currently `wasm-bindgen` performs this initialization as part of the `start` function. * `__wbindgen_tcb_{get,set}` - in addition to a thread id it's assumed that there's a global available for simply storing a pointer's worth of information (a thread control block, which currently only contains thread local storage). This would ideally be a native `global` injected by LLVM, but we don't have a great way to support that right now. To reiterate, this is all intended to be unstable and purely intended for testing out Rust on the web with threads. The story is very likely to change in the future and we want to make sure that we're able to do that!
2018-10-10 06:10:25 +00:00
))]
static __KEY: $crate::thread::__FastLocalKeyInner<$t> =
$crate::thread::__FastLocalKeyInner::new();
std: Implement TLS for wasm32-unknown-unknown This adds an implementation of thread local storage for the `wasm32-unknown-unknown` target when the `atomics` feature is implemented. This, however, comes with a notable caveat of that it requires a new feature of the standard library, `wasm-bindgen-threads`, to be enabled. Thread local storage for wasm (when `atomics` are enabled and there's actually more than one thread) is powered by the assumption that an external entity can fill in some information for us. It's not currently clear who will fill in this information nor whose responsibility it should be long-term. In the meantime there's a strategy being gamed out in the `wasm-bindgen` project specifically, and the hope is that we can continue to test and iterate on the standard library without committing to a particular strategy yet. As to the details of `wasm-bindgen`'s strategy, LLVM doesn't currently have the ability to emit custom `global` values (thread locals in a `WebAssembly.Module`) so we leverage the `wasm-bindgen` CLI tool to do it for us. To that end we have a few intrinsics, assuming two global values: * `__wbindgen_current_id` - gets the current thread id as a 32-bit integer. It's `wasm-bindgen`'s responsibility to initialize this per-thread and then inform libstd of the id. Currently `wasm-bindgen` performs this initialization as part of the `start` function. * `__wbindgen_tcb_{get,set}` - in addition to a thread id it's assumed that there's a global available for simply storing a pointer's worth of information (a thread control block, which currently only contains thread local storage). This would ideally be a native `global` injected by LLVM, but we don't have a great way to support that right now. To reiterate, this is all intended to be unstable and purely intended for testing out Rust on the web with threads. The story is very likely to change in the future and we want to make sure that we're able to do that!
2018-10-10 06:10:25 +00:00
#[cfg(all(
not(target_thread_local),
2021-10-28 23:28:21 +00:00
not(all(target_family = "wasm", not(target_feature = "atomics"))),
std: Implement TLS for wasm32-unknown-unknown This adds an implementation of thread local storage for the `wasm32-unknown-unknown` target when the `atomics` feature is implemented. This, however, comes with a notable caveat of that it requires a new feature of the standard library, `wasm-bindgen-threads`, to be enabled. Thread local storage for wasm (when `atomics` are enabled and there's actually more than one thread) is powered by the assumption that an external entity can fill in some information for us. It's not currently clear who will fill in this information nor whose responsibility it should be long-term. In the meantime there's a strategy being gamed out in the `wasm-bindgen` project specifically, and the hope is that we can continue to test and iterate on the standard library without committing to a particular strategy yet. As to the details of `wasm-bindgen`'s strategy, LLVM doesn't currently have the ability to emit custom `global` values (thread locals in a `WebAssembly.Module`) so we leverage the `wasm-bindgen` CLI tool to do it for us. To that end we have a few intrinsics, assuming two global values: * `__wbindgen_current_id` - gets the current thread id as a 32-bit integer. It's `wasm-bindgen`'s responsibility to initialize this per-thread and then inform libstd of the id. Currently `wasm-bindgen` performs this initialization as part of the `start` function. * `__wbindgen_tcb_{get,set}` - in addition to a thread id it's assumed that there's a global available for simply storing a pointer's worth of information (a thread control block, which currently only contains thread local storage). This would ideally be a native `global` injected by LLVM, but we don't have a great way to support that right now. To reiterate, this is all intended to be unstable and purely intended for testing out Rust on the web with threads. The story is very likely to change in the future and we want to make sure that we're able to do that!
2018-10-10 06:10:25 +00:00
))]
static __KEY: $crate::thread::__OsLocalKeyInner<$t> =
$crate::thread::__OsLocalKeyInner::new();
// FIXME: remove the #[allow(...)] marker when macros don't
// raise warning for missing/extraneous unsafe blocks anymore.
// See https://github.com/rust-lang/rust/issues/74838.
#[allow(unused_unsafe)]
unsafe {
__KEY.get(move || {
if let $crate::option::Option::Some(init) = init {
if let $crate::option::Option::Some(value) = init.take() {
return value;
} else if $crate::cfg!(debug_assertions) {
unreachable!("missing default value");
}
}
__init()
})
}
}
unsafe {
$crate::thread::LocalKey::new(__getit)
}
}
};
($(#[$attr:meta])* $vis:vis $name:ident, $t:ty, $($init:tt)*) => {
$(#[$attr])* $vis const $name: $crate::thread::LocalKey<$t> =
$crate::__thread_local_inner!(@key $t, $($init)*);
}
}
/// An error returned by [`LocalKey::try_with`](struct.LocalKey.html#method.try_with).
2018-02-27 16:00:01 +00:00
#[stable(feature = "thread_local_try_with", since = "1.26.0")]
#[non_exhaustive]
2019-06-03 16:20:38 +00:00
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct AccessError;
2018-02-27 16:00:01 +00:00
#[stable(feature = "thread_local_try_with", since = "1.26.0")]
impl fmt::Debug for AccessError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("AccessError").finish()
}
}
2018-02-27 16:00:01 +00:00
#[stable(feature = "thread_local_try_with", since = "1.26.0")]
impl fmt::Display for AccessError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt("already destroyed", f)
}
}
2019-08-04 13:11:08 +00:00
#[stable(feature = "thread_local_try_with", since = "1.26.0")]
2019-06-03 16:20:38 +00:00
impl Error for AccessError {}
impl<T: 'static> LocalKey<T> {
#[doc(hidden)]
#[unstable(
feature = "thread_local_internals",
reason = "recently added to create a key",
issue = "none"
)]
#[rustc_const_unstable(feature = "thread_local_internals", issue = "none")]
pub const unsafe fn new(
inner: unsafe fn(Option<&mut Option<T>>) -> Option<&'static T>,
) -> LocalKey<T> {
LocalKey { inner }
}
/// Acquires a reference to the value in this TLS key.
///
/// This will lazily initialize the value if this thread has not referenced
/// this key yet.
///
/// # Panics
///
/// This function will `panic!()` if the key currently has its
/// destructor running, and it **may** panic if the destructor has
/// previously been run for this thread.
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn with<F, R>(&'static self, f: F) -> R
where
F: FnOnce(&T) -> R,
{
self.try_with(f).expect(
"cannot access a Thread Local Storage value \
during or after destruction",
)
}
/// Acquires a reference to the value in this TLS key.
///
/// This will lazily initialize the value if this thread has not referenced
/// this key yet. If the key has been destroyed (which may happen if this is called
2020-11-07 20:22:24 +00:00
/// in a destructor), this function will return an [`AccessError`].
///
/// # Panics
///
/// This function will still `panic!()` if the key is uninitialized and the
/// key's initializer panics.
2018-02-27 16:00:01 +00:00
#[stable(feature = "thread_local_try_with", since = "1.26.0")]
#[inline]
pub fn try_with<F, R>(&'static self, f: F) -> Result<R, AccessError>
2018-02-27 16:00:01 +00:00
where
F: FnOnce(&T) -> R,
{
unsafe {
let thread_local = (self.inner)(None).ok_or(AccessError)?;
Ok(f(thread_local))
}
}
/// Acquires a reference to the value in this TLS key, initializing it with
/// `init` if it wasn't already initialized on this thread.
///
/// If `init` was used to initialize the thread local variable, `None` is
/// passed as the first argument to `f`. If it was already initialized,
/// `Some(init)` is passed to `f`.
///
/// # Panics
///
/// This function will panic if the key currently has its destructor
/// running, and it **may** panic if the destructor has previously been run
/// for this thread.
fn initialize_with<F, R>(&'static self, init: T, f: F) -> R
where
F: FnOnce(Option<T>, &T) -> R,
{
unsafe {
let mut init = Some(init);
let reference = (self.inner)(Some(&mut init)).expect(
"cannot access a Thread Local Storage value \
during or after destruction",
);
f(init, reference)
}
}
}
impl<T: 'static> LocalKey<Cell<T>> {
/// Sets or initializes the contained value.
///
/// Unlike the other methods, this will *not* run the lazy initializer of
/// the thread local. Instead, it will be directly initialized with the
/// given value if it wasn't initialized yet.
///
/// # Panics
///
/// Panics if the key currently has its destructor running,
/// and it **may** panic if the destructor has previously been run for this thread.
///
/// # Examples
///
/// ```
/// #![feature(local_key_cell_methods)]
/// use std::cell::Cell;
///
/// thread_local! {
/// static X: Cell<i32> = panic!("!");
/// }
///
/// // Calling X.get() here would result in a panic.
///
/// X.set(123); // But X.set() is fine, as it skips the initializer above.
///
/// assert_eq!(X.get(), 123);
/// ```
#[unstable(feature = "local_key_cell_methods", issue = "92122")]
pub fn set(&'static self, value: T) {
self.initialize_with(Cell::new(value), |value, cell| {
if let Some(value) = value {
// The cell was already initialized, so `value` wasn't used to
// initialize it. So we overwrite the current value with the
// new one instead.
cell.set(value.into_inner());
}
});
}
/// Returns a copy of the contained value.
///
/// This will lazily initialize the value if this thread has not referenced
/// this key yet.
///
/// # Panics
///
/// Panics if the key currently has its destructor running,
/// and it **may** panic if the destructor has previously been run for this thread.
///
/// # Examples
///
/// ```
/// #![feature(local_key_cell_methods)]
/// use std::cell::Cell;
///
/// thread_local! {
/// static X: Cell<i32> = Cell::new(1);
/// }
///
/// assert_eq!(X.get(), 1);
/// ```
#[unstable(feature = "local_key_cell_methods", issue = "92122")]
pub fn get(&'static self) -> T
where
T: Copy,
{
self.with(|cell| cell.get())
}
/// Takes the contained value, leaving `Default::default()` in its place.
///
/// This will lazily initialize the value if this thread has not referenced
/// this key yet.
///
/// # Panics
///
/// Panics if the key currently has its destructor running,
/// and it **may** panic if the destructor has previously been run for this thread.
///
/// # Examples
///
/// ```
/// #![feature(local_key_cell_methods)]
/// use std::cell::Cell;
///
/// thread_local! {
/// static X: Cell<Option<i32>> = Cell::new(Some(1));
/// }
///
/// assert_eq!(X.take(), Some(1));
/// assert_eq!(X.take(), None);
/// ```
#[unstable(feature = "local_key_cell_methods", issue = "92122")]
pub fn take(&'static self) -> T
where
T: Default,
{
self.with(|cell| cell.take())
}
/// Replaces the contained value, returning the old value.
///
/// This will lazily initialize the value if this thread has not referenced
/// this key yet.
///
/// # Panics
///
/// Panics if the key currently has its destructor running,
/// and it **may** panic if the destructor has previously been run for this thread.
///
/// # Examples
///
/// ```
/// #![feature(local_key_cell_methods)]
/// use std::cell::Cell;
///
/// thread_local! {
/// static X: Cell<i32> = Cell::new(1);
/// }
///
/// assert_eq!(X.replace(2), 1);
/// assert_eq!(X.replace(3), 2);
/// ```
#[unstable(feature = "local_key_cell_methods", issue = "92122")]
pub fn replace(&'static self, value: T) -> T {
self.with(|cell| cell.replace(value))
}
}
impl<T: 'static> LocalKey<RefCell<T>> {
/// Acquires a reference to the contained value.
///
/// This will lazily initialize the value if this thread has not referenced
/// this key yet.
///
/// # Panics
///
/// Panics if the value is currently mutably borrowed.
///
/// Panics if the key currently has its destructor running,
/// and it **may** panic if the destructor has previously been run for this thread.
///
/// # Example
///
/// ```
/// #![feature(local_key_cell_methods)]
/// use std::cell::RefCell;
///
/// thread_local! {
/// static X: RefCell<Vec<i32>> = RefCell::new(Vec::new());
/// }
///
/// X.with_borrow(|v| assert!(v.is_empty()));
/// ```
#[unstable(feature = "local_key_cell_methods", issue = "92122")]
pub fn with_borrow<F, R>(&'static self, f: F) -> R
where
F: FnOnce(&T) -> R,
{
self.with(|cell| f(&mut cell.borrow()))
}
/// Acquires a mutable reference to the contained value.
///
/// This will lazily initialize the value if this thread has not referenced
/// this key yet.
///
/// # Panics
///
/// Panics if the value is currently borrowed.
///
/// Panics if the key currently has its destructor running,
/// and it **may** panic if the destructor has previously been run for this thread.
///
/// # Example
///
/// ```
/// #![feature(local_key_cell_methods)]
/// use std::cell::RefCell;
///
/// thread_local! {
/// static X: RefCell<Vec<i32>> = RefCell::new(Vec::new());
/// }
///
/// X.with_borrow_mut(|v| v.push(1));
///
/// X.with_borrow(|v| assert_eq!(*v, vec![1]));
/// ```
#[unstable(feature = "local_key_cell_methods", issue = "92122")]
pub fn with_borrow_mut<F, R>(&'static self, f: F) -> R
where
F: FnOnce(&mut T) -> R,
{
self.with(|cell| f(&mut cell.borrow_mut()))
}
/// Sets or initializes the contained value.
///
/// Unlike the other methods, this will *not* run the lazy initializer of
/// the thread local. Instead, it will be directly initialized with the
/// given value if it wasn't initialized yet.
///
/// # Panics
///
/// Panics if the value is currently borrowed.
///
/// Panics if the key currently has its destructor running,
/// and it **may** panic if the destructor has previously been run for this thread.
///
/// # Examples
///
/// ```
/// #![feature(local_key_cell_methods)]
/// use std::cell::RefCell;
///
/// thread_local! {
/// static X: RefCell<Vec<i32>> = panic!("!");
/// }
///
/// // Calling X.with() here would result in a panic.
///
/// X.set(vec![1, 2, 3]); // But X.set() is fine, as it skips the initializer above.
///
/// X.with_borrow(|v| assert_eq!(*v, vec![1, 2, 3]));
/// ```
#[unstable(feature = "local_key_cell_methods", issue = "92122")]
pub fn set(&'static self, value: T) {
self.initialize_with(RefCell::new(value), |value, cell| {
if let Some(value) = value {
// The cell was already initialized, so `value` wasn't used to
// initialize it. So we overwrite the current value with the
// new one instead.
cell.replace(init.into_inner());
}
});
}
/// Takes the contained value, leaving `Default::default()` in its place.
///
/// This will lazily initialize the value if this thread has not referenced
/// this key yet.
///
/// # Panics
///
/// Panics if the value is currently borrowed.
///
/// Panics if the key currently has its destructor running,
/// and it **may** panic if the destructor has previously been run for this thread.
///
/// # Examples
///
/// ```
/// #![feature(local_key_cell_methods)]
/// use std::cell::RefCell;
///
/// thread_local! {
/// static X: RefCell<Vec<i32>> = RefCell::new(Vec::new());
/// }
///
/// X.with_borrow_mut(|v| v.push(1));
///
/// let a = X.take();
///
/// assert_eq!(a, vec![1]);
///
/// X.with_borrow(|v| assert!(v.is_empty()));
/// ```
#[unstable(feature = "local_key_cell_methods", issue = "92122")]
pub fn take(&'static self) -> T
where
T: Default,
{
self.with(|cell| cell.take())
}
/// Replaces the contained value, returning the old value.
///
/// # Panics
///
/// Panics if the value is currently borrowed.
///
/// Panics if the key currently has its destructor running,
/// and it **may** panic if the destructor has previously been run for this thread.
///
/// # Examples
///
/// ```
/// #![feature(local_key_cell_methods)]
/// use std::cell::RefCell;
///
/// thread_local! {
/// static X: RefCell<Vec<i32>> = RefCell::new(Vec::new());
/// }
///
/// let prev = X.replace(vec![1, 2, 3]);
/// assert!(prev.is_empty());
///
/// X.with_borrow(|v| assert_eq!(*v, vec![1, 2, 3]));
/// ```
#[unstable(feature = "local_key_cell_methods", issue = "92122")]
pub fn replace(&'static self, value: T) -> T {
self.with(|cell| cell.replace(value))
}
}
mod lazy {
use crate::cell::UnsafeCell;
use crate::hint;
use crate::mem;
pub struct LazyKeyInner<T> {
inner: UnsafeCell<Option<T>>,
}
impl<T> LazyKeyInner<T> {
pub const fn new() -> LazyKeyInner<T> {
LazyKeyInner { inner: UnsafeCell::new(None) }
}
pub unsafe fn get(&self) -> Option<&'static T> {
2020-09-20 15:31:55 +00:00
// SAFETY: The caller must ensure no reference is ever handed out to
// the inner cell nor mutable reference to the Option<T> inside said
// cell. This make it safe to hand a reference, though the lifetime
// of 'static is itself unsafe, making the get method unsafe.
unsafe { (*self.inner.get()).as_ref() }
}
2020-09-20 15:31:55 +00:00
/// The caller must ensure that no reference is active: this method
/// needs unique access.
pub unsafe fn initialize<F: FnOnce() -> T>(&self, init: F) -> &'static T {
// Execute the initialization up front, *then* move it into our slot,
// just in case initialization fails.
let value = init();
let ptr = self.inner.get();
// SAFETY:
//
// note that this can in theory just be `*ptr = Some(value)`, but due to
// the compiler will currently codegen that pattern with something like:
//
// ptr::drop_in_place(ptr)
// ptr::write(ptr, Some(value))
//
// Due to this pattern it's possible for the destructor of the value in
// `ptr` (e.g., if this is being recursively initialized) to re-access
// TLS, in which case there will be a `&` and `&mut` pointer to the same
// value (an aliasing violation). To avoid setting the "I'm running a
// destructor" flag we just use `mem::replace` which should sequence the
// operations a little differently and make this safe to call.
//
2020-09-20 15:31:55 +00:00
// The precondition also ensures that we are the only one accessing
// `self` at the moment so replacing is fine.
unsafe {
let _ = mem::replace(&mut *ptr, Some(value));
}
2020-09-20 15:31:55 +00:00
// SAFETY: With the call to `mem::replace` it is guaranteed there is
// a `Some` behind `ptr`, not a `None` so `unreachable_unchecked`
// will never be reached.
unsafe {
// After storing `Some` we want to get a reference to the contents of
// what we just stored. While we could use `unwrap` here and it should
// always work it empirically doesn't seem to always get optimized away,
// which means that using something like `try_with` can pull in
// panicking code and cause a large size bloat.
match *ptr {
Some(ref x) => x,
None => hint::unreachable_unchecked(),
}
}
}
2020-09-20 15:31:55 +00:00
/// The other methods hand out references while taking &self.
/// As such, callers of this method must ensure no `&` and `&mut` are
/// available and used at the same time.
2019-05-04 00:01:53 +00:00
#[allow(unused)]
pub unsafe fn take(&mut self) -> Option<T> {
2020-09-20 15:31:55 +00:00
// SAFETY: See doc comment for this method.
unsafe { (*self.inner.get()).take() }
}
}
}
2021-11-01 14:11:05 +00:00
/// On some targets like wasm there's no threads, so no need to generate
/// thread locals and we can instead just use plain statics!
#[doc(hidden)]
2021-10-28 23:28:21 +00:00
#[cfg(all(target_family = "wasm", not(target_feature = "atomics")))]
pub mod statik {
use super::lazy::LazyKeyInner;
2019-02-10 19:23:21 +00:00
use crate::fmt;
pub struct Key<T> {
inner: LazyKeyInner<T>,
}
unsafe impl<T> Sync for Key<T> {}
impl<T> fmt::Debug for Key<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Key").finish_non_exhaustive()
}
}
impl<T> Key<T> {
pub const fn new() -> Key<T> {
Key { inner: LazyKeyInner::new() }
}
pub unsafe fn get(&self, init: impl FnOnce() -> T) -> Option<&'static T> {
// SAFETY: The caller must ensure no reference is ever handed out to
// the inner cell nor mutable reference to the Option<T> inside said
// cell. This make it safe to hand a reference, though the lifetime
// of 'static is itself unsafe, making the get method unsafe.
let value = unsafe {
match self.inner.get() {
Some(ref value) => value,
None => self.inner.initialize(init),
}
};
Some(value)
}
}
}
#[doc(hidden)]
#[cfg(target_thread_local)]
pub mod fast {
use super::lazy::LazyKeyInner;
use crate::cell::Cell;
2019-02-10 19:23:21 +00:00
use crate::fmt;
use crate::mem;
use crate::sys::thread_local_dtor::register_dtor;
#[derive(Copy, Clone)]
enum DtorState {
Unregistered,
Registered,
RunningOrHasRun,
}
// This data structure has been carefully constructed so that the fast path
// only contains one branch on x86. That optimization is necessary to avoid
// duplicated tls lookups on OSX.
2019-05-11 17:42:44 +00:00
//
// LLVM issue: https://bugs.llvm.org/show_bug.cgi?id=41722
pub struct Key<T> {
// If `LazyKeyInner::get` returns `None`, that indicates either:
// * The value has never been initialized
// * The value is being recursively initialized
// * The value has already been destroyed or is being destroyed
// To determine which kind of `None`, check `dtor_state`.
//
// This is very optimizer friendly for the fast path - initialized but
// not yet dropped.
inner: LazyKeyInner<T>,
// Metadata to keep track of the state of the destructor. Remember that
// this variable is thread-local, not global.
dtor_state: Cell<DtorState>,
}
impl<T> fmt::Debug for Key<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Key").finish_non_exhaustive()
}
}
impl<T> Key<T> {
pub const fn new() -> Key<T> {
Key { inner: LazyKeyInner::new(), dtor_state: Cell::new(DtorState::Unregistered) }
}
2021-12-14 14:23:34 +00:00
// note that this is just a publicly-callable function only for the
// const-initialized form of thread locals, basically a way to call the
// free `register_dtor` function defined elsewhere in libstd.
pub unsafe fn register_dtor(a: *mut u8, dtor: unsafe extern "C" fn(*mut u8)) {
unsafe {
register_dtor(a, dtor);
}
}
pub unsafe fn get<F: FnOnce() -> T>(&self, init: F) -> Option<&'static T> {
// SAFETY: See the definitions of `LazyKeyInner::get` and
2021-12-14 14:23:34 +00:00
// `try_initialize` for more information.
//
2020-09-20 15:31:55 +00:00
// The caller must ensure no mutable references are ever active to
// the inner cell or the inner T when this is called.
// The `try_initialize` is dependant on the passed `init` function
// for this.
unsafe {
match self.inner.get() {
Some(val) => Some(val),
None => self.try_initialize(init),
}
}
}
// `try_initialize` is only called once per fast thread local variable,
// except in corner cases where thread_local dtors reference other
// thread_local's, or it is being recursively initialized.
//
// Macos: Inlining this function can cause two `tlv_get_addr` calls to
// be performed for every call to `Key::get`.
// LLVM issue: https://bugs.llvm.org/show_bug.cgi?id=41722
#[inline(never)]
unsafe fn try_initialize<F: FnOnce() -> T>(&self, init: F) -> Option<&'static T> {
// SAFETY: See comment above (this function doc).
if !mem::needs_drop::<T>() || unsafe { self.try_register_dtor() } {
// SAFETY: See comment above (his function doc).
Some(unsafe { self.inner.initialize(init) })
} else {
None
}
}
// `try_register_dtor` is only called once per fast thread local
// variable, except in corner cases where thread_local dtors reference
// other thread_local's, or it is being recursively initialized.
unsafe fn try_register_dtor(&self) -> bool {
match self.dtor_state.get() {
DtorState::Unregistered => {
// SAFETY: dtor registration happens before initialization.
// Passing `self` as a pointer while using `destroy_value<T>`
// is safe because the function will build a pointer to a
// Key<T>, which is the type of self and so find the correct
// size.
unsafe { register_dtor(self as *const _ as *mut u8, destroy_value::<T>) };
self.dtor_state.set(DtorState::Registered);
true
}
DtorState::Registered => {
// recursively initialized
true
}
DtorState::RunningOrHasRun => false,
}
}
}
unsafe extern "C" fn destroy_value<T>(ptr: *mut u8) {
let ptr = ptr as *mut Key<T>;
// SAFETY:
//
// The pointer `ptr` has been built just above and comes from
// `try_register_dtor` where it is originally a Key<T> coming from `self`,
// making it non-NUL and of the correct type.
//
// Right before we run the user destructor be sure to set the
// `Option<T>` to `None`, and `dtor_state` to `RunningOrHasRun`. This
// causes future calls to `get` to run `try_initialize_drop` again,
// which will now fail, and return `None`.
unsafe {
let value = (*ptr).inner.take();
(*ptr).dtor_state.set(DtorState::RunningOrHasRun);
drop(value);
}
}
}
#[doc(hidden)]
pub mod os {
use super::lazy::LazyKeyInner;
use crate::cell::Cell;
2019-02-10 19:23:21 +00:00
use crate::fmt;
use crate::marker;
use crate::ptr;
use crate::sys_common::thread_local_key::StaticKey as OsStaticKey;
pub struct Key<T> {
// OS-TLS key that we'll use to key off.
os: OsStaticKey,
marker: marker::PhantomData<Cell<T>>,
}
impl<T> fmt::Debug for Key<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Key").finish_non_exhaustive()
}
}
unsafe impl<T> Sync for Key<T> {}
2014-12-06 16:39:25 +00:00
struct Value<T: 'static> {
inner: LazyKeyInner<T>,
key: &'static Key<T>,
}
impl<T: 'static> Key<T> {
#[rustc_const_unstable(feature = "thread_local_internals", issue = "none")]
pub const fn new() -> Key<T> {
Key { os: OsStaticKey::new(Some(destroy_value::<T>)), marker: marker::PhantomData }
}
2020-09-20 15:31:55 +00:00
/// It is a requirement for the caller to ensure that no mutable
/// reference is active when this method is called.
pub unsafe fn get(&'static self, init: impl FnOnce() -> T) -> Option<&'static T> {
2020-09-20 15:31:55 +00:00
// SAFETY: See the documentation for this method.
let ptr = unsafe { self.os.get() as *mut Value<T> };
if ptr as usize > 1 {
// SAFETY: the check ensured the pointer is safe (its destructor
// is not running) + it is coming from a trusted source (self).
if let Some(ref value) = unsafe { (*ptr).inner.get() } {
2019-09-05 12:08:06 +00:00
return Some(value);
}
}
// SAFETY: At this point we are sure we have no value and so
// initializing (or trying to) is safe.
unsafe { self.try_initialize(init) }
}
// `try_initialize` is only called once per os thread local variable,
// except in corner cases where thread_local dtors reference other
// thread_local's, or it is being recursively initialized.
unsafe fn try_initialize(&'static self, init: impl FnOnce() -> T) -> Option<&'static T> {
// SAFETY: No mutable references are ever handed out meaning getting
// the value is ok.
let ptr = unsafe { self.os.get() as *mut Value<T> };
if ptr as usize == 1 {
// destructor is running
return None;
}
let ptr = if ptr.is_null() {
// If the lookup returned null, we haven't initialized our own
// local copy, so do that now.
let ptr: Box<Value<T>> = box Value { inner: LazyKeyInner::new(), key: self };
let ptr = Box::into_raw(ptr);
// SAFETY: At this point we are sure there is no value inside
// ptr so setting it will not affect anyone else.
unsafe {
self.os.set(ptr as *mut u8);
}
ptr
} else {
// recursive initialization
ptr
};
// SAFETY: ptr has been ensured as non-NUL just above an so can be
// dereferenced safely.
unsafe { Some((*ptr).inner.initialize(init)) }
}
}
unsafe extern "C" fn destroy_value<T: 'static>(ptr: *mut u8) {
// SAFETY:
//
2021-05-02 21:55:22 +00:00
// The OS TLS ensures that this key contains a null value when this
// destructor starts to run. We set it back to a sentinel value of 1 to
// ensure that any future calls to `get` for this thread will return
// `None`.
//
// Note that to prevent an infinite loop we reset it back to null right
// before we return from the destructor ourselves.
unsafe {
let ptr = Box::from_raw(ptr as *mut Value<T>);
let key = ptr.key;
key.os.set(1 as *mut u8);
drop(ptr);
key.os.set(ptr::null_mut());
}
}
}