rust/compiler/rustc_hir_analysis/src/lib.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

540 lines
19 KiB
Rust
Raw Normal View History

2014-11-26 11:11:29 +00:00
/*!
2012-11-29 00:20:41 +00:00
2019-02-08 13:53:55 +00:00
# typeck
2012-11-29 00:20:41 +00:00
The type checker is responsible for:
1. Determining the type of each expression.
2. Resolving methods and traits.
3. Guaranteeing that most type rules are met. ("Most?", you say, "why most?"
Well, dear reader, read on.)
2012-11-29 00:20:41 +00:00
The main entry point is [`check_crate()`]. Type checking operates in
several major phases:
2012-11-29 00:20:41 +00:00
1. The collect phase first passes over all items and determines their
type, without examining their "innards".
2. Variance inference then runs to compute the variance of each parameter.
3. Coherence checks for overlapping or orphaned impls.
4. Finally, the check phase then checks function bodies and so forth.
Within the check phase, we check each function body one at a time
(bodies of function expressions are checked as part of the
containing function). Inference is used to supply types wherever
they are unknown. The actual checking of a function itself has
several phases (check, regionck, writeback), as discussed in the
documentation for the [`check`] module.
2012-11-29 00:20:41 +00:00
The type checker is defined into various submodules which are documented
independently:
- astconv: converts the AST representation of types
into the `ty` representation.
2012-11-29 00:20:41 +00:00
- collect: computes the types of each top-level item and enters them into
the `tcx.types` table for later use.
2012-11-29 00:20:41 +00:00
- coherence: enforces coherence rules, builds some tables.
- variance: variance inference
- outlives: outlives inference
2012-11-29 00:20:41 +00:00
- check: walks over function bodies and type checks them, inferring types for
local variables, type parameters, etc as necessary.
- infer: finds the types to use for each type variable such that
all subtyping and assignment constraints are met. In essence, the check
2012-11-29 00:20:41 +00:00
module specifies the constraints, and the infer module solves them.
## Note
2014-11-26 11:11:29 +00:00
This API is completely unstable and subject to change.
2012-11-29 00:20:41 +00:00
*/
2022-02-26 10:43:47 +00:00
#![allow(rustc::potential_query_instability)]
2020-09-23 19:51:56 +00:00
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
#![feature(box_patterns)]
2022-02-26 10:43:47 +00:00
#![feature(control_flow_enum)]
Implementation for 65853 This attempts to bring better error messages to invalid method calls, by applying some heuristics to identify common mistakes. The algorithm is inspired by Levenshtein distance and longest common sub-sequence. In essence, we treat the types of the function, and the types of the arguments you provided as two "words" and compute the edits to get from one to the other. We then modify that algorithm to detect 4 cases: - A function input is missing - An extra argument was provided - The type of an argument is straight up invalid - Two arguments have been swapped - A subset of the arguments have been shuffled (We detect the last two as separate cases so that we can detect two swaps, instead of 4 parameters permuted.) It helps to understand this argument by paying special attention to terminology: "inputs" refers to the inputs being *expected* by the function, and "arguments" refers to what has been provided at the call site. The basic sketch of the algorithm is as follows: - Construct a boolean grid, with a row for each argument, and a column for each input. The cell [i, j] is true if the i'th argument could satisfy the j'th input. - If we find an argument that could satisfy no inputs, provided for an input that can't be satisfied by any other argument, we consider this an "invalid type". - Extra arguments are those that can't satisfy any input, provided for an input that *could* be satisfied by another argument. - Missing inputs are inputs that can't be satisfied by any argument, where the provided argument could satisfy another input - Swapped / Permuted arguments are identified with a cycle detection algorithm. As each issue is found, we remove the relevant inputs / arguments and check for more issues. If we find no issues, we match up any "valid" arguments, and start again. Note that there's a lot of extra complexity: - We try to stay efficient on the happy path, only computing the diagonal until we find a problem, and then filling in the rest of the matrix. - Closure arguments are wrapped in a tuple and need to be unwrapped - We need to resolve closure types after the rest, to allow the most specific type constraints - We need to handle imported C functions that might be variadic in their inputs. I tried to document a lot of this in comments in the code and keep the naming clear.
2022-01-22 04:50:54 +00:00
#![feature(drain_filter)]
2022-02-26 10:43:47 +00:00
#![feature(hash_drain_filter)]
2021-08-16 15:29:49 +00:00
#![feature(if_let_guard)]
#![feature(is_sorted)]
2022-04-13 14:49:03 +00:00
#![feature(iter_intersperse)]
#![feature(let_chains)]
2021-10-07 19:56:40 +00:00
#![feature(min_specialization)]
#![feature(never_type)]
#![feature(lazy_cell)]
2022-02-26 10:43:47 +00:00
#![feature(slice_partition_dedup)]
#![feature(try_blocks)]
#![feature(type_alias_impl_trait)]
2018-03-15 09:08:52 +00:00
#![recursion_limit = "256"]
#[macro_use]
2020-08-14 06:05:01 +00:00
extern crate tracing;
#[macro_use]
2020-03-29 14:41:09 +00:00
extern crate rustc_middle;
2014-11-26 11:11:29 +00:00
2020-08-03 00:19:33 +00:00
// These are used by Clippy.
pub mod check;
pub mod astconv;
2022-12-27 00:39:36 +00:00
pub mod autoderef;
mod bounds;
mod check_unused;
mod coherence;
// FIXME: This module shouldn't be public.
pub mod collect;
mod constrained_generic_params;
mod errors;
Add initial implementation of HIR-based WF checking for diagnostics During well-formed checking, we walk through all types 'nested' in generic arguments. For example, WF-checking `Option<MyStruct<u8>>` will cause us to check `MyStruct<u8>` and `u8`. However, this is done on a `rustc_middle::ty::Ty`, which has no span information. As a result, any errors that occur will have a very general span (e.g. the definintion of an associated item). This becomes a problem when macros are involved. In general, an associated type like `type MyType = Option<MyStruct<u8>>;` may have completely different spans for each nested type in the HIR. Using the span of the entire associated item might end up pointing to a macro invocation, even though a user-provided span is available in one of the nested types. This PR adds a framework for HIR-based well formed checking. This check is only run during error reporting, and is used to obtain a more precise span for an existing error. This is accomplished by individually checking each 'nested' type in the HIR for the type, allowing us to find the most-specific type (and span) that produces a given error. The majority of the changes are to the error-reporting code. However, some of the general trait code is modified to pass through more information. Since this has no soundness implications, I've implemented a minimal version to begin with, which can be extended over time. In particular, this only works for HIR items with a corresponding `DefId` (e.g. it will not work for WF-checking performed within function bodies).
2021-04-04 20:55:39 +00:00
pub mod hir_wf_check;
mod impl_wf_check;
mod outlives;
pub mod structured_errors;
mod variance;
use rustc_errors::ErrorGuaranteed;
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
use rustc_fluent_macro::fluent_messages;
use rustc_hir as hir;
use rustc_hir::Node;
use rustc_infer::infer::TyCtxtInferExt;
2020-03-29 14:41:09 +00:00
use rustc_middle::middle;
use rustc_middle::ty::query::Providers;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::util;
use rustc_session::{config::EntryFnType, parse::feature_err};
use rustc_span::def_id::{DefId, LocalDefId, CRATE_DEF_ID};
2020-08-04 05:30:04 +00:00
use rustc_span::{symbol::sym, Span, DUMMY_SP};
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
use rustc_trait_selection::traits::{self, ObligationCause, ObligationCauseCode, ObligationCtxt};
use std::ops::Not;
use astconv::{AstConv, OnlySelfBounds};
use bounds::Bounds;
2014-05-06 13:52:04 +00:00
fluent_messages! { "../messages.ftl" }
2019-12-01 15:08:58 +00:00
fn require_c_abi_if_c_variadic(tcx: TyCtxt<'_>, decl: &hir::FnDecl<'_>, abi: Abi, span: Span) {
const CONVENTIONS_UNSTABLE: &str = "`C`, `cdecl`, `win64`, `sysv64` or `efiapi`";
const CONVENTIONS_STABLE: &str = "`C` or `cdecl`";
const UNSTABLE_EXPLAIN: &str =
2022-10-23 23:11:25 +00:00
"using calling conventions other than `C` or `cdecl` for varargs functions is unstable";
if !decl.c_variadic || matches!(abi, Abi::C { .. } | Abi::Cdecl { .. }) {
return;
}
let extended_abi_support = tcx.features().extended_varargs_abi_support;
let conventions = match (extended_abi_support, abi.supports_varargs()) {
// User enabled additional ABI support for varargs and function ABI matches those ones.
(true, true) => return,
// Using this ABI would be ok, if the feature for additional ABI support was enabled.
// Return CONVENTIONS_STABLE, because we want the other error to look the same.
(false, true) => {
feature_err(
&tcx.sess.parse_sess,
sym::extended_varargs_abi_support,
rustc_target: add "unwind" payloads to `Abi` ### Overview This commit begins the implementation work for RFC 2945. For more information, see the rendered RFC [1] and tracking issue [2]. A boolean `unwind` payload is added to the `C`, `System`, `Stdcall`, and `Thiscall` variants, marking whether unwinding across FFI boundaries is acceptable. The cases where each of these variants' `unwind` member is true correspond with the `C-unwind`, `system-unwind`, `stdcall-unwind`, and `thiscall-unwind` ABI strings introduced in RFC 2945 [3]. ### Feature Gate and Unstable Book This commit adds a `c_unwind` feature gate for the new ABI strings. Tests for this feature gate are included in `src/test/ui/c-unwind/`, which ensure that this feature gate works correctly for each of the new ABIs. A new language features entry in the unstable book is added as well. ### Further Work To Be Done This commit does not proceed to implement the new unwinding ABIs, and is intentionally scoped specifically to *defining* the ABIs and their feature flag. ### One Note on Test Churn This will lead to some test churn, in re-blessing hash tests, as the deleted comment in `src/librustc_target/spec/abi.rs` mentioned, because we can no longer guarantee the ordering of the `Abi` variants. While this is a downside, this decision was made bearing in mind that RFC 2945 states the following, in the "Other `unwind` Strings" section [3]: > More unwind variants of existing ABI strings may be introduced, > with the same semantics, without an additional RFC. Adding a new variant for each of these cases, rather than specifying a payload for a given ABI, would quickly become untenable, and make working with the `Abi` enum prone to mistakes. This approach encodes the unwinding information *into* a given ABI, to account for the future possibility of other `-unwind` ABI strings. ### Ignore Directives `ignore-*` directives are used in two of our `*-unwind` ABI test cases. Specifically, the `stdcall-unwind` and `thiscall-unwind` test cases ignore architectures that do not support `stdcall` and `thiscall`, respectively. These directives are cribbed from `src/test/ui/c-variadic/variadic-ffi-1.rs` for `stdcall`, and `src/test/ui/extern/extern-thiscall.rs` for `thiscall`. This would otherwise fail on some targets, see: https://github.com/rust-lang-ci/rust/commit/fcf697f90206e9c87b39d494f94ab35d976bfc60 ### Footnotes [1]: https://github.com/rust-lang/rfcs/blob/master/text/2945-c-unwind-abi.md [2]: https://github.com/rust-lang/rust/issues/74990 [3]: https://github.com/rust-lang/rfcs/blob/master/text/2945-c-unwind-abi.md#other-unwind-abi-strings
2020-08-27 15:49:18 +00:00
span,
UNSTABLE_EXPLAIN,
)
.emit();
CONVENTIONS_STABLE
rustc_target: add "unwind" payloads to `Abi` ### Overview This commit begins the implementation work for RFC 2945. For more information, see the rendered RFC [1] and tracking issue [2]. A boolean `unwind` payload is added to the `C`, `System`, `Stdcall`, and `Thiscall` variants, marking whether unwinding across FFI boundaries is acceptable. The cases where each of these variants' `unwind` member is true correspond with the `C-unwind`, `system-unwind`, `stdcall-unwind`, and `thiscall-unwind` ABI strings introduced in RFC 2945 [3]. ### Feature Gate and Unstable Book This commit adds a `c_unwind` feature gate for the new ABI strings. Tests for this feature gate are included in `src/test/ui/c-unwind/`, which ensure that this feature gate works correctly for each of the new ABIs. A new language features entry in the unstable book is added as well. ### Further Work To Be Done This commit does not proceed to implement the new unwinding ABIs, and is intentionally scoped specifically to *defining* the ABIs and their feature flag. ### One Note on Test Churn This will lead to some test churn, in re-blessing hash tests, as the deleted comment in `src/librustc_target/spec/abi.rs` mentioned, because we can no longer guarantee the ordering of the `Abi` variants. While this is a downside, this decision was made bearing in mind that RFC 2945 states the following, in the "Other `unwind` Strings" section [3]: > More unwind variants of existing ABI strings may be introduced, > with the same semantics, without an additional RFC. Adding a new variant for each of these cases, rather than specifying a payload for a given ABI, would quickly become untenable, and make working with the `Abi` enum prone to mistakes. This approach encodes the unwinding information *into* a given ABI, to account for the future possibility of other `-unwind` ABI strings. ### Ignore Directives `ignore-*` directives are used in two of our `*-unwind` ABI test cases. Specifically, the `stdcall-unwind` and `thiscall-unwind` test cases ignore architectures that do not support `stdcall` and `thiscall`, respectively. These directives are cribbed from `src/test/ui/c-variadic/variadic-ffi-1.rs` for `stdcall`, and `src/test/ui/extern/extern-thiscall.rs` for `thiscall`. This would otherwise fail on some targets, see: https://github.com/rust-lang-ci/rust/commit/fcf697f90206e9c87b39d494f94ab35d976bfc60 ### Footnotes [1]: https://github.com/rust-lang/rfcs/blob/master/text/2945-c-unwind-abi.md [2]: https://github.com/rust-lang/rust/issues/74990 [3]: https://github.com/rust-lang/rfcs/blob/master/text/2945-c-unwind-abi.md#other-unwind-abi-strings
2020-08-27 15:49:18 +00:00
}
(false, false) => CONVENTIONS_STABLE,
(true, false) => CONVENTIONS_UNSTABLE,
};
tcx.sess.emit_err(errors::VariadicFunctionCompatibleConvention { span, conventions });
}
fn require_same_types<'tcx>(
2019-06-13 21:48:52 +00:00
tcx: TyCtxt<'tcx>,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
) {
let infcx = &tcx.infer_ctxt().build();
let ocx = ObligationCtxt::new(infcx);
match ocx.eq(cause, param_env, expected, actual) {
Ok(()) => {
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
infcx.err_ctxt().report_fulfillment_errors(&errors);
}
}
Err(err) => {
infcx.err_ctxt().report_mismatched_types(cause, expected, actual, err).emit();
2012-11-29 00:20:41 +00:00
}
}
2012-11-29 00:20:41 +00:00
}
fn check_main_fn_ty(tcx: TyCtxt<'_>, main_def_id: DefId) {
let main_fnsig = tcx.fn_sig(main_def_id).subst_identity();
2019-01-13 12:06:26 +00:00
let main_span = tcx.def_span(main_def_id);
fn main_fn_diagnostics_def_id(tcx: TyCtxt<'_>, def_id: DefId, sp: Span) -> LocalDefId {
if let Some(local_def_id) = def_id.as_local() {
let hir_type = tcx.type_of(local_def_id).subst_identity();
if !matches!(hir_type.kind(), ty::FnDef(..)) {
span_bug!(sp, "main has a non-function type: found `{}`", hir_type);
2012-11-29 00:20:41 +00:00
}
local_def_id
} else {
CRATE_DEF_ID
}
}
2017-12-21 12:07:50 +00:00
fn main_fn_generics_params_span(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Span> {
if !def_id.is_local() {
return None;
}
let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
match tcx.hir().find(hir_id) {
Some(Node::Item(hir::Item { kind: hir::ItemKind::Fn(_, generics, _), .. })) => {
generics.params.is_empty().not().then_some(generics.span)
}
_ => {
span_bug!(tcx.def_span(def_id), "main has a non-function type");
}
}
}
2017-12-21 12:07:50 +00:00
fn main_fn_where_clauses_span(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Span> {
if !def_id.is_local() {
return None;
2012-11-29 00:20:41 +00:00
}
let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
match tcx.hir().find(hir_id) {
Some(Node::Item(hir::Item { kind: hir::ItemKind::Fn(_, generics, _), .. })) => {
2022-06-07 04:01:06 +00:00
Some(generics.where_clause_span)
}
_ => {
span_bug!(tcx.def_span(def_id), "main has a non-function type");
}
2012-11-29 00:20:41 +00:00
}
}
fn main_fn_asyncness_span(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Span> {
if !def_id.is_local() {
return None;
}
Some(tcx.def_span(def_id))
}
fn main_fn_return_type_span(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Span> {
if !def_id.is_local() {
return None;
}
let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
match tcx.hir().find(hir_id) {
Some(Node::Item(hir::Item { kind: hir::ItemKind::Fn(fn_sig, _, _), .. })) => {
Some(fn_sig.decl.output.span())
}
_ => {
span_bug!(tcx.def_span(def_id), "main has a non-function type");
}
}
}
let mut error = false;
let main_diagnostics_def_id = main_fn_diagnostics_def_id(tcx, main_def_id, main_span);
let main_fn_generics = tcx.generics_of(main_def_id);
let main_fn_predicates = tcx.predicates_of(main_def_id);
if main_fn_generics.count() != 0 || !main_fnsig.bound_vars().is_empty() {
let generics_param_span = main_fn_generics_params_span(tcx, main_def_id);
tcx.sess.emit_err(errors::MainFunctionGenericParameters {
span: generics_param_span.unwrap_or(main_span),
label_span: generics_param_span,
});
error = true;
} else if !main_fn_predicates.predicates.is_empty() {
// generics may bring in implicit predicates, so we skip this check if generics is present.
let generics_where_clauses_span = main_fn_where_clauses_span(tcx, main_def_id);
tcx.sess.emit_err(errors::WhereClauseOnMain {
span: generics_where_clauses_span.unwrap_or(main_span),
generics_span: generics_where_clauses_span,
});
error = true;
}
let main_asyncness = tcx.asyncness(main_def_id);
if let hir::IsAsync::Async = main_asyncness {
let asyncness_span = main_fn_asyncness_span(tcx, main_def_id);
tcx.sess.emit_err(errors::MainFunctionAsync { span: main_span, asyncness: asyncness_span });
error = true;
}
2022-05-02 07:31:56 +00:00
for attr in tcx.get_attrs(main_def_id, sym::track_caller) {
tcx.sess.emit_err(errors::TrackCallerOnMain { span: attr.span, annotated: main_span });
2022-05-02 07:31:56 +00:00
error = true;
}
if !tcx.codegen_fn_attrs(main_def_id).target_features.is_empty()
// Calling functions with `#[target_feature]` is not unsafe on WASM, see #84988
&& !tcx.sess.target.is_like_wasm
&& !tcx.sess.opts.actually_rustdoc
{
tcx.sess.emit_err(errors::TargetFeatureOnMain { main: main_span });
error = true;
}
if error {
return;
}
// Main should have no WC, so empty param env is OK here.
let param_env = ty::ParamEnv::empty();
let expected_return_type;
if let Some(term_did) = tcx.lang_items().termination() {
let return_ty = main_fnsig.output();
let return_ty_span = main_fn_return_type_span(tcx, main_def_id).unwrap_or(main_span);
if !return_ty.bound_vars().is_empty() {
tcx.sess.emit_err(errors::MainFunctionReturnTypeGeneric { span: return_ty_span });
error = true;
}
let return_ty = return_ty.skip_binder();
let infcx = tcx.infer_ctxt().build();
let cause = traits::ObligationCause::new(
return_ty_span,
main_diagnostics_def_id,
ObligationCauseCode::MainFunctionType,
);
let ocx = traits::ObligationCtxt::new(&infcx);
let norm_return_ty = ocx.normalize(&cause, param_env, return_ty);
ocx.register_bound(cause, param_env, norm_return_ty, term_did);
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
2023-03-09 23:23:43 +00:00
infcx.err_ctxt().report_fulfillment_errors(&errors);
error = true;
}
// now we can take the return type of the given main function
expected_return_type = main_fnsig.output();
} else {
// standard () main return type
expected_return_type = ty::Binder::dummy(tcx.mk_unit());
}
if error {
return;
}
let se_ty = tcx.mk_fn_ptr(expected_return_type.map_bound(|expected_return_type| {
tcx.mk_fn_sig([], expected_return_type, false, hir::Unsafety::Normal, Abi::Rust)
}));
require_same_types(
tcx,
&ObligationCause::new(
main_span,
main_diagnostics_def_id,
ObligationCauseCode::MainFunctionType,
),
param_env,
se_ty,
tcx.mk_fn_ptr(main_fnsig),
);
}
fn check_start_fn_ty(tcx: TyCtxt<'_>, start_def_id: DefId) {
let start_def_id = start_def_id.expect_local();
let start_id = tcx.hir().local_def_id_to_hir_id(start_def_id);
2019-01-13 12:06:26 +00:00
let start_span = tcx.def_span(start_def_id);
let start_t = tcx.type_of(start_def_id).subst_identity();
2020-08-02 22:49:11 +00:00
match start_t.kind() {
ty::FnDef(..) => {
2019-06-24 07:58:49 +00:00
if let Some(Node::Item(it)) = tcx.hir().find(start_id) {
if let hir::ItemKind::Fn(sig, generics, _) = &it.kind {
let mut error = false;
if !generics.params.is_empty() {
tcx.sess.emit_err(errors::StartFunctionParameters { span: generics.span });
error = true;
}
2022-06-07 04:01:06 +00:00
if generics.has_where_clause_predicates {
tcx.sess.emit_err(errors::StartFunctionWhere {
span: generics.where_clause_span,
});
error = true;
}
if let hir::IsAsync::Async = sig.header.asyncness {
let span = tcx.def_span(it.owner_id);
tcx.sess.emit_err(errors::StartAsync { span: span });
error = true;
}
2020-08-04 05:30:04 +00:00
2021-01-24 12:17:54 +00:00
let attrs = tcx.hir().attrs(start_id);
for attr in attrs {
if attr.has_name(sym::track_caller) {
tcx.sess.emit_err(errors::StartTrackCaller {
span: attr.span,
start: start_span,
});
2020-08-04 05:30:04 +00:00
error = true;
}
if attr.has_name(sym::target_feature)
// Calling functions with `#[target_feature]` is
// not unsafe on WASM, see #84988
&& !tcx.sess.target.is_like_wasm
&& !tcx.sess.opts.actually_rustdoc
{
tcx.sess.emit_err(errors::StartTargetFeature {
span: attr.span,
start: start_span,
});
error = true;
}
2020-08-04 05:30:04 +00:00
}
if error {
return;
}
}
}
let se_ty = tcx.mk_fn_ptr(ty::Binder::dummy(tcx.mk_fn_sig(
[tcx.types.isize, tcx.mk_imm_ptr(tcx.mk_imm_ptr(tcx.types.u8))],
tcx.types.isize,
false,
hir::Unsafety::Normal,
Abi::Rust,
)));
2016-07-16 16:38:17 +00:00
require_same_types(
tcx,
&ObligationCause::new(
start_span,
start_def_id,
ObligationCauseCode::StartFunctionType,
),
ty::ParamEnv::empty(), // start should not have any where bounds.
se_ty,
tcx.mk_fn_ptr(tcx.fn_sig(start_def_id).subst_identity()),
);
}
_ => {
span_bug!(start_span, "start has a non-function type: found `{}`", start_t);
}
}
}
2019-06-21 21:49:03 +00:00
fn check_for_entry_fn(tcx: TyCtxt<'_>) {
2021-05-11 10:00:59 +00:00
match tcx.entry_fn(()) {
Some((def_id, EntryFnType::Main { .. })) => check_main_fn_ty(tcx, def_id),
Some((def_id, EntryFnType::Start)) => check_start_fn_ty(tcx, def_id),
2019-01-13 12:06:26 +00:00
_ => {}
2012-11-29 00:20:41 +00:00
}
}
pub fn provide(providers: &mut Providers) {
collect::provide(providers);
coherence::provide(providers);
check::provide(providers);
variance::provide(providers);
outlives::provide(providers);
2019-01-26 11:18:32 +00:00
impl_wf_check::provide(providers);
Add initial implementation of HIR-based WF checking for diagnostics During well-formed checking, we walk through all types 'nested' in generic arguments. For example, WF-checking `Option<MyStruct<u8>>` will cause us to check `MyStruct<u8>` and `u8`. However, this is done on a `rustc_middle::ty::Ty`, which has no span information. As a result, any errors that occur will have a very general span (e.g. the definintion of an associated item). This becomes a problem when macros are involved. In general, an associated type like `type MyType = Option<MyStruct<u8>>;` may have completely different spans for each nested type in the HIR. Using the span of the entire associated item might end up pointing to a macro invocation, even though a user-provided span is available in one of the nested types. This PR adds a framework for HIR-based well formed checking. This check is only run during error reporting, and is used to obtain a more precise span for an existing error. This is accomplished by individually checking each 'nested' type in the HIR for the type, allowing us to find the most-specific type (and span) that produces a given error. The majority of the changes are to the error-reporting code. However, some of the general trait code is modified to pass through more information. Since this has no soundness implications, I've implemented a minimal version to begin with, which can be extended over time. In particular, this only works for HIR items with a corresponding `DefId` (e.g. it will not work for WF-checking performed within function bodies).
2021-04-04 20:55:39 +00:00
hir_wf_check::provide(providers);
}
pub fn check_crate(tcx: TyCtxt<'_>) -> Result<(), ErrorGuaranteed> {
let _prof_timer = tcx.sess.timer("type_check_crate");
2018-05-19 17:50:58 +00:00
// this ensures that later parts of type checking can assume that items
// have valid types and not error
// FIXME(matthewjasper) We shouldn't need to use `track_errors`.
tcx.sess.track_errors(|| {
tcx.sess.time("type_collecting", || {
2021-07-18 16:12:17 +00:00
tcx.hir().for_each_module(|module| tcx.ensure().collect_mod_item_types(module))
2019-02-23 18:18:14 +00:00
});
})?;
2019-01-26 14:26:49 +00:00
if tcx.features().rustc_attrs {
tcx.sess.track_errors(|| {
tcx.sess.time("outlives_testing", || outlives::test::test_inferred_outlives(tcx));
2019-01-26 14:26:49 +00:00
})?;
}
tcx.sess.track_errors(|| {
2021-05-09 18:49:17 +00:00
tcx.sess.time("impl_wf_inference", || {
tcx.hir().for_each_module(|module| tcx.ensure().check_mod_impl_wf(module))
});
})?;
tcx.sess.track_errors(|| {
2021-05-09 18:53:13 +00:00
tcx.sess.time("coherence_checking", || {
for &trait_def_id in tcx.all_local_trait_impls(()).keys() {
tcx.ensure().coherent_trait(trait_def_id);
}
// these queries are executed for side-effects (error reporting):
tcx.ensure().crate_inherent_impls(());
tcx.ensure().crate_inherent_impls_overlap_check(());
});
})?;
2013-03-21 10:28:58 +00:00
2019-01-26 14:26:49 +00:00
if tcx.features().rustc_attrs {
tcx.sess.track_errors(|| {
tcx.sess.time("variance_testing", || variance::test::test_variance(tcx));
2019-01-26 14:26:49 +00:00
})?;
}
2019-06-22 11:46:48 +00:00
tcx.sess.track_errors(|| {
2021-05-10 10:18:55 +00:00
tcx.sess.time("wf_checking", || {
tcx.hir().par_for_each_module(|module| tcx.ensure().check_mod_type_wf(module))
});
2019-06-22 11:46:48 +00:00
})?;
// NOTE: This is copy/pasted in librustdoc/core.rs and should be kept in sync.
tcx.sess.time("item_types_checking", || {
2021-07-18 16:12:17 +00:00
tcx.hir().for_each_module(|module| tcx.ensure().check_mod_item_types(module))
});
2013-03-21 10:28:58 +00:00
2016-04-19 13:43:10 +00:00
check_unused::check_crate(tcx);
check_for_entry_fn(tcx);
if let Some(reported) = tcx.sess.has_errors() { Err(reported) } else { Ok(()) }
2012-11-29 00:20:41 +00:00
}
/// A quasi-deprecated helper used in rustdoc and clippy to get
/// the type from a HIR node.
2019-12-01 15:08:58 +00:00
pub fn hir_ty_to_ty<'tcx>(tcx: TyCtxt<'tcx>, hir_ty: &hir::Ty<'_>) -> Ty<'tcx> {
// In case there are any projections, etc., find the "environment"
// def-ID that will be used to determine the traits/predicates in
// scope. This is derived from the enclosing item-like thing.
let env_def_id = tcx.hir().get_parent_item(hir_ty.hir_id);
2023-03-13 19:06:41 +00:00
let item_cx = self::collect::ItemCtxt::new(tcx, env_def_id.def_id);
item_cx.astconv().ast_ty_to_ty(hir_ty)
2017-11-18 15:49:37 +00:00
}
2019-12-01 15:08:58 +00:00
pub fn hir_trait_to_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
hir_trait: &hir::TraitRef<'_>,
2020-04-07 00:03:54 +00:00
self_ty: Ty<'tcx>,
2019-12-01 15:08:58 +00:00
) -> Bounds<'tcx> {
// In case there are any projections, etc., find the "environment"
// def-ID that will be used to determine the traits/predicates in
// scope. This is derived from the enclosing item-like thing.
let env_def_id = tcx.hir().get_parent_item(hir_trait.hir_ref_id);
2023-03-13 19:06:41 +00:00
let item_cx = self::collect::ItemCtxt::new(tcx, env_def_id.def_id);
let mut bounds = Bounds::default();
let _ = &item_cx.astconv().instantiate_poly_trait_ref(
hir_trait,
DUMMY_SP,
2021-08-27 05:02:23 +00:00
ty::BoundConstness::NotConst,
2023-04-25 05:15:50 +00:00
ty::ImplPolarity::Positive,
2020-04-07 00:03:54 +00:00
self_ty,
&mut bounds,
true,
OnlySelfBounds(false),
2017-11-18 15:49:37 +00:00
);
bounds
}