rust/compiler/rustc_mir_build/src/check_unsafety.rs

562 lines
22 KiB
Rust
Raw Normal View History

use crate::thir::visit::{self, Visitor};
use rustc_errors::struct_span_err;
use rustc_hir as hir;
use rustc_middle::thir::*;
use rustc_middle::ty::{self, TyCtxt};
use rustc_session::lint::builtin::{UNSAFE_OP_IN_UNSAFE_FN, UNUSED_UNSAFE};
use rustc_session::lint::Level;
use rustc_span::def_id::{DefId, LocalDefId};
use rustc_span::symbol::Symbol;
use rustc_span::Span;
use std::ops::Bound;
struct UnsafetyVisitor<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
thir: &'a Thir<'tcx>,
/// The `HirId` of the current scope, which would be the `HirId`
/// of the current HIR node, modulo adjustments. Used for lint levels.
hir_context: hir::HirId,
/// The current "safety context". This notably tracks whether we are in an
/// `unsafe` block, and whether it has been used.
safety_context: SafetyContext,
body_unsafety: BodyUnsafety,
/// The `#[target_feature]` attributes of the body. Used for checking
/// calls to functions with `#[target_feature]` (RFC 2396).
body_target_features: &'tcx Vec<Symbol>,
is_const: bool,
in_possible_lhs_union_assign: bool,
in_union_destructure: bool,
}
impl<'tcx> UnsafetyVisitor<'_, 'tcx> {
fn in_safety_context(&mut self, safety_context: SafetyContext, f: impl FnOnce(&mut Self)) {
if let (
SafetyContext::UnsafeBlock { span: enclosing_span, .. },
SafetyContext::UnsafeBlock { span: block_span, hir_id, .. },
) = (self.safety_context, safety_context)
{
self.warn_unused_unsafe(
hir_id,
block_span,
2021-05-24 10:54:26 +00:00
Some((self.tcx.sess.source_map().guess_head_span(enclosing_span), "block")),
);
f(self);
} else {
let prev_context = self.safety_context;
self.safety_context = safety_context;
f(self);
if let SafetyContext::UnsafeBlock { used: false, span, hir_id } = self.safety_context {
2021-05-24 10:54:26 +00:00
self.warn_unused_unsafe(
hir_id,
span,
if self.unsafe_op_in_unsafe_fn_allowed() {
self.body_unsafety.unsafe_fn_sig_span().map(|span| (span, "fn"))
} else {
None
},
);
}
self.safety_context = prev_context;
}
}
fn requires_unsafe(&mut self, span: Span, kind: UnsafeOpKind) {
let (description, note) = kind.description_and_note();
let unsafe_op_in_unsafe_fn_allowed = self.unsafe_op_in_unsafe_fn_allowed();
match self.safety_context {
SafetyContext::BuiltinUnsafeBlock => {}
SafetyContext::UnsafeBlock { ref mut used, .. } => {
if !self.body_unsafety.is_unsafe() || !unsafe_op_in_unsafe_fn_allowed {
// Mark this block as useful
*used = true;
}
}
SafetyContext::UnsafeFn if unsafe_op_in_unsafe_fn_allowed => {}
SafetyContext::UnsafeFn => {
// unsafe_op_in_unsafe_fn is disallowed
self.tcx.struct_span_lint_hir(
UNSAFE_OP_IN_UNSAFE_FN,
self.hir_context,
2021-05-17 17:32:14 +00:00
span,
|lint| {
lint.build(&format!(
"{} is unsafe and requires unsafe block (error E0133)",
description,
))
.span_label(span, description)
.note(note)
.emit();
},
2021-05-17 17:32:14 +00:00
)
}
SafetyContext::Safe => {
2021-05-17 17:32:14 +00:00
let fn_sugg = if unsafe_op_in_unsafe_fn_allowed { " function or" } else { "" };
struct_span_err!(
self.tcx.sess,
span,
E0133,
"{} is unsafe and requires unsafe{} block",
description,
fn_sugg,
)
.span_label(span, description)
.note(note)
.emit();
}
}
}
fn warn_unused_unsafe(
&self,
hir_id: hir::HirId,
block_span: Span,
2021-05-24 10:54:26 +00:00
enclosing_unsafe: Option<(Span, &'static str)>,
) {
let block_span = self.tcx.sess.source_map().guess_head_span(block_span);
self.tcx.struct_span_lint_hir(UNUSED_UNSAFE, hir_id, block_span, |lint| {
let msg = "unnecessary `unsafe` block";
let mut db = lint.build(msg);
db.span_label(block_span, msg);
2021-05-24 10:54:26 +00:00
if let Some((span, kind)) = enclosing_unsafe {
db.span_label(span, format!("because it's nested under this `unsafe` {}", kind));
}
db.emit();
});
}
/// Whether the `unsafe_op_in_unsafe_fn` lint is `allow`ed at the current HIR node.
fn unsafe_op_in_unsafe_fn_allowed(&self) -> bool {
self.tcx.lint_level_at_node(UNSAFE_OP_IN_UNSAFE_FN, self.hir_context).0 == Level::Allow
}
}
impl<'a, 'tcx> Visitor<'a, 'tcx> for UnsafetyVisitor<'a, 'tcx> {
fn thir(&self) -> &'a Thir<'tcx> {
&self.thir
}
fn visit_block(&mut self, block: &Block) {
match block.safety_mode {
// compiler-generated unsafe code should not count towards the usefulness of
// an outer unsafe block
BlockSafety::BuiltinUnsafe => {
self.in_safety_context(SafetyContext::BuiltinUnsafeBlock, |this| {
visit::walk_block(this, block)
});
}
BlockSafety::ExplicitUnsafe(hir_id) => {
self.in_safety_context(
SafetyContext::UnsafeBlock { span: block.span, hir_id, used: false },
|this| visit::walk_block(this, block),
);
}
BlockSafety::Safe => {
visit::walk_block(self, block);
}
}
}
fn visit_pat(&mut self, pat: &Pat<'tcx>) {
use PatKind::*;
if self.in_union_destructure {
match *pat.kind {
// binding to a variable allows getting stuff out of variable
Binding { .. }
// match is conditional on having this value
| Constant { .. }
| Variant { .. }
| Leaf { .. }
| Deref { .. }
| Range { .. }
| Slice { .. }
| Array { .. } => {
self.requires_unsafe(pat.span, AccessToUnionField);
return; // don't walk pattern
}
// wildcard doesn't take anything
Wild |
// these just wrap other patterns
Or { .. } |
AscribeUserType { .. } => {}
}
};
if let ty::Adt(adt_def, _) = pat.ty.kind() {
// check for extracting values from union via destructuring
if adt_def.is_union() {
match *pat.kind {
// assigning the whole union is okay
// let x = Union { ... };
// let y = x; // safe
Binding { .. } |
// binding to wildcard is okay since that never reads anything and stops double errors
// with implict wildcard branches from `if let`s
Wild |
// doesn't have any effect on semantics
AscribeUserType { .. } |
// creating a union literal
Constant { .. } => {},
Leaf { .. } | Or { .. } => {
// pattern matching with a union and not doing something like v = Union { bar: 5 }
self.in_union_destructure = true;
visit::walk_pat(self, pat);
self.in_union_destructure = false;
return; // don't walk pattern
}
Variant { .. } | Deref { .. } | Range { .. } | Slice { .. } | Array { .. } =>
unreachable!("impossible union destructuring type"),
}
}
}
visit::walk_pat(self, pat);
}
fn visit_expr(&mut self, expr: &Expr<'tcx>) {
// could we be in a the LHS of an assignment of a union?
match expr.kind {
ExprKind::Field { .. }
| ExprKind::VarRef { .. }
| ExprKind::UpvarRef { .. }
| ExprKind::Scope { .. }
| ExprKind::Cast { .. } => {}
ExprKind::AddressOf { .. }
| ExprKind::Adt { .. }
| ExprKind::Array { .. }
| ExprKind::Binary { .. }
| ExprKind::Block { .. }
| ExprKind::Borrow { .. }
| ExprKind::Literal { .. }
| ExprKind::ConstBlock { .. }
| ExprKind::Deref { .. }
| ExprKind::Index { .. }
| ExprKind::NeverToAny { .. }
| ExprKind::PlaceTypeAscription { .. }
| ExprKind::ValueTypeAscription { .. }
| ExprKind::Pointer { .. }
| ExprKind::Repeat { .. }
| ExprKind::StaticRef { .. }
| ExprKind::ThreadLocalRef { .. }
| ExprKind::Tuple { .. }
| ExprKind::Unary { .. }
| ExprKind::Call { .. }
| ExprKind::Assign { .. }
| ExprKind::AssignOp { .. }
| ExprKind::Break { .. }
| ExprKind::Closure { .. }
| ExprKind::Continue { .. }
| ExprKind::Return { .. }
| ExprKind::Yield { .. }
| ExprKind::Loop { .. }
| ExprKind::Match { .. }
| ExprKind::Box { .. }
| ExprKind::If { .. }
| ExprKind::InlineAsm { .. }
| ExprKind::LlvmInlineAsm { .. }
| ExprKind::LogicalOp { .. }
| ExprKind::Use { .. } => self.in_possible_lhs_union_assign = false,
};
match expr.kind {
ExprKind::Scope { value, lint_level: LintLevel::Explicit(hir_id), region_scope: _ } => {
let prev_id = self.hir_context;
self.hir_context = hir_id;
self.visit_expr(&self.thir[value]);
self.hir_context = prev_id;
return; // don't visit the whole expression
}
ExprKind::Call { fun, ty: _, args: _, from_hir_call: _, fn_span: _ } => {
if self.thir[fun].ty.fn_sig(self.tcx).unsafety() == hir::Unsafety::Unsafe {
self.requires_unsafe(expr.span, CallToUnsafeFunction);
} else if let &ty::FnDef(func_did, _) = self.thir[fun].ty.kind() {
// If the called function has target features the calling function hasn't,
rustc: Allow safe #[target_feature] on wasm This commit updates the compiler's handling of the `#[target_feature]` attribute when applied to functions on WebAssembly-based targets. The compiler in general requires that any functions with `#[target_feature]` are marked as `unsafe` as well, but this commit relaxes the restriction for WebAssembly targets where the attribute can be applied to safe functions as well. The reason this is done is that the motivation for this feature of the compiler is not applicable for WebAssembly targets. In general the `#[target_feature]` attribute is used to enhance target CPU features enabled beyond the basic level for the rest of the compilation. If done improperly this means that your program could execute an instruction that the CPU you happen to be running on does not understand. This is considered undefined behavior where it is unknown what will happen (e.g. it's not a deterministic `SIGILL`). For WebAssembly, however, the target is different. It is not possible for a running WebAssembly program to execute an instruction that the engine does not understand. If this were the case then the program would not have validated in the first place and would not run at all. Even if this were allowed in some hypothetical future where engines have some form of runtime feature detection (which they do not right now) any implementation of such a feature would generate a trap if a module attempts to execute an instruction the module does not understand. This deterministic trap behavior would still not fall into the category of undefined behavior because the trap is deterministic. For these reasons the `#[target_feature]` attribute is now allowed on safe functions, but only for WebAssembly targets. This notably enables the wasm-SIMD intrinsics proposed for stabilization in #74372 to be marked as safe generally instead of today where they're all `unsafe` due to the historical implementation of `#[target_feature]` in the compiler.
2021-05-06 14:50:40 +00:00
// the call requires `unsafe`. Don't check this on wasm
// targets, though. For more information on wasm see the
// is_like_wasm check in typeck/src/collect.rs
if !self.tcx.sess.target.options.is_like_wasm
&& !self
.tcx
.codegen_fn_attrs(func_did)
.target_features
.iter()
.all(|feature| self.body_target_features.contains(feature))
{
self.requires_unsafe(expr.span, CallToFunctionWith);
}
}
}
ExprKind::Deref { arg } => {
if let ExprKind::StaticRef { def_id, .. } = self.thir[arg].kind {
if self.tcx.is_mutable_static(def_id) {
self.requires_unsafe(expr.span, UseOfMutableStatic);
} else if self.tcx.is_foreign_item(def_id) {
self.requires_unsafe(expr.span, UseOfExternStatic);
}
} else if self.thir[arg].ty.is_unsafe_ptr() {
self.requires_unsafe(expr.span, DerefOfRawPointer);
}
}
ExprKind::InlineAsm { .. } | ExprKind::LlvmInlineAsm { .. } => {
self.requires_unsafe(expr.span, UseOfInlineAssembly);
}
2021-06-13 13:39:57 +00:00
ExprKind::Adt(box Adt {
adt_def,
variant_index: _,
substs: _,
user_ty: _,
fields: _,
base: _,
2021-06-13 13:39:57 +00:00
}) => match self.tcx.layout_scalar_valid_range(adt_def.did) {
(Bound::Unbounded, Bound::Unbounded) => {}
_ => self.requires_unsafe(expr.span, InitializingTypeWith),
},
ExprKind::Cast { source } => {
let source = &self.thir[source];
if self.tcx.features().const_raw_ptr_to_usize_cast
&& self.is_const
&& (source.ty.is_unsafe_ptr() || source.ty.is_fn_ptr())
&& expr.ty.is_integral()
{
self.requires_unsafe(expr.span, CastOfPointerToInt);
}
}
ExprKind::Closure {
closure_id,
substs: _,
upvars: _,
movability: _,
fake_reads: _,
} => {
let closure_id = closure_id.expect_local();
let closure_def = if let Some((did, const_param_id)) =
ty::WithOptConstParam::try_lookup(closure_id, self.tcx)
{
ty::WithOptConstParam { did, const_param_did: Some(const_param_id) }
} else {
ty::WithOptConstParam::unknown(closure_id)
};
let (closure_thir, expr) = self.tcx.thir_body(closure_def);
let closure_thir = &closure_thir.borrow();
let hir_context = self.tcx.hir().local_def_id_to_hir_id(closure_id);
let mut closure_visitor =
UnsafetyVisitor { thir: closure_thir, hir_context, ..*self };
closure_visitor.visit_expr(&closure_thir[expr]);
// Unsafe blocks can be used in closures, make sure to take it into account
self.safety_context = closure_visitor.safety_context;
}
ExprKind::Field { lhs, .. } => {
// assigning to union field is okay for AccessToUnionField
if let ty::Adt(adt_def, _) = &self.thir[lhs].ty.kind() {
if adt_def.is_union() {
if self.in_possible_lhs_union_assign {
// FIXME: trigger AssignToDroppingUnionField unsafety if needed
} else {
self.requires_unsafe(expr.span, AccessToUnionField);
}
}
}
}
// don't have any special handling for AssignOp since it causes a read *and* write to lhs
ExprKind::Assign { lhs, rhs } => {
// assigning to a union is safe, check here so it doesn't get treated as a read later
self.in_possible_lhs_union_assign = true;
visit::walk_expr(self, &self.thir()[lhs]);
self.in_possible_lhs_union_assign = false;
visit::walk_expr(self, &self.thir()[rhs]);
return; // don't visit the whole expression
}
_ => {}
}
visit::walk_expr(self, expr);
}
}
#[derive(Clone, Copy)]
enum SafetyContext {
Safe,
BuiltinUnsafeBlock,
UnsafeFn,
UnsafeBlock { span: Span, hir_id: hir::HirId, used: bool },
}
#[derive(Clone, Copy)]
enum BodyUnsafety {
/// The body is not unsafe.
Safe,
/// The body is an unsafe function. The span points to
/// the signature of the function.
Unsafe(Span),
}
impl BodyUnsafety {
/// Returns whether the body is unsafe.
fn is_unsafe(&self) -> bool {
matches!(self, BodyUnsafety::Unsafe(_))
}
/// If the body is unsafe, returns the `Span` of its signature.
fn unsafe_fn_sig_span(self) -> Option<Span> {
match self {
BodyUnsafety::Unsafe(span) => Some(span),
BodyUnsafety::Safe => None,
}
}
}
#[derive(Clone, Copy, PartialEq)]
enum UnsafeOpKind {
CallToUnsafeFunction,
UseOfInlineAssembly,
InitializingTypeWith,
CastOfPointerToInt,
UseOfMutableStatic,
UseOfExternStatic,
DerefOfRawPointer,
#[allow(dead_code)] // FIXME
AssignToDroppingUnionField,
AccessToUnionField,
#[allow(dead_code)] // FIXME
MutationOfLayoutConstrainedField,
#[allow(dead_code)] // FIXME
BorrowOfLayoutConstrainedField,
CallToFunctionWith,
}
use UnsafeOpKind::*;
impl UnsafeOpKind {
pub fn description_and_note(&self) -> (&'static str, &'static str) {
match self {
CallToUnsafeFunction => (
"call to unsafe function",
"consult the function's documentation for information on how to avoid undefined \
behavior",
),
UseOfInlineAssembly => (
"use of inline assembly",
"inline assembly is entirely unchecked and can cause undefined behavior",
),
InitializingTypeWith => (
"initializing type with `rustc_layout_scalar_valid_range` attr",
"initializing a layout restricted type's field with a value outside the valid \
range is undefined behavior",
),
CastOfPointerToInt => {
("cast of pointer to int", "casting pointers to integers in constants")
}
UseOfMutableStatic => (
"use of mutable static",
"mutable statics can be mutated by multiple threads: aliasing violations or data \
races will cause undefined behavior",
),
UseOfExternStatic => (
"use of extern static",
"extern statics are not controlled by the Rust type system: invalid data, \
aliasing violations or data races will cause undefined behavior",
),
DerefOfRawPointer => (
"dereference of raw pointer",
2021-05-24 10:59:33 +00:00
"raw pointers may be null, dangling or unaligned; they can violate aliasing rules \
and cause data races: all of these are undefined behavior",
),
AssignToDroppingUnionField => (
"assignment to union field that might need dropping",
"the previous content of the field will be dropped, which causes undefined \
behavior if the field was not properly initialized",
),
AccessToUnionField => (
"access to union field",
"the field may not be properly initialized: using uninitialized data will cause \
undefined behavior",
),
MutationOfLayoutConstrainedField => (
"mutation of layout constrained field",
"mutating layout constrained fields cannot statically be checked for valid values",
),
BorrowOfLayoutConstrainedField => (
"borrow of layout constrained field with interior mutability",
"references to fields of layout constrained fields lose the constraints. Coupled \
with interior mutability, the field can be changed to invalid values",
),
CallToFunctionWith => (
"call to function with `#[target_feature]`",
"can only be called if the required target features are available",
),
}
}
}
pub fn check_unsafety<'tcx>(tcx: TyCtxt<'tcx>, def: ty::WithOptConstParam<LocalDefId>) {
// THIR unsafeck is gated under `-Z thir-unsafeck`
if !tcx.sess.opts.debugging_opts.thir_unsafeck {
return;
}
// Closures are handled by their owner, if it has a body
if tcx.is_closure(def.did.to_def_id()) {
let owner = tcx.hir().local_def_id_to_hir_id(def.did).owner;
let owner_hir_id = tcx.hir().local_def_id_to_hir_id(owner);
if tcx.hir().maybe_body_owned_by(owner_hir_id).is_some() {
tcx.ensure().thir_check_unsafety(owner);
return;
}
}
let (thir, expr) = tcx.thir_body(def);
let thir = &thir.borrow();
2021-05-22 13:40:26 +00:00
// If `thir` is empty, a type error occured, skip this body.
if thir.exprs.is_empty() {
return;
}
let hir_id = tcx.hir().local_def_id_to_hir_id(def.did);
let body_unsafety = tcx.hir().fn_sig_by_hir_id(hir_id).map_or(BodyUnsafety::Safe, |fn_sig| {
if fn_sig.header.unsafety == hir::Unsafety::Unsafe {
BodyUnsafety::Unsafe(fn_sig.span)
} else {
BodyUnsafety::Safe
}
});
let body_target_features = &tcx.codegen_fn_attrs(def.did).target_features;
let safety_context =
if body_unsafety.is_unsafe() { SafetyContext::UnsafeFn } else { SafetyContext::Safe };
let is_const = match tcx.hir().body_owner_kind(hir_id) {
hir::BodyOwnerKind::Closure => false,
hir::BodyOwnerKind::Fn => tcx.is_const_fn_raw(def.did.to_def_id()),
hir::BodyOwnerKind::Const | hir::BodyOwnerKind::Static(_) => true,
};
let mut visitor = UnsafetyVisitor {
tcx,
thir,
safety_context,
hir_context: hir_id,
body_unsafety,
body_target_features,
is_const,
in_possible_lhs_union_assign: false,
in_union_destructure: false,
};
visitor.visit_expr(&thir[expr]);
}
crate fn thir_check_unsafety<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) {
if let Some(def) = ty::WithOptConstParam::try_lookup(def_id, tcx) {
tcx.thir_check_unsafety_for_const_arg(def)
} else {
check_unsafety(tcx, ty::WithOptConstParam::unknown(def_id))
}
}
crate fn thir_check_unsafety_for_const_arg<'tcx>(
tcx: TyCtxt<'tcx>,
(did, param_did): (LocalDefId, DefId),
) {
check_unsafety(tcx, ty::WithOptConstParam { did, const_param_did: Some(param_did) })
}