rust/README.md

70 lines
3.0 KiB
Markdown
Raw Normal View History

2020-10-03 06:40:18 +00:00
# stdsimd - Rust's standard library portable SIMD API
[![Build Status](https://travis-ci.com/rust-lang/stdsimd.svg?branch=master)](https://travis-ci.com/rust-lang/stdsimd)
2020-09-22 02:03:54 +00:00
Code repository for the [Portable SIMD Project Group](https://github.com/rust-lang/project-portable-simd).
2020-10-12 21:31:55 +00:00
Please refer to [CONTRIBUTING.md](./CONTRIBUTING.md) for our contributing guidelines.
2021-02-09 02:52:27 +00:00
The docs for this crate are published from the main branch.
You can [read them here][docs].
2020-10-12 21:31:55 +00:00
If you have questions about SIMD, we have begun writing a [guide][simd-guide].
We can also be found on [Zulip][zulip-project-portable-simd].
If you are interested in support for a specific architecture, you may want [stdarch] instead.
2020-09-22 02:03:54 +00:00
## Hello World
Now we're gonna dip our toes into this world with a small SIMD "Hello, World!" example. Make sure your compiler is up to date and using `nightly`. We can do that by running
```bash
rustup update -- nightly
```
or by setting up `rustup default nightly` or else with `cargo +nihgtly {build,test, run}`. After updating, run
```bash
cargo new hellosimd
```
to create a new crate. Edit `hellosimd/Cargo.toml` to be
```toml
[package]
name = "hellosimd"
version = "0.1.0"
edition = "2018"
[dependencies]
core_simd = { git = "https://github.com/rust-lang/stdsimd" }
```
and finally write this in `src/main.rs`:
```rust
use core_simd::*;
fn main() {
let a = f32x4::splat(10.0);
let b = f32x4::from_array([1.0, 2.0, 3.0, 4.0]);
println!("{:?}", a + b);
}
```
Explanation: We import all the bindings from the crate with the first line. Then, we construct our SIMD vectors with methods like `splat` or `from_array`. Finally, we can use operators on them like `+` and the appropriate SIMD instructions will be carried out. When we run `cargo run` you should get `[11.0, 12.0, 13.0, 14.0]`.
2020-09-27 02:57:32 +00:00
## Code Organization
Currently the crate is organized so that each element type is a file, and then the 64-bit, 128-bit, 256-bit, and 512-bit vectors using those types are contained in said file.
2020-09-27 02:58:34 +00:00
All types are then exported as a single, flat module.
2020-09-27 02:57:32 +00:00
Depending on the size of the primitive type, the number of lanes the vector will have varies. For example, 128-bit vectors have four `f32` lanes and two `f64` lanes.
The supported element types are as follows:
* **Floating Point:** `f32`, `f64`
* **Signed Integers:** `i8`, `i16`, `i32`, `i64`, `i128`, `isize`
* **Unsigned Integers:** `u8`, `u16`, `u32`, `u64`, `u128`, `usize`
2020-09-27 03:20:34 +00:00
* **Masks:** `mask8`, `mask16`, `mask32`, `mask64`, `mask128`, `masksize`
2020-09-27 02:57:32 +00:00
Floating point, signed integers, and unsigned integers are the [primitive types](https://doc.rust-lang.org/core/primitive/index.html) you're already used to.
The `mask` types are "truthy" values, but they use the number of bits in their name instead of just 1 bit like a normal `bool` uses.
2020-10-12 21:31:55 +00:00
[simd-guide]: ./beginners-guide.md
[zulip-project-portable-simd]: https://rust-lang.zulipchat.com/#narrow/stream/257879-project-portable-simd
[stdarch]: https://github.com/rust-lang/stdarch
2021-02-09 02:52:27 +00:00
[docs]: https://rust-lang.github.io/stdsimd/core_simd