rust/compiler/rustc_middle/src/query/mod.rs

1749 lines
72 KiB
Rust
Raw Normal View History

2018-12-03 00:14:35 +00:00
// Each of these queries corresponds to a function pointer field in the
// `Providers` struct for requesting a value of that type, and a method
// on `tcx: TyCtxt` (and `tcx.at(span)`) for doing that request in a way
// which memoizes and does dep-graph tracking, wrapping around the actual
// `Providers` that the driver creates (using several `rustc_*` crates).
//
// The result type of each query must implement `Clone`, and additionally
// `ty::query::values::Value`, which produces an appropriate placeholder
// (error) value if the query resulted in a query cycle.
// Queries marked with `fatal_cycle` do not need the latter implementation,
// as they will raise an fatal error on query cycles instead.
rustc_queries! {
query trigger_delay_span_bug(key: DefId) -> () {
desc { "trigger a delay span bug" }
}
2021-04-04 12:40:35 +00:00
query resolutions(_: ()) -> &'tcx ty::ResolverOutputs {
eval_always
no_hash
desc { "get the resolver outputs" }
}
/// Represents crate as a whole (as distinct from the top-level crate module).
/// If you call `hir_crate` (e.g., indirectly by calling `tcx.hir().krate()`),
/// we will have to assume that any change means that you need to be recompiled.
/// This is because the `hir_crate` query gives you access to all other items.
/// To avoid this fate, do not call `tcx.hir().krate()`; instead,
/// prefer wrappers like `tcx.visit_all_items_in_krate()`.
2021-05-11 09:42:01 +00:00
query hir_crate(key: ()) -> &'tcx Crate<'tcx> {
eval_always
no_hash
desc { "get the crate HIR" }
}
2020-02-06 11:16:51 +00:00
/// The indexed HIR. This can be conveniently accessed by `tcx.hir()`.
/// Avoid calling this query directly.
2021-05-11 09:42:01 +00:00
query index_hir(_: ()) -> &'tcx crate::hir::IndexedHir<'tcx> {
eval_always
no_hash
desc { "index HIR" }
}
2020-02-07 12:13:35 +00:00
/// The items in a module.
///
/// This can be conveniently accessed by `tcx.hir().visit_item_likes_in_module`.
/// Avoid calling this query directly.
query hir_module_items(key: LocalDefId) -> &'tcx hir::ModuleItems {
eval_always
desc { |tcx| "HIR module items in `{}`", tcx.def_path_str(key.to_def_id()) }
}
2020-02-07 17:25:36 +00:00
/// Gives access to the HIR node for the HIR owner `key`.
///
/// This can be conveniently accessed by methods on `tcx.hir()`.
/// Avoid calling this query directly.
2021-05-28 19:14:11 +00:00
query hir_owner(key: LocalDefId) -> Option<crate::hir::Owner<'tcx>> {
eval_always
desc { |tcx| "HIR owner of `{}`", tcx.def_path_str(key.to_def_id()) }
}
2020-02-07 10:14:47 +00:00
2021-03-06 10:25:41 +00:00
/// Gives access to the HIR node's parent for the HIR owner `key`.
///
/// This can be conveniently accessed by methods on `tcx.hir()`.
/// Avoid calling this query directly.
query hir_owner_parent(key: LocalDefId) -> hir::HirId {
eval_always
desc { |tcx| "HIR parent of `{}`", tcx.def_path_str(key.to_def_id()) }
}
/// Gives access to the HIR nodes and bodies inside the HIR owner `key`.
///
/// This can be conveniently accessed by methods on `tcx.hir()`.
/// Avoid calling this query directly.
query hir_owner_nodes(key: LocalDefId) -> Option<&'tcx crate::hir::OwnerNodes<'tcx>> {
eval_always
desc { |tcx| "HIR owner items in `{}`", tcx.def_path_str(key.to_def_id()) }
}
2020-02-07 10:14:47 +00:00
/// Gives access to the HIR attributes inside the HIR owner `key`.
///
/// This can be conveniently accessed by methods on `tcx.hir()`.
/// Avoid calling this query directly.
2021-01-24 16:14:17 +00:00
query hir_attrs(key: LocalDefId) -> rustc_middle::hir::AttributeMap<'tcx> {
eval_always
desc { |tcx| "HIR owner attributes in `{}`", tcx.def_path_str(key.to_def_id()) }
}
/// Computes the `DefId` of the corresponding const parameter in case the `key` is a
/// const argument and returns `None` otherwise.
///
/// ```ignore (incomplete)
/// let a = foo::<7>();
/// // ^ Calling `opt_const_param_of` for this argument,
///
/// fn foo<const N: usize>()
/// // ^ returns this `DefId`.
///
/// fn bar() {
/// // ^ While calling `opt_const_param_of` for other bodies returns `None`.
/// }
/// ```
// It looks like caching this query on disk actually slightly
// worsened performance in #74376.
//
// Once const generics are more prevalently used, we might want to
// consider only caching calls returning `Some`.
query opt_const_param_of(key: LocalDefId) -> Option<DefId> {
desc { |tcx| "computing the optional const parameter of `{}`", tcx.def_path_str(key.to_def_id()) }
}
2021-03-03 06:38:02 +00:00
/// Given the def_id of a const-generic parameter, computes the associated default const
2021-03-20 22:34:58 +00:00
/// parameter. e.g. `fn example<const N: usize=3>` called on `N` would return `3`.
2021-03-03 06:38:02 +00:00
query const_param_default(param: DefId) -> &'tcx ty::Const<'tcx> {
desc { |tcx| "compute const default for a given parameter `{}`", tcx.def_path_str(param) }
}
/// Records the type of every item.
query type_of(key: DefId) -> Ty<'tcx> {
desc { |tcx| "computing type of `{}`", tcx.def_path_str(key) }
cache_on_disk_if { key.is_local() }
}
2018-12-03 00:14:35 +00:00
2021-05-11 12:50:54 +00:00
query analysis(key: ()) -> Result<(), ErrorReported> {
eval_always
desc { "running analysis passes on this crate" }
}
2020-02-25 23:26:38 +00:00
/// Maps from the `DefId` of an item (trait/struct/enum/fn) to its
/// associated generics.
query generics_of(key: DefId) -> ty::Generics {
desc { |tcx| "computing generics of `{}`", tcx.def_path_str(key) }
storage(ArenaCacheSelector<'tcx>)
cache_on_disk_if { key.is_local() }
}
/// Maps from the `DefId` of an item (trait/struct/enum/fn) to the
/// predicates (where-clauses) that must be proven true in order
/// to reference it. This is almost always the "predicates query"
/// that you want.
///
/// `predicates_of` builds on `predicates_defined_on` -- in fact,
/// it is almost always the same as that query, except for the
/// case of traits. For traits, `predicates_of` contains
/// an additional `Self: Trait<...>` predicate that users don't
/// actually write. This reflects the fact that to invoke the
/// trait (e.g., via `Default::default`) you must supply types
/// that actually implement the trait. (However, this extra
/// predicate gets in the way of some checks, which are intended
/// to operate over only the actual where-clauses written by the
/// user.)
query predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> {
desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) }
cache_on_disk_if { key.is_local() }
}
/// Returns the list of bounds that can be used for
/// `SelectionCandidate::ProjectionCandidate(_)` and
/// `ProjectionTyCandidate::TraitDef`.
/// Specifically this is the bounds written on the trait's type
/// definition, or those after the `impl` keyword
///
/// ```ignore (incomplete)
/// type X: Bound + 'lt
/// // ^^^^^^^^^^^
/// impl Debug + Display
/// // ^^^^^^^^^^^^^^^
/// ```
///
/// `key` is the `DefId` of the associated type or opaque type.
///
/// Bounds from the parent (e.g. with nested impl trait) are not included.
query explicit_item_bounds(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] {
desc { |tcx| "finding item bounds for `{}`", tcx.def_path_str(key) }
}
2020-06-24 18:13:44 +00:00
/// Elaborated version of the predicates from `explicit_item_bounds`.
///
/// For example:
///
/// ```
/// trait MyTrait {
/// type MyAType: Eq + ?Sized;
/// }
/// ```
///
/// `explicit_item_bounds` returns `[<Self as MyTrait>::MyAType: Eq]`,
/// and `item_bounds` returns
/// ```text
/// [
/// <Self as Trait>::MyAType: Eq,
/// <Self as Trait>::MyAType: PartialEq<<Self as Trait>::MyAType>
/// ]
/// ```
///
/// Bounds from the parent (e.g. with nested impl trait) are not included.
query item_bounds(key: DefId) -> &'tcx ty::List<ty::Predicate<'tcx>> {
desc { |tcx| "elaborating item bounds for `{}`", tcx.def_path_str(key) }
}
query native_libraries(_: CrateNum) -> Lrc<Vec<NativeLib>> {
desc { "looking up the native libraries of a linked crate" }
}
2021-05-11 10:22:11 +00:00
query lint_levels(_: ()) -> LintLevelMap {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "computing the lint levels for items in this crate" }
}
query parent_module_from_def_id(key: LocalDefId) -> LocalDefId {
eval_always
desc { |tcx| "parent module of `{}`", tcx.def_path_str(key.to_def_id()) }
}
query expn_that_defined(key: DefId) -> rustc_span::ExpnId {
// This query reads from untracked data in definitions.
eval_always
desc { |tcx| "expansion that defined `{}`", tcx.def_path_str(key) }
}
2018-12-03 00:14:35 +00:00
query is_panic_runtime(_: CrateNum) -> bool {
fatal_cycle
desc { "checking if the crate is_panic_runtime" }
}
2021-05-22 13:40:26 +00:00
/// Fetch the THIR for a given body. If typeck for that body failed, returns an empty `Thir`.
2021-04-04 16:42:17 +00:00
query thir_body(key: ty::WithOptConstParam<LocalDefId>) -> (&'tcx Steal<thir::Thir<'tcx>>, thir::ExprId) {
// Perf tests revealed that hashing THIR is inefficient (see #85729).
2021-05-26 20:34:42 +00:00
no_hash
2021-04-04 16:42:17 +00:00
desc { |tcx| "building THIR for `{}`", tcx.def_path_str(key.did.to_def_id()) }
}
2021-07-24 21:18:15 +00:00
/// Create a THIR tree for debugging.
query thir_tree(key: ty::WithOptConstParam<LocalDefId>) -> String {
no_hash
desc { |tcx| "constructing THIR tree for `{}`", tcx.def_path_str(key.did.to_def_id()) }
}
2021-04-04 16:42:17 +00:00
/// Set of all the `DefId`s in this crate that have MIR associated with
/// them. This includes all the body owners, but also things like struct
/// constructors.
2021-05-11 10:26:53 +00:00
query mir_keys(_: ()) -> FxHashSet<LocalDefId> {
storage(ArenaCacheSelector<'tcx>)
desc { "getting a list of all mir_keys" }
}
/// Maps DefId's that have an associated `mir::Body` to the result
/// of the MIR const-checking pass. This is the set of qualifs in
/// the final value of a `const`.
query mir_const_qualif(key: DefId) -> mir::ConstQualifs {
desc { |tcx| "const checking `{}`", tcx.def_path_str(key) }
cache_on_disk_if { key.is_local() }
}
query mir_const_qualif_const_arg(
key: (LocalDefId, DefId)
) -> mir::ConstQualifs {
desc {
|tcx| "const checking the const argument `{}`",
tcx.def_path_str(key.0.to_def_id())
2020-07-06 21:49:53 +00:00
}
}
/// Fetch the MIR for a given `DefId` right after it's built - this includes
/// unreachable code.
query mir_built(key: ty::WithOptConstParam<LocalDefId>) -> &'tcx Steal<mir::Body<'tcx>> {
desc { |tcx| "building MIR for `{}`", tcx.def_path_str(key.did.to_def_id()) }
}
/// Fetch the MIR for a given `DefId` up till the point where it is
/// ready for const qualification.
///
/// See the README for the `mir` module for details.
query mir_const(key: ty::WithOptConstParam<LocalDefId>) -> &'tcx Steal<mir::Body<'tcx>> {
desc {
|tcx| "processing MIR for {}`{}`",
if key.const_param_did.is_some() { "the const argument " } else { "" },
tcx.def_path_str(key.did.to_def_id()),
}
no_hash
}
/// Try to build an abstract representation of the given constant.
query mir_abstract_const(
key: DefId
) -> Result<Option<&'tcx [mir::abstract_const::Node<'tcx>]>, ErrorReported> {
desc {
|tcx| "building an abstract representation for {}", tcx.def_path_str(key),
2020-09-10 07:06:30 +00:00
}
}
/// Try to build an abstract representation of the given constant.
query mir_abstract_const_of_const_arg(
key: (LocalDefId, DefId)
) -> Result<Option<&'tcx [mir::abstract_const::Node<'tcx>]>, ErrorReported> {
desc {
|tcx|
"building an abstract representation for the const argument {}",
tcx.def_path_str(key.0.to_def_id()),
2020-09-10 07:06:30 +00:00
}
}
2020-09-10 07:06:30 +00:00
query try_unify_abstract_consts(key: (
(ty::WithOptConstParam<DefId>, SubstsRef<'tcx>),
(ty::WithOptConstParam<DefId>, SubstsRef<'tcx>)
)) -> bool {
desc {
|tcx| "trying to unify the generic constants {} and {}",
tcx.def_path_str(key.0.0.did), tcx.def_path_str(key.1.0.did)
}
}
query mir_drops_elaborated_and_const_checked(
key: ty::WithOptConstParam<LocalDefId>
) -> &'tcx Steal<mir::Body<'tcx>> {
no_hash
desc { |tcx| "elaborating drops for `{}`", tcx.def_path_str(key.did.to_def_id()) }
}
query mir_for_ctfe(
key: DefId
) -> &'tcx mir::Body<'tcx> {
desc { |tcx| "caching mir of `{}` for CTFE", tcx.def_path_str(key) }
cache_on_disk_if { key.is_local() }
}
query mir_for_ctfe_of_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::Body<'tcx> {
desc {
|tcx| "MIR for CTFE of the const argument `{}`",
tcx.def_path_str(key.0.to_def_id())
}
}
query mir_promoted(key: ty::WithOptConstParam<LocalDefId>) ->
(
&'tcx Steal<mir::Body<'tcx>>,
&'tcx Steal<IndexVec<mir::Promoted, mir::Body<'tcx>>>
) {
no_hash
desc {
|tcx| "processing {}`{}`",
if key.const_param_did.is_some() { "the const argument " } else { "" },
tcx.def_path_str(key.did.to_def_id()),
}
}
query symbols_for_closure_captures(
key: (LocalDefId, DefId)
) -> Vec<rustc_span::Symbol> {
desc {
|tcx| "symbols for captures of closure `{}` in `{}`",
tcx.def_path_str(key.1),
tcx.def_path_str(key.0.to_def_id())
}
}
/// MIR after our optimization passes have run. This is MIR that is ready
/// for codegen. This is also the only query that can fetch non-local MIR, at present.
query optimized_mir(key: DefId) -> &'tcx mir::Body<'tcx> {
desc { |tcx| "optimizing MIR for `{}`", tcx.def_path_str(key) }
cache_on_disk_if { key.is_local() }
}
/// Returns coverage summary info for a function, after executing the `InstrumentCoverage`
/// MIR pass (assuming the -Zinstrument-coverage option is enabled).
query coverageinfo(key: ty::InstanceDef<'tcx>) -> mir::CoverageInfo {
desc { |tcx| "retrieving coverage info from MIR for `{}`", tcx.def_path_str(key.def_id()) }
storage(ArenaCacheSelector<'tcx>)
}
/// Returns the name of the file that contains the function body, if instrumented for coverage.
query covered_file_name(key: DefId) -> Option<Symbol> {
coverage bug fixes and optimization support Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to address multiple, somewhat related issues. Fixed a significant flaw in prior coverage solution: Every counter generated a new counter variable, but there should have only been one counter variable per function. This appears to have bloated .profraw files significantly. (For a small program, it increased the size by about 40%. I have not tested large programs, but there is anecdotal evidence that profraw files were way too large. This is a good fix, regardless, but hopefully it also addresses related issues. Fixes: #82144 Invalid LLVM coverage data produced when compiled with -C opt-level=1 Existing tests now work up to at least `opt-level=3`. This required a detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR when compiled with coverage, and a lot of trial and error with codegen adjustments. The biggest hurdle was figuring out how to continue to support coverage results for unused functions and generics. Rust's coverage results have three advantages over Clang's coverage results: 1. Rust's coverage map does not include any overlapping code regions, making coverage counting unambiguous. 2. Rust generates coverage results (showing zero counts) for all unused functions, including generics. (Clang does not generate coverage for uninstantiated template functions.) 3. Rust's unused functions produce minimal stubbed functions in LLVM IR, sufficient for including in the coverage results; while Clang must generate the complete LLVM IR for each unused function, even though it will never be called. This PR removes the previous hack of attempting to inject coverage into some other existing function instance, and generates dedicated instances for each unused function. This change, and a few other adjustments (similar to what is required for `-C link-dead-code`, but with lower impact), makes it possible to support LLVM optimizations. Fixes: #79651 Coverage report: "Unexecuted instantiation:..." for a generic function from multiple crates Fixed by removing the aforementioned hack. Some "Unexecuted instantiation" notices are unavoidable, as explained in the `used_crate.rs` test, but `-Zinstrument-coverage` has new options to back off support for either unused generics, or all unused functions, which avoids the notice, at the cost of less coverage of unused functions. Fixes: #82875 Invalid LLVM coverage data produced with crate brotli_decompressor Fixed by disabling the LLVM function attribute that forces inlining, if `-Z instrument-coverage` is enabled. This attribute is applied to Rust functions with `#[inline(always)], and in some cases, the forced inlining breaks coverage instrumentation and reports.
2021-03-15 23:32:45 +00:00
desc {
|tcx| "retrieving the covered file name, if instrumented, for `{}`",
tcx.def_path_str(key)
}
storage(ArenaCacheSelector<'tcx>)
cache_on_disk_if { key.is_local() }
}
/// Returns the `CodeRegions` for a function that has instrumented coverage, in case the
/// function was optimized out before codegen, and before being added to the Coverage Map.
query covered_code_regions(key: DefId) -> Vec<&'tcx mir::coverage::CodeRegion> {
coverage bug fixes and optimization support Adjusted LLVM codegen for code compiled with `-Zinstrument-coverage` to address multiple, somewhat related issues. Fixed a significant flaw in prior coverage solution: Every counter generated a new counter variable, but there should have only been one counter variable per function. This appears to have bloated .profraw files significantly. (For a small program, it increased the size by about 40%. I have not tested large programs, but there is anecdotal evidence that profraw files were way too large. This is a good fix, regardless, but hopefully it also addresses related issues. Fixes: #82144 Invalid LLVM coverage data produced when compiled with -C opt-level=1 Existing tests now work up to at least `opt-level=3`. This required a detailed analysis of the LLVM IR, comparisons with Clang C++ LLVM IR when compiled with coverage, and a lot of trial and error with codegen adjustments. The biggest hurdle was figuring out how to continue to support coverage results for unused functions and generics. Rust's coverage results have three advantages over Clang's coverage results: 1. Rust's coverage map does not include any overlapping code regions, making coverage counting unambiguous. 2. Rust generates coverage results (showing zero counts) for all unused functions, including generics. (Clang does not generate coverage for uninstantiated template functions.) 3. Rust's unused functions produce minimal stubbed functions in LLVM IR, sufficient for including in the coverage results; while Clang must generate the complete LLVM IR for each unused function, even though it will never be called. This PR removes the previous hack of attempting to inject coverage into some other existing function instance, and generates dedicated instances for each unused function. This change, and a few other adjustments (similar to what is required for `-C link-dead-code`, but with lower impact), makes it possible to support LLVM optimizations. Fixes: #79651 Coverage report: "Unexecuted instantiation:..." for a generic function from multiple crates Fixed by removing the aforementioned hack. Some "Unexecuted instantiation" notices are unavoidable, as explained in the `used_crate.rs` test, but `-Zinstrument-coverage` has new options to back off support for either unused generics, or all unused functions, which avoids the notice, at the cost of less coverage of unused functions. Fixes: #82875 Invalid LLVM coverage data produced with crate brotli_decompressor Fixed by disabling the LLVM function attribute that forces inlining, if `-Z instrument-coverage` is enabled. This attribute is applied to Rust functions with `#[inline(always)], and in some cases, the forced inlining breaks coverage instrumentation and reports.
2021-03-15 23:32:45 +00:00
desc {
|tcx| "retrieving the covered `CodeRegion`s, if instrumented, for `{}`",
tcx.def_path_str(key)
}
storage(ArenaCacheSelector<'tcx>)
cache_on_disk_if { key.is_local() }
}
/// The `DefId` is the `DefId` of the containing MIR body. Promoteds do not have their own
/// `DefId`. This function returns all promoteds in the specified body. The body references
/// promoteds by the `DefId` and the `mir::Promoted` index. This is necessary, because
/// after inlining a body may refer to promoteds from other bodies. In that case you still
/// need to use the `DefId` of the original body.
query promoted_mir(key: DefId) -> &'tcx IndexVec<mir::Promoted, mir::Body<'tcx>> {
desc { |tcx| "optimizing promoted MIR for `{}`", tcx.def_path_str(key) }
cache_on_disk_if { key.is_local() }
}
query promoted_mir_of_const_arg(
key: (LocalDefId, DefId)
) -> &'tcx IndexVec<mir::Promoted, mir::Body<'tcx>> {
desc {
|tcx| "optimizing promoted MIR for the const argument `{}`",
tcx.def_path_str(key.0.to_def_id()),
2020-07-06 21:49:53 +00:00
}
}
/// Erases regions from `ty` to yield a new type.
/// Normally you would just use `tcx.erase_regions(value)`,
/// however, which uses this query as a kind of cache.
query erase_regions_ty(ty: Ty<'tcx>) -> Ty<'tcx> {
// This query is not expected to have input -- as a result, it
// is not a good candidates for "replay" because it is essentially a
// pure function of its input (and hence the expectation is that
// no caller would be green **apart** from just these
// queries). Making it anonymous avoids hashing the result, which
// may save a bit of time.
anon
desc { "erasing regions from `{:?}`", ty }
}
query wasm_import_module_map(_: CrateNum) -> FxHashMap<DefId, String> {
storage(ArenaCacheSelector<'tcx>)
desc { "wasm import module map" }
}
/// Maps from the `DefId` of an item (trait/struct/enum/fn) to the
/// predicates (where-clauses) directly defined on it. This is
/// equal to the `explicit_predicates_of` predicates plus the
/// `inferred_outlives_of` predicates.
query predicates_defined_on(key: DefId) -> ty::GenericPredicates<'tcx> {
desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) }
}
/// Returns everything that looks like a predicate written explicitly
/// by the user on a trait item.
///
/// Traits are unusual, because predicates on associated types are
/// converted into bounds on that type for backwards compatibility:
///
/// trait X where Self::U: Copy { type U; }
///
/// becomes
///
/// trait X { type U: Copy; }
///
/// `explicit_predicates_of` and `explicit_item_bounds` will then take
/// the appropriate subsets of the predicates here.
query trait_explicit_predicates_and_bounds(key: LocalDefId) -> ty::GenericPredicates<'tcx> {
desc { |tcx| "computing explicit predicates of trait `{}`", tcx.def_path_str(key.to_def_id()) }
}
/// Returns the predicates written explicitly by the user.
query explicit_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> {
desc { |tcx| "computing explicit predicates of `{}`", tcx.def_path_str(key) }
}
/// Returns the inferred outlives predicates (e.g., for `struct
/// Foo<'a, T> { x: &'a T }`, this would return `T: 'a`).
query inferred_outlives_of(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] {
desc { |tcx| "computing inferred outlives predicates of `{}`", tcx.def_path_str(key) }
}
/// Maps from the `DefId` of a trait to the list of
/// super-predicates. This is a subset of the full list of
/// predicates. We store these in a separate map because we must
/// evaluate them even during type conversion, often before the
/// full predicates are available (note that supertraits have
/// additional acyclicity requirements).
query super_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> {
desc { |tcx| "computing the super predicates of `{}`", tcx.def_path_str(key) }
}
/// The `Option<Ident>` is the name of an associated type. If it is `None`, then this query
/// returns the full set of predicates. If `Some<Ident>`, then the query returns only the
/// subset of super-predicates that reference traits that define the given associated type.
/// This is used to avoid cycles in resolving types like `T::Item`.
query super_predicates_that_define_assoc_type(key: (DefId, Option<rustc_span::symbol::Ident>)) -> ty::GenericPredicates<'tcx> {
desc { |tcx| "computing the super traits of `{}`{}",
tcx.def_path_str(key.0),
if let Some(assoc_name) = key.1 { format!(" with associated type name `{}`", assoc_name) } else { "".to_string() },
}
}
/// To avoid cycles within the predicates of a single item we compute
/// per-type-parameter predicates for resolving `T::AssocTy`.
query type_param_predicates(key: (DefId, LocalDefId, rustc_span::symbol::Ident)) -> ty::GenericPredicates<'tcx> {
desc { |tcx| "computing the bounds for type parameter `{}`", {
let id = tcx.hir().local_def_id_to_hir_id(key.1);
tcx.hir().ty_param_name(id)
}}
}
query trait_def(key: DefId) -> ty::TraitDef {
desc { |tcx| "computing trait definition for `{}`", tcx.def_path_str(key) }
storage(ArenaCacheSelector<'tcx>)
}
query adt_def(key: DefId) -> &'tcx ty::AdtDef {
desc { |tcx| "computing ADT definition for `{}`", tcx.def_path_str(key) }
}
query adt_destructor(key: DefId) -> Option<ty::Destructor> {
desc { |tcx| "computing `Drop` impl for `{}`", tcx.def_path_str(key) }
}
// The cycle error here should be reported as an error by `check_representable`.
// We consider the type as Sized in the meanwhile to avoid
// further errors (done in impl Value for AdtSizedConstraint).
// Use `cycle_delay_bug` to delay the cycle error here to be emitted later
// in case we accidentally otherwise don't emit an error.
query adt_sized_constraint(
key: DefId
) -> AdtSizedConstraint<'tcx> {
desc { |tcx| "computing `Sized` constraints for `{}`", tcx.def_path_str(key) }
cycle_delay_bug
}
query adt_dtorck_constraint(
key: DefId
) -> Result<DtorckConstraint<'tcx>, NoSolution> {
desc { |tcx| "computing drop-check constraints for `{}`", tcx.def_path_str(key) }
}
/// Returns `true` if this is a const fn, use the `is_const_fn` to know whether your crate
/// actually sees it as const fn (e.g., the const-fn-ness might be unstable and you might
/// not have the feature gate active).
///
/// **Do not call this function manually.** It is only meant to cache the base data for the
/// `is_const_fn` function.
query is_const_fn_raw(key: DefId) -> bool {
desc { |tcx| "checking if item is const fn: `{}`", tcx.def_path_str(key) }
}
/// Returns `true` if this is a const `impl`. **Do not call this function manually.**
///
/// This query caches the base data for the `is_const_impl` helper function, which also
/// takes into account stability attributes (e.g., `#[rustc_const_unstable]`).
query is_const_impl_raw(key: DefId) -> bool {
desc { |tcx| "checking if item is const impl: `{}`", tcx.def_path_str(key) }
}
2020-02-03 20:21:27 +00:00
query asyncness(key: DefId) -> hir::IsAsync {
desc { |tcx| "checking if the function is async: `{}`", tcx.def_path_str(key) }
}
2019-09-19 03:02:08 +00:00
/// Returns `true` if calls to the function may be promoted.
///
/// This is either because the function is e.g., a tuple-struct or tuple-variant
/// constructor, or because it has the `#[rustc_promotable]` attribute. The attribute should
/// be removed in the future in favour of some form of check which figures out whether the
/// function does not inspect the bits of any of its arguments (so is essentially just a
/// constructor function).
query is_promotable_const_fn(key: DefId) -> bool {
desc { |tcx| "checking if item is promotable: `{}`", tcx.def_path_str(key) }
}
/// Returns `true` if this is a foreign item (i.e., linked via `extern { ... }`).
query is_foreign_item(key: DefId) -> bool {
desc { |tcx| "checking if `{}` is a foreign item", tcx.def_path_str(key) }
}
/// Returns `Some(mutability)` if the node pointed to by `def_id` is a static item.
query static_mutability(def_id: DefId) -> Option<hir::Mutability> {
desc { |tcx| "looking up static mutability of `{}`", tcx.def_path_str(def_id) }
}
2019-04-19 20:32:26 +00:00
/// Returns `Some(generator_kind)` if the node pointed to by `def_id` is a generator.
query generator_kind(def_id: DefId) -> Option<hir::GeneratorKind> {
desc { |tcx| "looking up generator kind of `{}`", tcx.def_path_str(def_id) }
}
2020-01-26 01:09:23 +00:00
/// Gets a map with the variance of every item; use `item_variance` instead.
2021-05-11 10:29:52 +00:00
query crate_variances(_: ()) -> ty::CrateVariancesMap<'tcx> {
storage(ArenaCacheSelector<'tcx>)
desc { "computing the variances for items in this crate" }
}
/// Maps from the `DefId` of a type or region parameter to its (inferred) variance.
query variances_of(def_id: DefId) -> &'tcx [ty::Variance] {
desc { |tcx| "computing the variances of `{}`", tcx.def_path_str(def_id) }
}
/// Maps from thee `DefId` of a type to its (inferred) outlives.
2021-05-11 10:30:59 +00:00
query inferred_outlives_crate(_: ()) -> ty::CratePredicatesMap<'tcx> {
storage(ArenaCacheSelector<'tcx>)
desc { "computing the inferred outlives predicates for items in this crate" }
}
/// Maps from an impl/trait `DefId to a list of the `DefId`s of its items.
query associated_item_def_ids(key: DefId) -> &'tcx [DefId] {
desc { |tcx| "collecting associated items of `{}`", tcx.def_path_str(key) }
}
/// Maps from a trait item to the trait item "descriptor".
query associated_item(key: DefId) -> ty::AssocItem {
desc { |tcx| "computing associated item data for `{}`", tcx.def_path_str(key) }
storage(ArenaCacheSelector<'tcx>)
}
2020-02-05 00:43:03 +00:00
/// Collects the associated items defined on a trait or impl.
2021-04-05 14:54:50 +00:00
query associated_items(key: DefId) -> ty::AssocItems<'tcx> {
storage(ArenaCacheSelector<'tcx>)
desc { |tcx| "collecting associated items of {}", tcx.def_path_str(key) }
}
/// Given an `impl_id`, return the trait it implements.
/// Return `None` if this is an inherent impl.
query impl_trait_ref(impl_id: DefId) -> Option<ty::TraitRef<'tcx>> {
desc { |tcx| "computing trait implemented by `{}`", tcx.def_path_str(impl_id) }
}
query impl_polarity(impl_id: DefId) -> ty::ImplPolarity {
desc { |tcx| "computing implementation polarity of `{}`", tcx.def_path_str(impl_id) }
}
query issue33140_self_ty(key: DefId) -> Option<ty::Ty<'tcx>> {
desc { |tcx| "computing Self type wrt issue #33140 `{}`", tcx.def_path_str(key) }
}
/// Maps a `DefId` of a type to a list of its inherent impls.
/// Contains implementations of methods that are inherent to a type.
/// Methods in these implementations don't need to be exported.
query inherent_impls(key: DefId) -> &'tcx [DefId] {
desc { |tcx| "collecting inherent impls for `{}`", tcx.def_path_str(key) }
eval_always
}
/// The result of unsafety-checking this `LocalDefId`.
query unsafety_check_result(key: LocalDefId) -> &'tcx mir::UnsafetyCheckResult {
desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key.to_def_id()) }
cache_on_disk_if { true }
}
query unsafety_check_result_for_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::UnsafetyCheckResult {
desc {
|tcx| "unsafety-checking the const argument `{}`",
tcx.def_path_str(key.0.to_def_id())
}
}
/// Unsafety-check this `LocalDefId` with THIR unsafeck. This should be
/// used with `-Zthir-unsafeck`.
query thir_check_unsafety(key: LocalDefId) {
desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key.to_def_id()) }
cache_on_disk_if { true }
}
query thir_check_unsafety_for_const_arg(key: (LocalDefId, DefId)) {
desc {
|tcx| "unsafety-checking the const argument `{}`",
tcx.def_path_str(key.0.to_def_id())
}
}
/// HACK: when evaluated, this reports a "unsafe derive on repr(packed)" error.
///
/// Unsafety checking is executed for each method separately, but we only want
/// to emit this error once per derive. As there are some impls with multiple
/// methods, we use a query for deduplication.
query unsafe_derive_on_repr_packed(key: LocalDefId) -> () {
desc { |tcx| "processing `{}`", tcx.def_path_str(key.to_def_id()) }
}
/// The signature of functions.
query fn_sig(key: DefId) -> ty::PolyFnSig<'tcx> {
desc { |tcx| "computing function signature of `{}`", tcx.def_path_str(key) }
}
query lint_mod(key: LocalDefId) -> () {
desc { |tcx| "linting {}", describe_as_module(key, tcx) }
}
/// Checks the attributes in the module.
query check_mod_attrs(key: LocalDefId) -> () {
desc { |tcx| "checking attributes in {}", describe_as_module(key, tcx) }
}
query check_mod_unstable_api_usage(key: LocalDefId) -> () {
desc { |tcx| "checking for unstable API usage in {}", describe_as_module(key, tcx) }
}
/// Checks the const bodies in the module for illegal operations (e.g. `if` or `loop`).
query check_mod_const_bodies(key: LocalDefId) -> () {
desc { |tcx| "checking consts in {}", describe_as_module(key, tcx) }
}
/// Checks the loops in the module.
query check_mod_loops(key: LocalDefId) -> () {
desc { |tcx| "checking loops in {}", describe_as_module(key, tcx) }
}
query check_mod_naked_functions(key: LocalDefId) -> () {
desc { |tcx| "checking naked functions in {}", describe_as_module(key, tcx) }
}
query check_mod_item_types(key: LocalDefId) -> () {
desc { |tcx| "checking item types in {}", describe_as_module(key, tcx) }
}
query check_mod_privacy(key: LocalDefId) -> () {
desc { |tcx| "checking privacy in {}", describe_as_module(key, tcx) }
}
query check_mod_intrinsics(key: LocalDefId) -> () {
desc { |tcx| "checking intrinsics in {}", describe_as_module(key, tcx) }
}
query check_mod_liveness(key: LocalDefId) -> () {
desc { |tcx| "checking liveness of variables in {}", describe_as_module(key, tcx) }
}
query check_mod_impl_wf(key: LocalDefId) -> () {
desc { |tcx| "checking that impls are well-formed in {}", describe_as_module(key, tcx) }
}
query collect_mod_item_types(key: LocalDefId) -> () {
desc { |tcx| "collecting item types in {}", describe_as_module(key, tcx) }
}
2020-12-29 16:21:52 +00:00
/// Caches `CoerceUnsized` kinds for impls on custom types.
query coerce_unsized_info(key: DefId)
-> ty::adjustment::CoerceUnsizedInfo {
desc { |tcx| "computing CoerceUnsized info for `{}`", tcx.def_path_str(key) }
2020-12-29 16:21:52 +00:00
}
2021-05-11 11:39:31 +00:00
query typeck_item_bodies(_: ()) -> () {
desc { "type-checking all item bodies" }
}
query typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> {
desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) }
cache_on_disk_if { true }
}
query typeck_const_arg(
key: (LocalDefId, DefId)
) -> &'tcx ty::TypeckResults<'tcx> {
desc {
|tcx| "type-checking the const argument `{}`",
tcx.def_path_str(key.0.to_def_id()),
}
}
query diagnostic_only_typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> {
desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) }
cache_on_disk_if { true }
load_cached(tcx, id) {
let typeck_results: Option<ty::TypeckResults<'tcx>> = tcx
2021-06-28 19:12:01 +00:00
.on_disk_cache().as_ref()
2020-10-11 08:34:13 +00:00
.and_then(|c| c.try_load_query_result(*tcx, id));
2019-05-24 19:58:37 +00:00
typeck_results.map(|x| &*tcx.arena.alloc(x))
}
}
query used_trait_imports(key: LocalDefId) -> &'tcx FxHashSet<LocalDefId> {
desc { |tcx| "used_trait_imports `{}`", tcx.def_path_str(key.to_def_id()) }
cache_on_disk_if { true }
}
query has_typeck_results(def_id: DefId) -> bool {
desc { |tcx| "checking whether `{}` has a body", tcx.def_path_str(def_id) }
}
query coherent_trait(def_id: DefId) -> () {
desc { |tcx| "coherence checking all impls of trait `{}`", tcx.def_path_str(def_id) }
}
/// Borrow-checks the function body. If this is a closure, returns
/// additional requirements that the closure's creator must verify.
query mir_borrowck(key: LocalDefId) -> &'tcx mir::BorrowCheckResult<'tcx> {
desc { |tcx| "borrow-checking `{}`", tcx.def_path_str(key.to_def_id()) }
cache_on_disk_if(tcx, opt_result) {
tcx.is_closure(key.to_def_id())
|| opt_result.map_or(false, |r| !r.concrete_opaque_types.is_empty())
}
}
query mir_borrowck_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::BorrowCheckResult<'tcx> {
desc {
|tcx| "borrow-checking the const argument`{}`",
tcx.def_path_str(key.0.to_def_id())
}
}
/// Gets a complete map from all types to their inherent impls.
/// Not meant to be used directly outside of coherence.
2021-05-11 11:39:19 +00:00
query crate_inherent_impls(k: ()) -> CrateInherentImpls {
storage(ArenaCacheSelector<'tcx>)
eval_always
2021-05-11 11:39:19 +00:00
desc { "all inherent impls defined in crate" }
}
/// Checks all types in the crate for overlap in their inherent impls. Reports errors.
/// Not meant to be used directly outside of coherence.
2021-05-11 11:39:19 +00:00
query crate_inherent_impls_overlap_check(_: ())
-> () {
eval_always
desc { "check for overlap between inherent impls defined in this crate" }
}
/// Check whether the function has any recursion that could cause the inliner to trigger
/// a cycle. Returns the call stack causing the cycle. The call stack does not contain the
/// current function, just all intermediate functions.
query mir_callgraph_reachable(key: (ty::Instance<'tcx>, LocalDefId)) -> bool {
fatal_cycle
desc { |tcx|
"computing if `{}` (transitively) calls `{}`",
key.0,
tcx.def_path_str(key.1.to_def_id()),
}
}
/// Obtain all the calls into other local functions
query mir_inliner_callees(key: ty::InstanceDef<'tcx>) -> &'tcx [(DefId, SubstsRef<'tcx>)] {
fatal_cycle
desc { |tcx|
"computing all local function calls in `{}`",
tcx.def_path_str(key.def_id()),
2020-05-31 15:11:51 +00:00
}
}
/// Evaluates a constant and returns the computed allocation.
///
/// **Do not use this** directly, use the `tcx.eval_static_initializer` wrapper.
query eval_to_allocation_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>)
-> EvalToAllocationRawResult<'tcx> {
desc { |tcx|
"const-evaluating + checking `{}`",
key.value.display(tcx)
}
cache_on_disk_if { true }
}
/// Evaluates const items or anonymous constants
/// (such as enum variant explicit discriminants or array lengths)
/// into a representation suitable for the type system and const generics.
///
/// **Do not use this** directly, use one of the following wrappers: `tcx.const_eval_poly`,
/// `tcx.const_eval_resolve`, `tcx.const_eval_instance`, or `tcx.const_eval_global_id`.
query eval_to_const_value_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>)
-> EvalToConstValueResult<'tcx> {
desc { |tcx|
"simplifying constant for the type system `{}`",
key.value.display(tcx)
}
cache_on_disk_if { true }
}
/// Convert an evaluated constant to a type level constant or
/// return `None` if that is not possible.
query const_to_valtree(
key: ty::ParamEnvAnd<'tcx, ConstAlloc<'tcx>>
2021-02-22 14:34:23 +00:00
) -> Option<ty::ValTree<'tcx>> {
desc { "destructure constant" }
}
/// Destructure a constant ADT or array into its variant index and its
/// field values.
query destructure_const(
key: ty::ParamEnvAnd<'tcx, &'tcx ty::Const<'tcx>>
) -> mir::DestructuredConst<'tcx> {
desc { "destructure constant" }
}
/// Dereference a constant reference or raw pointer and turn the result into a constant
/// again.
query deref_const(
key: ty::ParamEnvAnd<'tcx, &'tcx ty::Const<'tcx>>
) -> &'tcx ty::Const<'tcx> {
desc { "deref constant" }
}
query const_caller_location(key: (rustc_span::Symbol, u32, u32)) -> ConstValue<'tcx> {
desc { "get a &core::panic::Location referring to a span" }
}
query lit_to_const(
key: LitToConstInput<'tcx>
) -> Result<&'tcx ty::Const<'tcx>, LitToConstError> {
desc { "converting literal to const" }
}
query check_match(key: DefId) {
desc { |tcx| "match-checking `{}`", tcx.def_path_str(key) }
cache_on_disk_if { key.is_local() }
}
/// Performs part of the privacy check and computes "access levels".
2021-05-11 11:49:00 +00:00
query privacy_access_levels(_: ()) -> &'tcx AccessLevels {
eval_always
desc { "privacy access levels" }
}
2021-05-11 11:49:00 +00:00
query check_private_in_public(_: ()) -> () {
eval_always
desc { "checking for private elements in public interfaces" }
}
2021-05-11 09:35:50 +00:00
query reachable_set(_: ()) -> FxHashSet<LocalDefId> {
storage(ArenaCacheSelector<'tcx>)
desc { "reachability" }
}
/// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body;
/// in the case of closures, this will be redirected to the enclosing function.
query region_scope_tree(def_id: DefId) -> &'tcx region::ScopeTree {
desc { |tcx| "computing drop scopes for `{}`", tcx.def_path_str(def_id) }
}
query mir_shims(key: ty::InstanceDef<'tcx>) -> mir::Body<'tcx> {
storage(ArenaCacheSelector<'tcx>)
desc { |tcx| "generating MIR shim for `{}`", tcx.def_path_str(key.def_id()) }
}
/// The `symbol_name` query provides the symbol name for calling a
/// given instance from the local crate. In particular, it will also
/// look up the correct symbol name of instances from upstream crates.
query symbol_name(key: ty::Instance<'tcx>) -> ty::SymbolName<'tcx> {
desc { "computing the symbol for `{}`", key }
cache_on_disk_if { true }
}
query opt_def_kind(def_id: DefId) -> Option<DefKind> {
desc { |tcx| "looking up definition kind of `{}`", tcx.def_path_str(def_id) }
}
query def_span(def_id: DefId) -> Span {
desc { |tcx| "looking up span for `{}`", tcx.def_path_str(def_id) }
// FIXME(mw): DefSpans are not really inputs since they are derived from
// HIR. But at the moment HIR hashing still contains some hacks that allow
// to make type debuginfo to be source location independent. Declaring
// DefSpan an input makes sure that changes to these are always detected
// regardless of HIR hashing.
eval_always
}
query def_ident_span(def_id: DefId) -> Option<Span> {
desc { |tcx| "looking up span for `{}`'s identifier", tcx.def_path_str(def_id) }
}
query lookup_stability(def_id: DefId) -> Option<&'tcx attr::Stability> {
desc { |tcx| "looking up stability of `{}`", tcx.def_path_str(def_id) }
}
query lookup_const_stability(def_id: DefId) -> Option<&'tcx attr::ConstStability> {
desc { |tcx| "looking up const stability of `{}`", tcx.def_path_str(def_id) }
}
query should_inherit_track_caller(def_id: DefId) -> bool {
desc { |tcx| "computing should_inherit_track_caller of `{}`", tcx.def_path_str(def_id) }
}
query lookup_deprecation_entry(def_id: DefId) -> Option<DeprecationEntry> {
desc { |tcx| "checking whether `{}` is deprecated", tcx.def_path_str(def_id) }
}
query item_attrs(def_id: DefId) -> &'tcx [ast::Attribute] {
desc { |tcx| "collecting attributes of `{}`", tcx.def_path_str(def_id) }
}
query codegen_fn_attrs(def_id: DefId) -> CodegenFnAttrs {
desc { |tcx| "computing codegen attributes of `{}`", tcx.def_path_str(def_id) }
storage(ArenaCacheSelector<'tcx>)
cache_on_disk_if { true }
}
query fn_arg_names(def_id: DefId) -> &'tcx [rustc_span::symbol::Ident] {
desc { |tcx| "looking up function parameter names for `{}`", tcx.def_path_str(def_id) }
}
/// Gets the rendered value of the specified constant or associated constant.
/// Used by rustdoc.
query rendered_const(def_id: DefId) -> String {
desc { |tcx| "rendering constant intializer of `{}`", tcx.def_path_str(def_id) }
}
query impl_parent(def_id: DefId) -> Option<DefId> {
desc { |tcx| "computing specialization parent impl of `{}`", tcx.def_path_str(def_id) }
}
/// Given an `associated_item`, find the trait it belongs to.
/// Return `None` if the `DefId` is not an associated item.
query trait_of_item(associated_item: DefId) -> Option<DefId> {
desc { |tcx| "finding trait defining `{}`", tcx.def_path_str(associated_item) }
}
query is_ctfe_mir_available(key: DefId) -> bool {
desc { |tcx| "checking if item has ctfe mir available: `{}`", tcx.def_path_str(key) }
}
query is_mir_available(key: DefId) -> bool {
desc { |tcx| "checking if item has mir available: `{}`", tcx.def_path_str(key) }
}
query vtable_entries(key: ty::PolyTraitRef<'tcx>)
-> &'tcx [ty::VtblEntry<'tcx>] {
desc { |tcx| "finding all vtable entries for trait {}", tcx.def_path_str(key.def_id()) }
}
query vtable_trait_upcasting_coercion_new_vptr_slot(key: (ty::Ty<'tcx>, ty::Ty<'tcx>)) -> Option<usize> {
desc { |tcx| "finding the slot within vtable for trait object {} vtable ptr during trait upcasting coercion from {} vtable",
key.1, key.0 }
2021-07-31 14:46:23 +00:00
}
query codegen_fulfill_obligation(
key: (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>)
) -> Result<ImplSource<'tcx, ()>, ErrorReported> {
cache_on_disk_if { true }
desc { |tcx|
"checking if `{}` fulfills its obligations",
tcx.def_path_str(key.1.def_id())
}
}
/// Return all `impl` blocks in the current crate.
///
/// To allow caching this between crates, you must pass in [`LOCAL_CRATE`] as the crate number.
/// Passing in any other crate will cause an ICE.
///
/// [`LOCAL_CRATE`]: rustc_hir::def_id::LOCAL_CRATE
2021-05-11 09:42:01 +00:00
query all_local_trait_impls(_: ()) -> &'tcx BTreeMap<DefId, Vec<LocalDefId>> {
desc { "local trait impls" }
}
/// Given a trait `trait_id`, return all known `impl` blocks.
query trait_impls_of(trait_id: DefId) -> ty::trait_def::TraitImpls {
storage(ArenaCacheSelector<'tcx>)
desc { |tcx| "trait impls of `{}`", tcx.def_path_str(trait_id) }
}
query specialization_graph_of(trait_id: DefId) -> specialization_graph::Graph {
storage(ArenaCacheSelector<'tcx>)
desc { |tcx| "building specialization graph of trait `{}`", tcx.def_path_str(trait_id) }
cache_on_disk_if { true }
}
query object_safety_violations(trait_id: DefId) -> &'tcx [traits::ObjectSafetyViolation] {
desc { |tcx| "determine object safety of trait `{}`", tcx.def_path_str(trait_id) }
}
/// Gets the ParameterEnvironment for a given item; this environment
/// will be in "user-facing" mode, meaning that it is suitable for
/// type-checking etc, and it does not normalize specializable
/// associated types. This is almost always what you want,
/// unless you are doing MIR optimizations, in which case you
/// might want to use `reveal_all()` method to change modes.
query param_env(def_id: DefId) -> ty::ParamEnv<'tcx> {
desc { |tcx| "computing normalized predicates of `{}`", tcx.def_path_str(def_id) }
}
/// Like `param_env`, but returns the `ParamEnv` in `Reveal::All` mode.
/// Prefer this over `tcx.param_env(def_id).with_reveal_all_normalized(tcx)`,
/// as this method is more efficient.
query param_env_reveal_all_normalized(def_id: DefId) -> ty::ParamEnv<'tcx> {
desc { |tcx| "computing revealed normalized predicates of `{}`", tcx.def_path_str(def_id) }
}
/// Trait selection queries. These are best used by invoking `ty.is_copy_modulo_regions()`,
/// `ty.is_copy()`, etc, since that will prune the environment where possible.
query is_copy_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
desc { "computing whether `{}` is `Copy`", env.value }
}
/// Query backing `TyS::is_sized`.
query is_sized_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
desc { "computing whether `{}` is `Sized`", env.value }
}
/// Query backing `TyS::is_freeze`.
query is_freeze_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
desc { "computing whether `{}` is freeze", env.value }
}
/// Query backing `TyS::is_unpin`.
query is_unpin_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
desc { "computing whether `{}` is `Unpin`", env.value }
}
/// Query backing `TyS::needs_drop`.
query needs_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
desc { "computing whether `{}` needs drop", env.value }
}
/// Query backing `TyS::has_significant_drop_raw`.
query has_significant_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
desc { "computing whether `{}` has a significant drop", env.value }
}
/// Query backing `TyS::is_structural_eq_shallow`.
///
/// This is only correct for ADTs. Call `is_structural_eq_shallow` to handle all types
/// correctly.
query has_structural_eq_impls(ty: Ty<'tcx>) -> bool {
desc {
"computing whether `{:?}` implements `PartialStructuralEq` and `StructuralEq`",
ty
}
}
/// A list of types where the ADT requires drop if and only if any of
/// those types require drop. If the ADT is known to always need drop
/// then `Err(AlwaysRequiresDrop)` is returned.
query adt_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> {
desc { |tcx| "computing when `{}` needs drop", tcx.def_path_str(def_id) }
cache_on_disk_if { true }
}
/// A list of types where the ADT requires drop if and only if any of those types
/// has significant drop. A type marked with the attribute `rustc_insignificant_dtor`
/// is considered to not be significant. A drop is significant if it is implemented
/// by the user or does anything that will have any observable behavior (other than
/// freeing up memory). If the ADT is known to have a significant destructor then
/// `Err(AlwaysRequiresDrop)` is returned.
query adt_significant_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> {
desc { |tcx| "computing when `{}` has a significant destructor", tcx.def_path_str(def_id) }
cache_on_disk_if { false }
}
query layout_raw(
env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>
) -> Result<&'tcx rustc_target::abi::Layout, ty::layout::LayoutError<'tcx>> {
desc { "computing layout of `{}`", env.value }
}
query dylib_dependency_formats(_: CrateNum)
-> &'tcx [(CrateNum, LinkagePreference)] {
desc { "dylib dependency formats of crate" }
}
2021-05-11 09:26:52 +00:00
query dependency_formats(_: ()) -> Lrc<crate::middle::dependency_format::Dependencies> {
desc { "get the linkage format of all dependencies" }
}
query is_compiler_builtins(_: CrateNum) -> bool {
fatal_cycle
desc { "checking if the crate is_compiler_builtins" }
}
query has_global_allocator(_: CrateNum) -> bool {
// This query depends on untracked global state in CStore
eval_always
fatal_cycle
desc { "checking if the crate has_global_allocator" }
}
query has_panic_handler(_: CrateNum) -> bool {
fatal_cycle
desc { "checking if the crate has_panic_handler" }
}
query is_profiler_runtime(_: CrateNum) -> bool {
fatal_cycle
desc { "query a crate is `#![profiler_runtime]`" }
}
query panic_strategy(_: CrateNum) -> PanicStrategy {
fatal_cycle
desc { "query a crate's configured panic strategy" }
}
query is_no_builtins(_: CrateNum) -> bool {
fatal_cycle
desc { "test whether a crate has `#![no_builtins]`" }
}
query symbol_mangling_version(_: CrateNum) -> SymbolManglingVersion {
fatal_cycle
desc { "query a crate's symbol mangling version" }
}
query extern_crate(def_id: DefId) -> Option<&'tcx ExternCrate> {
eval_always
desc { "getting crate's ExternCrateData" }
}
query specializes(_: (DefId, DefId)) -> bool {
desc { "computing whether impls specialize one another" }
}
query in_scope_traits_map(_: LocalDefId)
2021-05-11 08:38:54 +00:00
-> Option<&'tcx FxHashMap<ItemLocalId, Box<[TraitCandidate]>>> {
desc { "traits in scope at a block" }
}
query module_exports(def_id: LocalDefId) -> Option<&'tcx [Export<LocalDefId>]> {
desc { |tcx| "looking up items exported by `{}`", tcx.def_path_str(def_id.to_def_id()) }
}
query impl_defaultness(def_id: DefId) -> hir::Defaultness {
desc { |tcx| "looking up whether `{}` is a default impl", tcx.def_path_str(def_id) }
}
2021-07-10 03:15:11 +00:00
query impl_constness(def_id: DefId) -> hir::Constness {
2021-07-10 07:58:16 +00:00
desc { |tcx| "looking up whether `{}` is a const impl", tcx.def_path_str(def_id) }
}
query check_item_well_formed(key: LocalDefId) -> () {
desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) }
}
query check_trait_item_well_formed(key: LocalDefId) -> () {
desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) }
}
query check_impl_item_well_formed(key: LocalDefId) -> () {
desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) }
}
// The `DefId`s of all non-generic functions and statics in the given crate
// that can be reached from outside the crate.
//
// We expect this items to be available for being linked to.
//
// This query can also be called for `LOCAL_CRATE`. In this case it will
// compute which items will be reachable to other crates, taking into account
// the kind of crate that is currently compiled. Crates with only a
// C interface have fewer reachable things.
//
// Does not include external symbols that don't have a corresponding DefId,
// like the compiler-generated `main` function and so on.
query reachable_non_generics(_: CrateNum)
-> DefIdMap<SymbolExportLevel> {
storage(ArenaCacheSelector<'tcx>)
desc { "looking up the exported symbols of a crate" }
}
query is_reachable_non_generic(def_id: DefId) -> bool {
desc { |tcx| "checking whether `{}` is an exported symbol", tcx.def_path_str(def_id) }
}
2021-05-11 09:35:50 +00:00
query is_unreachable_local_definition(def_id: LocalDefId) -> bool {
desc { |tcx|
"checking whether `{}` is reachable from outside the crate",
2021-05-11 09:35:50 +00:00
tcx.def_path_str(def_id.to_def_id()),
2020-05-31 15:11:51 +00:00
}
}
/// The entire set of monomorphizations the local crate can safely link
/// to because they are exported from upstream crates. Do not depend on
/// this directly, as its value changes anytime a monomorphization gets
/// added or removed in any upstream crate. Instead use the narrower
/// `upstream_monomorphizations_for`, `upstream_drop_glue_for`, or, even
/// better, `Instance::upstream_monomorphization()`.
2021-05-11 12:39:04 +00:00
query upstream_monomorphizations(_: ()) -> DefIdMap<FxHashMap<SubstsRef<'tcx>, CrateNum>> {
storage(ArenaCacheSelector<'tcx>)
2021-05-11 12:39:04 +00:00
desc { "collecting available upstream monomorphizations" }
}
/// Returns the set of upstream monomorphizations available for the
/// generic function identified by the given `def_id`. The query makes
/// sure to make a stable selection if the same monomorphization is
/// available in multiple upstream crates.
///
/// You likely want to call `Instance::upstream_monomorphization()`
/// instead of invoking this query directly.
query upstream_monomorphizations_for(def_id: DefId)
-> Option<&'tcx FxHashMap<SubstsRef<'tcx>, CrateNum>> {
2020-05-31 15:11:51 +00:00
desc { |tcx|
"collecting available upstream monomorphizations for `{}`",
2020-05-31 15:11:51 +00:00
tcx.def_path_str(def_id),
}
}
/// Returns the upstream crate that exports drop-glue for the given
/// type (`substs` is expected to be a single-item list containing the
/// type one wants drop-glue for).
///
/// This is a subset of `upstream_monomorphizations_for` in order to
/// increase dep-tracking granularity. Otherwise adding or removing any
/// type with drop-glue in any upstream crate would invalidate all
/// functions calling drop-glue of an upstream type.
///
/// You likely want to call `Instance::upstream_monomorphization()`
/// instead of invoking this query directly.
///
/// NOTE: This query could easily be extended to also support other
/// common functions that have are large set of monomorphizations
/// (like `Clone::clone` for example).
query upstream_drop_glue_for(substs: SubstsRef<'tcx>) -> Option<CrateNum> {
desc { "available upstream drop-glue for `{:?}`", substs }
}
query foreign_modules(_: CrateNum) -> Lrc<FxHashMap<DefId, ForeignModule>> {
desc { "looking up the foreign modules of a linked crate" }
}
/// Identifies the entry-point (e.g., the `main` function) for a given
/// crate, returning `None` if there is no entry point (such as for library crates).
2021-05-11 10:00:59 +00:00
query entry_fn(_: ()) -> Option<(DefId, EntryFnType)> {
desc { "looking up the entry function of a crate" }
}
2021-05-11 10:12:52 +00:00
query proc_macro_decls_static(_: ()) -> Option<LocalDefId> {
desc { "looking up the derive registrar for a crate" }
}
// The macro which defines `rustc_metadata::provide_extern` depends on this query's name.
// Changing the name should cause a compiler error, but in case that changes, be aware.
query crate_hash(_: CrateNum) -> Svh {
eval_always
desc { "looking up the hash a crate" }
}
query crate_host_hash(_: CrateNum) -> Option<Svh> {
eval_always
desc { "looking up the hash of a host version of a crate" }
}
query extra_filename(_: CrateNum) -> String {
eval_always
desc { "looking up the extra filename for a crate" }
}
query crate_extern_paths(_: CrateNum) -> Vec<PathBuf> {
eval_always
desc { "looking up the paths for extern crates" }
}
/// Given a crate and a trait, look up all impls of that trait in the crate.
/// Return `(impl_id, self_ty)`.
query implementations_of_trait(_: (CrateNum, DefId))
-> &'tcx [(DefId, Option<ty::fast_reject::SimplifiedType>)] {
desc { "looking up implementations of a trait in a crate" }
}
/// Given a crate, look up all trait impls in that crate.
/// Return `(impl_id, self_ty)`.
query all_trait_implementations(_: CrateNum)
-> &'tcx [(DefId, Option<ty::fast_reject::SimplifiedType>)] {
desc { "looking up all (?) trait implementations" }
}
query is_dllimport_foreign_item(def_id: DefId) -> bool {
desc { |tcx| "is_dllimport_foreign_item({})", tcx.def_path_str(def_id) }
}
query is_statically_included_foreign_item(def_id: DefId) -> bool {
desc { |tcx| "is_statically_included_foreign_item({})", tcx.def_path_str(def_id) }
}
query native_library_kind(def_id: DefId)
-> Option<NativeLibKind> {
desc { |tcx| "native_library_kind({})", tcx.def_path_str(def_id) }
}
2021-03-12 17:38:42 +00:00
/// Does lifetime resolution, but does not descend into trait items. This
/// should only be used for resolving lifetimes of on trait definitions,
/// and is used to avoid cycles. Importantly, `resolve_lifetimes` still visits
/// the same lifetimes and is responsible for diagnostics.
/// See `rustc_resolve::late::lifetimes for details.
query resolve_lifetimes_trait_definition(_: LocalDefId) -> ResolveLifetimes {
storage(ArenaCacheSelector<'tcx>)
2021-03-12 17:38:42 +00:00
desc { "resolving lifetimes for a trait definition" }
}
2021-03-12 17:38:42 +00:00
/// Does lifetime resolution on items. Importantly, we can't resolve
/// lifetimes directly on things like trait methods, because of trait params.
/// See `rustc_resolve::late::lifetimes for details.
query resolve_lifetimes(_: LocalDefId) -> ResolveLifetimes {
storage(ArenaCacheSelector<'tcx>)
desc { "resolving lifetimes" }
}
query named_region_map(_: LocalDefId) ->
Option<&'tcx FxHashMap<ItemLocalId, Region>> {
desc { "looking up a named region" }
}
query is_late_bound_map(_: LocalDefId) ->
Option<(LocalDefId, &'tcx FxHashSet<ItemLocalId>)> {
desc { "testing if a region is late bound" }
}
2021-03-12 17:38:42 +00:00
/// For a given item (like a struct), gets the default lifetimes to be used
2021-04-19 12:57:08 +00:00
/// for each parameter if a trait object were to be passed for that parameter.
2021-03-12 17:38:42 +00:00
/// For example, for `struct Foo<'a, T, U>`, this would be `['static, 'static]`.
/// For `struct Foo<'a, T: 'a, U>`, this would instead be `['a, 'static]`.
query object_lifetime_defaults_map(_: LocalDefId)
-> Option<Vec<ObjectLifetimeDefault>> {
desc { "looking up lifetime defaults for a region on an item" }
}
query late_bound_vars_map(_: LocalDefId)
-> Option<&'tcx FxHashMap<ItemLocalId, Vec<ty::BoundVariableKind>>> {
desc { "looking up late bound vars" }
}
2021-02-18 20:01:44 +00:00
query lifetime_scope_map(_: LocalDefId) -> Option<FxHashMap<ItemLocalId, LifetimeScopeForPath>> {
desc { "finds the lifetime scope for an HirId of a PathSegment" }
}
query visibility(def_id: DefId) -> ty::Visibility {
desc { |tcx| "computing visibility of `{}`", tcx.def_path_str(def_id) }
}
2020-12-03 00:25:04 +00:00
/// Computes the set of modules from which this type is visibly uninhabited.
/// To check whether a type is uninhabited at all (not just from a given module), you could
/// check whether the forest is empty.
query type_uninhabited_from(
key: ty::ParamEnvAnd<'tcx, Ty<'tcx>>
) -> ty::inhabitedness::DefIdForest {
desc { "computing the inhabitedness of `{:?}`", key }
}
query dep_kind(_: CrateNum) -> CrateDepKind {
eval_always
desc { "fetching what a dependency looks like" }
}
query crate_name(_: CrateNum) -> Symbol {
eval_always
desc { "fetching what a crate is named" }
}
query item_children(def_id: DefId) -> &'tcx [Export<hir::HirId>] {
desc { |tcx| "collecting child items of `{}`", tcx.def_path_str(def_id) }
}
query extern_mod_stmt_cnum(def_id: LocalDefId) -> Option<CrateNum> {
desc { |tcx| "computing crate imported by `{}`", tcx.def_path_str(def_id.to_def_id()) }
}
2021-05-11 11:50:41 +00:00
query get_lib_features(_: ()) -> LibFeatures {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "calculating the lib features map" }
}
query defined_lib_features(_: CrateNum)
-> &'tcx [(Symbol, Option<Symbol>)] {
desc { "calculating the lib features defined in a crate" }
}
/// Returns the lang items defined in another crate by loading it from metadata.
2021-05-11 11:50:41 +00:00
query get_lang_items(_: ()) -> LanguageItems {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "calculating the lang items map" }
}
/// Returns all diagnostic items defined in all crates.
2021-05-11 11:50:41 +00:00
query all_diagnostic_items(_: ()) -> FxHashMap<Symbol, DefId> {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "calculating the diagnostic items map" }
}
/// Returns the lang items defined in another crate by loading it from metadata.
query defined_lang_items(_: CrateNum) -> &'tcx [(DefId, usize)] {
desc { "calculating the lang items defined in a crate" }
}
/// Returns the diagnostic items defined in a crate.
query diagnostic_items(_: CrateNum) -> FxHashMap<Symbol, DefId> {
storage(ArenaCacheSelector<'tcx>)
desc { "calculating the diagnostic items map in a crate" }
}
query missing_lang_items(_: CrateNum) -> &'tcx [LangItem] {
desc { "calculating the missing lang items in a crate" }
}
2021-05-11 12:16:48 +00:00
query visible_parent_map(_: ()) -> DefIdMap<DefId> {
storage(ArenaCacheSelector<'tcx>)
desc { "calculating the visible parent map" }
}
2021-05-11 12:16:48 +00:00
query trimmed_def_paths(_: ()) -> FxHashMap<DefId, Symbol> {
storage(ArenaCacheSelector<'tcx>)
desc { "calculating trimmed def paths" }
}
query missing_extern_crate_item(_: CrateNum) -> bool {
eval_always
desc { "seeing if we're missing an `extern crate` item for this crate" }
}
query used_crate_source(_: CrateNum) -> Lrc<CrateSource> {
eval_always
desc { "looking at the source for a crate" }
}
2021-05-11 12:50:54 +00:00
query postorder_cnums(_: ()) -> &'tcx [CrateNum] {
eval_always
desc { "generating a postorder list of CrateNums" }
}
2021-05-11 20:06:07 +00:00
/// Returns whether or not the crate with CrateNum 'cnum'
/// is marked as a private dependency
query is_private_dep(c: CrateNum) -> bool {
eval_always
desc { "check whether crate {} is a private dependency", c }
}
2021-05-11 20:05:54 +00:00
query allocator_kind(_: ()) -> Option<AllocatorKind> {
eval_always
desc { "allocator kind for the current crate" }
}
query upvars_mentioned(def_id: DefId) -> Option<&'tcx FxIndexMap<hir::HirId, hir::Upvar>> {
desc { |tcx| "collecting upvars mentioned in `{}`", tcx.def_path_str(def_id) }
eval_always
}
query maybe_unused_trait_import(def_id: LocalDefId) -> bool {
desc { |tcx| "maybe_unused_trait_import for `{}`", tcx.def_path_str(def_id.to_def_id()) }
}
2021-05-11 12:50:54 +00:00
query maybe_unused_extern_crates(_: ()) -> &'tcx [(LocalDefId, Span)] {
desc { "looking up all possibly unused extern crates" }
}
2021-04-04 12:40:35 +00:00
query names_imported_by_glob_use(def_id: LocalDefId) -> &'tcx FxHashSet<Symbol> {
desc { |tcx| "names_imported_by_glob_use for `{}`", tcx.def_path_str(def_id.to_def_id()) }
}
2021-05-11 11:50:41 +00:00
query stability_index(_: ()) -> stability::Index<'tcx> {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "calculating the stability index for the local crate" }
}
query crates(_: ()) -> &'tcx [CrateNum] {
eval_always
desc { "fetching all foreign CrateNum instances" }
}
/// A vector of every trait accessible in the whole crate
/// (i.e., including those from subcrates). This is used only for
/// error reporting.
2021-05-11 12:22:02 +00:00
query all_traits(_: ()) -> &'tcx [DefId] {
desc { "fetching all foreign and local traits" }
}
/// The list of symbols exported from the given crate.
///
/// - All names contained in `exported_symbols(cnum)` are guaranteed to
/// correspond to a publicly visible symbol in `cnum` machine code.
/// - The `exported_symbols` sets of different crates do not intersect.
query exported_symbols(_: CrateNum)
-> &'tcx [(ExportedSymbol<'tcx>, SymbolExportLevel)] {
desc { "exported_symbols" }
}
2021-05-11 12:39:04 +00:00
query collect_and_partition_mono_items(_: ()) -> (&'tcx DefIdSet, &'tcx [CodegenUnit<'tcx>]) {
eval_always
desc { "collect_and_partition_mono_items" }
}
query is_codegened_item(def_id: DefId) -> bool {
desc { |tcx| "determining whether `{}` needs codegen", tcx.def_path_str(def_id) }
}
/// All items participating in code generation together with items inlined into them.
2021-05-11 12:39:04 +00:00
query codegened_and_inlined_items(_: ()) -> &'tcx DefIdSet {
eval_always
desc { "codegened_and_inlined_items" }
}
query codegen_unit(_: Symbol) -> &'tcx CodegenUnit<'tcx> {
desc { "codegen_unit" }
}
query unused_generic_params(key: DefId) -> FiniteBitSet<u32> {
cache_on_disk_if { key.is_local() }
desc {
|tcx| "determining which generic parameters are unused by `{}`",
tcx.def_path_str(key)
}
}
2021-05-11 12:39:04 +00:00
query backend_optimization_level(_: ()) -> OptLevel {
desc { "optimization level used by backend" }
}
2021-05-11 12:39:04 +00:00
query output_filenames(_: ()) -> Arc<OutputFilenames> {
eval_always
desc { "output_filenames" }
}
/// Do not call this query directly: invoke `normalize` instead.
query normalize_projection_ty(
goal: CanonicalProjectionGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>,
NoSolution,
> {
desc { "normalizing `{:?}`", goal }
}
/// Do not call this query directly: invoke `normalize_erasing_regions` instead.
query normalize_generic_arg_after_erasing_regions(
goal: ParamEnvAnd<'tcx, GenericArg<'tcx>>
) -> GenericArg<'tcx> {
desc { "normalizing `{}`", goal.value }
}
/// Do not call this query directly: invoke `normalize_erasing_regions` instead.
query normalize_mir_const_after_erasing_regions(
goal: ParamEnvAnd<'tcx, mir::ConstantKind<'tcx>>
) -> mir::ConstantKind<'tcx> {
desc { "normalizing `{}`", goal.value }
}
query implied_outlives_bounds(
goal: CanonicalTyGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec<OutlivesBound<'tcx>>>>,
NoSolution,
> {
desc { "computing implied outlives bounds for `{:?}`", goal }
}
/// Do not call this query directly: invoke `infcx.at().dropck_outlives()` instead.
query dropck_outlives(
goal: CanonicalTyGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>,
NoSolution,
> {
desc { "computing dropck types for `{:?}`", goal }
}
/// Do not call this query directly: invoke `infcx.predicate_may_hold()` or
/// `infcx.predicate_must_hold()` instead.
query evaluate_obligation(
goal: CanonicalPredicateGoal<'tcx>
) -> Result<traits::EvaluationResult, traits::OverflowError> {
desc { "evaluating trait selection obligation `{}`", goal.value.value }
}
query evaluate_goal(
goal: traits::CanonicalChalkEnvironmentAndGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
NoSolution
> {
desc { "evaluating trait selection obligation `{}`", goal.value }
}
2020-03-03 16:25:03 +00:00
/// Do not call this query directly: part of the `Eq` type-op
query type_op_ascribe_user_type(
goal: CanonicalTypeOpAscribeUserTypeGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
NoSolution,
> {
desc { "evaluating `type_op_ascribe_user_type` `{:?}`", goal }
}
/// Do not call this query directly: part of the `Eq` type-op
query type_op_eq(
goal: CanonicalTypeOpEqGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
NoSolution,
> {
desc { "evaluating `type_op_eq` `{:?}`", goal }
}
/// Do not call this query directly: part of the `Subtype` type-op
query type_op_subtype(
goal: CanonicalTypeOpSubtypeGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
NoSolution,
> {
desc { "evaluating `type_op_subtype` `{:?}`", goal }
}
/// Do not call this query directly: part of the `ProvePredicate` type-op
query type_op_prove_predicate(
goal: CanonicalTypeOpProvePredicateGoal<'tcx>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>,
NoSolution,
> {
desc { "evaluating `type_op_prove_predicate` `{:?}`", goal }
}
/// Do not call this query directly: part of the `Normalize` type-op
query type_op_normalize_ty(
goal: CanonicalTypeOpNormalizeGoal<'tcx, Ty<'tcx>>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Ty<'tcx>>>,
NoSolution,
> {
desc { "normalizing `{:?}`", goal }
}
/// Do not call this query directly: part of the `Normalize` type-op
query type_op_normalize_predicate(
goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::Predicate<'tcx>>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::Predicate<'tcx>>>,
NoSolution,
> {
desc { "normalizing `{:?}`", goal }
}
/// Do not call this query directly: part of the `Normalize` type-op
query type_op_normalize_poly_fn_sig(
goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::PolyFnSig<'tcx>>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::PolyFnSig<'tcx>>>,
NoSolution,
> {
desc { "normalizing `{:?}`", goal }
}
/// Do not call this query directly: part of the `Normalize` type-op
query type_op_normalize_fn_sig(
goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::FnSig<'tcx>>
) -> Result<
&'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::FnSig<'tcx>>>,
NoSolution,
> {
desc { "normalizing `{:?}`", goal }
}
query subst_and_check_impossible_predicates(key: (DefId, SubstsRef<'tcx>)) -> bool {
desc { |tcx|
"impossible substituted predicates:`{}`",
tcx.def_path_str(key.0)
}
}
query method_autoderef_steps(
goal: CanonicalTyGoal<'tcx>
) -> MethodAutoderefStepsResult<'tcx> {
desc { "computing autoderef types for `{:?}`", goal }
}
query supported_target_features(_: CrateNum) -> FxHashMap<String, Option<Symbol>> {
storage(ArenaCacheSelector<'tcx>)
eval_always
desc { "looking up supported target features" }
}
/// Get an estimate of the size of an InstanceDef based on its MIR for CGU partitioning.
query instance_def_size_estimate(def: ty::InstanceDef<'tcx>)
-> usize {
desc { |tcx| "estimating size for `{}`", tcx.def_path_str(def.def_id()) }
}
2021-05-11 11:50:41 +00:00
query features_query(_: ()) -> &'tcx rustc_feature::Features {
eval_always
desc { "looking up enabled feature gates" }
}
2020-04-05 05:21:36 +00:00
/// Attempt to resolve the given `DefId` to an `Instance`, for the
/// given generics args (`SubstsRef`), returning one of:
/// * `Ok(Some(instance))` on success
/// * `Ok(None)` when the `SubstsRef` are still too generic,
/// and therefore don't allow finding the final `Instance`
/// * `Err(ErrorReported)` when the `Instance` resolution process
/// couldn't complete due to errors elsewhere - this is distinct
/// from `Ok(None)` to avoid misleading diagnostics when an error
/// has already been/will be emitted, for the original cause
query resolve_instance(
key: ty::ParamEnvAnd<'tcx, (DefId, SubstsRef<'tcx>)>
) -> Result<Option<ty::Instance<'tcx>>, ErrorReported> {
desc { "resolving instance `{}`", ty::Instance::new(key.value.0, key.value.1) }
}
2020-07-02 21:56:17 +00:00
query resolve_instance_of_const_arg(
key: ty::ParamEnvAnd<'tcx, (LocalDefId, DefId, SubstsRef<'tcx>)>
) -> Result<Option<ty::Instance<'tcx>>, ErrorReported> {
desc {
"resolving instance of the const argument `{}`",
ty::Instance::new(key.value.0.to_def_id(), key.value.2),
2020-07-02 21:56:17 +00:00
}
}
query normalize_opaque_types(key: &'tcx ty::List<ty::Predicate<'tcx>>) -> &'tcx ty::List<ty::Predicate<'tcx>> {
desc { "normalizing opaque types in {:?}", key }
}
2021-02-23 23:35:48 +00:00
/// Checks whether a type is definitely uninhabited. This is
/// conservative: for some types that are uninhabited we return `false`,
/// but we only return `true` for types that are definitely uninhabited.
/// `ty.conservative_is_privately_uninhabited` implies that any value of type `ty`
/// will be `Abi::Uninhabited`. (Note that uninhabited types may have nonzero
/// size, to account for partial initialisation. See #49298 for details.)
query conservative_is_privately_uninhabited(key: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
desc { "conservatively checking if {:?} is privately uninhabited", key }
}
query limits(key: ()) -> Limits {
desc { "looking up limits" }
}
Add initial implementation of HIR-based WF checking for diagnostics During well-formed checking, we walk through all types 'nested' in generic arguments. For example, WF-checking `Option<MyStruct<u8>>` will cause us to check `MyStruct<u8>` and `u8`. However, this is done on a `rustc_middle::ty::Ty`, which has no span information. As a result, any errors that occur will have a very general span (e.g. the definintion of an associated item). This becomes a problem when macros are involved. In general, an associated type like `type MyType = Option<MyStruct<u8>>;` may have completely different spans for each nested type in the HIR. Using the span of the entire associated item might end up pointing to a macro invocation, even though a user-provided span is available in one of the nested types. This PR adds a framework for HIR-based well formed checking. This check is only run during error reporting, and is used to obtain a more precise span for an existing error. This is accomplished by individually checking each 'nested' type in the HIR for the type, allowing us to find the most-specific type (and span) that produces a given error. The majority of the changes are to the error-reporting code. However, some of the general trait code is modified to pass through more information. Since this has no soundness implications, I've implemented a minimal version to begin with, which can be extended over time. In particular, this only works for HIR items with a corresponding `DefId` (e.g. it will not work for WF-checking performed within function bodies).
2021-04-04 20:55:39 +00:00
/// Performs an HIR-based well-formed check on the item with the given `HirId`. If
/// we get an `Umimplemented` error that matches the provided `Predicate`, return
/// the cause of the newly created obligation.
///
/// This is only used by error-reporting code to get a better cause (in particular, a better
/// span) for an *existing* error. Therefore, it is best-effort, and may never handle
/// all of the cases that the normal `ty::Ty`-based wfcheck does. This is fine,
/// because the `ty::Ty`-based wfcheck is always run.
query diagnostic_hir_wf_check(key: (ty::Predicate<'tcx>, traits::WellFormedLoc)) -> Option<traits::ObligationCause<'tcx>> {
Add initial implementation of HIR-based WF checking for diagnostics During well-formed checking, we walk through all types 'nested' in generic arguments. For example, WF-checking `Option<MyStruct<u8>>` will cause us to check `MyStruct<u8>` and `u8`. However, this is done on a `rustc_middle::ty::Ty`, which has no span information. As a result, any errors that occur will have a very general span (e.g. the definintion of an associated item). This becomes a problem when macros are involved. In general, an associated type like `type MyType = Option<MyStruct<u8>>;` may have completely different spans for each nested type in the HIR. Using the span of the entire associated item might end up pointing to a macro invocation, even though a user-provided span is available in one of the nested types. This PR adds a framework for HIR-based well formed checking. This check is only run during error reporting, and is used to obtain a more precise span for an existing error. This is accomplished by individually checking each 'nested' type in the HIR for the type, allowing us to find the most-specific type (and span) that produces a given error. The majority of the changes are to the error-reporting code. However, some of the general trait code is modified to pass through more information. Since this has no soundness implications, I've implemented a minimal version to begin with, which can be extended over time. In particular, this only works for HIR items with a corresponding `DefId` (e.g. it will not work for WF-checking performed within function bodies).
2021-04-04 20:55:39 +00:00
eval_always
no_hash
desc { "performing HIR wf-checking for predicate {:?} at item {:?}", key.0, key.1 }
}
2018-12-03 00:14:35 +00:00
}