rust/compiler/rustc_hir_analysis/src/astconv/errors.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

409 lines
17 KiB
Rust
Raw Normal View History

use crate::astconv::AstConv;
use crate::errors::{ManualImplementation, MissingTypeParams};
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{pluralize, struct_span_err, Applicability, ErrorGuaranteed};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_middle::ty;
use rustc_session::parse::feature_err;
Move lev_distance to rustc_ast, make non-generic rustc_ast currently has a few dependencies on rustc_lexer. Ideally, an AST would not have any dependency its lexer, for minimizing unnecessarily design-time dependencies. Breaking this dependency would also have practical benefits, since modifying rustc_lexer would not trigger a rebuild of rustc_ast. This commit does not remove the rustc_ast --> rustc_lexer dependency, but it does remove one of the sources of this dependency, which is the code that handles fuzzy matching between symbol names for making suggestions in diagnostics. Since that code depends only on Symbol, it is easy to move it to rustc_span. It might even be best to move it to a separate crate, since other tools such as Cargo use the same algorithm, and have simply contain a duplicate of the code. This changes the signature of find_best_match_for_name so that it is no longer generic over its input. I checked the optimized binaries, and this function was duplicated at nearly every call site, because most call sites used short-lived iterator chains, generic over Map and such. But there's no good reason for a function like this to be generic, since all it does is immediately convert the generic input (the Iterator impl) to a concrete Vec<Symbol>. This has all of the costs of generics (duplicated method bodies) with no benefit. Changing find_best_match_for_name to be non-generic removed about 10KB of code from the optimized binary. I know it's a drop in the bucket, but we have to start reducing binary size, and beginning to tame over-use of generics is part of that.
2020-11-12 19:24:10 +00:00
use rustc_span::lev_distance::find_best_match_for_name;
use rustc_span::symbol::{sym, Ident};
use rustc_span::{Span, Symbol, DUMMY_SP};
use std::collections::BTreeSet;
impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
/// On missing type parameters, emit an E0393 error and provide a structured suggestion using
/// the type parameter's name as a placeholder.
pub(crate) fn complain_about_missing_type_params(
&self,
missing_type_params: Vec<Symbol>,
def_id: DefId,
span: Span,
empty_generic_args: bool,
) {
if missing_type_params.is_empty() {
return;
}
self.tcx().sess.emit_err(MissingTypeParams {
span,
def_span: self.tcx().def_span(def_id),
span_snippet: self.tcx().sess.source_map().span_to_snippet(span).ok(),
missing_type_params,
empty_generic_args,
});
}
/// When the code is using the `Fn` traits directly, instead of the `Fn(A) -> B` syntax, emit
/// an error and attempt to build a reasonable structured suggestion.
pub(crate) fn complain_about_internal_fn_trait(
&self,
span: Span,
trait_def_id: DefId,
2021-12-14 01:45:08 +00:00
trait_segment: &'_ hir::PathSegment<'_>,
2022-01-12 22:13:52 +00:00
is_impl: bool,
) {
2022-01-12 22:13:52 +00:00
if self.tcx().features().unboxed_closures {
return;
}
let trait_def = self.tcx().trait_def(trait_def_id);
2022-01-12 22:13:52 +00:00
if !trait_def.paren_sugar {
if trait_segment.args().parenthesized {
// For now, require that parenthetical notation be used only with `Fn()` etc.
let mut err = feature_err(
&self.tcx().sess.parse_sess,
sym::unboxed_closures,
span,
"parenthetical notation is only stable when used with `Fn`-family traits",
);
err.emit();
}
return;
}
let sess = self.tcx().sess;
2022-01-12 22:13:52 +00:00
if !trait_segment.args().parenthesized {
// For now, require that parenthetical notation be used only with `Fn()` etc.
2022-01-12 22:13:52 +00:00
let mut err = feature_err(
&sess.parse_sess,
sym::unboxed_closures,
span,
"the precise format of `Fn`-family traits' type parameters is subject to change",
);
// Do not suggest the other syntax if we are in trait impl:
// the desugaring would contain an associated type constraint.
2022-01-12 22:13:52 +00:00
if !is_impl {
let args = trait_segment
.args
.as_ref()
.and_then(|args| args.args.get(0))
.and_then(|arg| match arg {
hir::GenericArg::Type(ty) => match ty.kind {
hir::TyKind::Tup(t) => t
.iter()
.map(|e| sess.source_map().span_to_snippet(e.span))
.collect::<Result<Vec<_>, _>>()
.map(|a| a.join(", ")),
_ => sess.source_map().span_to_snippet(ty.span),
}
.map(|s| format!("({})", s))
.ok(),
_ => None,
})
.unwrap_or_else(|| "()".to_string());
let ret = trait_segment
.args()
.bindings
.iter()
.find_map(|b| match (b.ident.name == sym::Output, &b.kind) {
(true, hir::TypeBindingKind::Equality { term }) => {
let span = match term {
hir::Term::Ty(ty) => ty.span,
hir::Term::Const(c) => self.tcx().hir().span(c.hir_id),
};
sess.source_map().span_to_snippet(span).ok()
2022-01-12 22:13:52 +00:00
}
_ => None,
})
.unwrap_or_else(|| "()".to_string());
err.span_suggestion(
span,
"use parenthetical notation instead",
format!("{}{} -> {}", trait_segment.ident, args, ret),
Applicability::MaybeIncorrect,
);
}
err.emit();
}
2022-01-12 22:13:52 +00:00
if is_impl {
let trait_name = self.tcx().def_path_str(trait_def_id);
self.tcx().sess.emit_err(ManualImplementation { span, trait_name });
2022-01-12 22:13:52 +00:00
}
}
pub(crate) fn complain_about_assoc_type_not_found<I>(
&self,
all_candidates: impl Fn() -> I,
ty_param_name: &str,
assoc_name: Ident,
span: Span,
) -> ErrorGuaranteed
where
I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
{
// The fallback span is needed because `assoc_name` might be an `Fn()`'s `Output` without a
// valid span, so we point at the whole path segment instead.
let span = if assoc_name.span != DUMMY_SP { assoc_name.span } else { span };
let mut err = struct_span_err!(
self.tcx().sess,
span,
E0220,
"associated type `{}` not found for `{}`",
assoc_name,
ty_param_name
);
let all_candidate_names: Vec<_> = all_candidates()
.flat_map(|r| self.tcx().associated_items(r.def_id()).in_definition_order())
.filter_map(
|item| if item.kind == ty::AssocKind::Type { Some(item.name) } else { None },
)
.collect();
if let (Some(suggested_name), true) = (
Move lev_distance to rustc_ast, make non-generic rustc_ast currently has a few dependencies on rustc_lexer. Ideally, an AST would not have any dependency its lexer, for minimizing unnecessarily design-time dependencies. Breaking this dependency would also have practical benefits, since modifying rustc_lexer would not trigger a rebuild of rustc_ast. This commit does not remove the rustc_ast --> rustc_lexer dependency, but it does remove one of the sources of this dependency, which is the code that handles fuzzy matching between symbol names for making suggestions in diagnostics. Since that code depends only on Symbol, it is easy to move it to rustc_span. It might even be best to move it to a separate crate, since other tools such as Cargo use the same algorithm, and have simply contain a duplicate of the code. This changes the signature of find_best_match_for_name so that it is no longer generic over its input. I checked the optimized binaries, and this function was duplicated at nearly every call site, because most call sites used short-lived iterator chains, generic over Map and such. But there's no good reason for a function like this to be generic, since all it does is immediately convert the generic input (the Iterator impl) to a concrete Vec<Symbol>. This has all of the costs of generics (duplicated method bodies) with no benefit. Changing find_best_match_for_name to be non-generic removed about 10KB of code from the optimized binary. I know it's a drop in the bucket, but we have to start reducing binary size, and beginning to tame over-use of generics is part of that.
2020-11-12 19:24:10 +00:00
find_best_match_for_name(&all_candidate_names, assoc_name.name, None),
assoc_name.span != DUMMY_SP,
) {
err.span_suggestion(
assoc_name.span,
"there is an associated type with a similar name",
suggested_name,
Applicability::MaybeIncorrect,
);
return err.emit();
}
// If we didn't find a good item in the supertraits (or couldn't get
// the supertraits), like in ItemCtxt, then look more generally from
// all visible traits. If there's one clear winner, just suggest that.
let visible_traits: Vec<_> = self
.tcx()
.all_traits()
.filter(|trait_def_id| {
let viz = self.tcx().visibility(*trait_def_id);
2022-10-31 16:19:36 +00:00
let def_id = self.item_def_id();
viz.is_accessible_from(def_id, self.tcx())
})
.collect();
let wider_candidate_names: Vec<_> = visible_traits
.iter()
.flat_map(|trait_def_id| {
self.tcx().associated_items(*trait_def_id).in_definition_order()
})
.filter_map(
|item| if item.kind == ty::AssocKind::Type { Some(item.name) } else { None },
)
.collect();
if let (Some(suggested_name), true) = (
find_best_match_for_name(&wider_candidate_names, assoc_name.name, None),
assoc_name.span != DUMMY_SP,
) {
if let [best_trait] = visible_traits
.iter()
.filter(|trait_def_id| {
self.tcx()
.associated_items(*trait_def_id)
.filter_by_name_unhygienic(suggested_name)
.any(|item| item.kind == ty::AssocKind::Type)
})
.collect::<Vec<_>>()[..]
{
err.span_label(
assoc_name.span,
format!(
"there is a similarly named associated type `{suggested_name}` in the trait `{}`",
self.tcx().def_path_str(*best_trait)
),
);
return err.emit();
}
}
err.span_label(span, format!("associated type `{}` not found", assoc_name));
err.emit()
}
/// When there are any missing associated types, emit an E0191 error and attempt to supply a
/// reasonable suggestion on how to write it. For the case of multiple associated types in the
/// same trait bound have the same name (as they come from different supertraits), we instead
/// emit a generic note suggesting using a `where` clause to constraint instead.
pub(crate) fn complain_about_missing_associated_types(
&self,
associated_types: FxHashMap<Span, BTreeSet<DefId>>,
potential_assoc_types: Vec<Span>,
trait_bounds: &[hir::PolyTraitRef<'_>],
) {
if associated_types.values().all(|v| v.is_empty()) {
return;
}
let tcx = self.tcx();
// FIXME: Marked `mut` so that we can replace the spans further below with a more
// appropriate one, but this should be handled earlier in the span assignment.
let mut associated_types: FxHashMap<Span, Vec<_>> = associated_types
.into_iter()
.map(|(span, def_ids)| {
(span, def_ids.into_iter().map(|did| tcx.associated_item(did)).collect())
})
.collect();
let mut names = vec![];
// Account for things like `dyn Foo + 'a`, like in tests `issue-22434.rs` and
// `issue-22560.rs`.
let mut trait_bound_spans: Vec<Span> = vec![];
for (span, items) in &associated_types {
if !items.is_empty() {
trait_bound_spans.push(*span);
}
for assoc_item in items {
2022-03-12 23:52:25 +00:00
let trait_def_id = assoc_item.container_id(tcx);
names.push(format!(
"`{}` (from trait `{}`)",
assoc_item.name,
tcx.def_path_str(trait_def_id),
));
}
}
if let ([], [bound]) = (&potential_assoc_types[..], &trait_bounds) {
match bound.trait_ref.path.segments {
// FIXME: `trait_ref.path.span` can point to a full path with multiple
// segments, even though `trait_ref.path.segments` is of length `1`. Work
// around that bug here, even though it should be fixed elsewhere.
// This would otherwise cause an invalid suggestion. For an example, look at
// `src/test/ui/issues/issue-28344.rs` where instead of the following:
//
// error[E0191]: the value of the associated type `Output`
// (from trait `std::ops::BitXor`) must be specified
// --> $DIR/issue-28344.rs:4:17
// |
// LL | let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
// | ^^^^^^ help: specify the associated type:
// | `BitXor<Output = Type>`
//
// we would output:
//
// error[E0191]: the value of the associated type `Output`
// (from trait `std::ops::BitXor`) must be specified
// --> $DIR/issue-28344.rs:4:17
// |
// LL | let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
// | ^^^^^^^^^^^^^ help: specify the associated type:
// | `BitXor::bitor<Output = Type>`
[segment] if segment.args.is_none() => {
trait_bound_spans = vec![segment.ident.span];
associated_types = associated_types
.into_iter()
.map(|(_, items)| (segment.ident.span, items))
.collect();
}
_ => {}
}
}
names.sort();
trait_bound_spans.sort();
let mut err = struct_span_err!(
tcx.sess,
trait_bound_spans,
E0191,
"the value of the associated type{} {} must be specified",
pluralize!(names.len()),
names.join(", "),
);
let mut suggestions = vec![];
let mut types_count = 0;
let mut where_constraints = vec![];
let mut already_has_generics_args_suggestion = false;
for (span, assoc_items) in &associated_types {
let mut names: FxHashMap<_, usize> = FxHashMap::default();
for item in assoc_items {
types_count += 1;
*names.entry(item.name).or_insert(0) += 1;
}
let mut dupes = false;
for item in assoc_items {
let prefix = if names[&item.name] > 1 {
2022-03-12 23:52:25 +00:00
let trait_def_id = item.container_id(tcx);
dupes = true;
format!("{}::", tcx.def_path_str(trait_def_id))
} else {
String::new()
};
if let Some(sp) = tcx.hir().span_if_local(item.def_id) {
err.span_label(sp, format!("`{}{}` defined here", prefix, item.name));
}
}
if potential_assoc_types.len() == assoc_items.len() {
// When the amount of missing associated types equals the number of
// extra type arguments present. A suggesting to replace the generic args with
// associated types is already emitted.
already_has_generics_args_suggestion = true;
} else if let (Ok(snippet), false) =
(tcx.sess.source_map().span_to_snippet(*span), dupes)
{
let types: Vec<_> =
assoc_items.iter().map(|item| format!("{} = Type", item.name)).collect();
let code = if snippet.ends_with('>') {
// The user wrote `Trait<'a>` or similar and we don't have a type we can
// suggest, but at least we can clue them to the correct syntax
// `Trait<'a, Item = Type>` while accounting for the `<'a>` in the
// suggestion.
format!("{}, {}>", &snippet[..snippet.len() - 1], types.join(", "))
} else {
// The user wrote `Iterator`, so we don't have a type we can suggest, but at
// least we can clue them to the correct syntax `Iterator<Item = Type>`.
format!("{}<{}>", snippet, types.join(", "))
};
suggestions.push((*span, code));
} else if dupes {
where_constraints.push(*span);
}
}
let where_msg = "consider introducing a new type parameter, adding `where` constraints \
using the fully-qualified path to the associated types";
if !where_constraints.is_empty() && suggestions.is_empty() {
// If there are duplicates associated type names and a single trait bound do not
// use structured suggestion, it means that there are multiple supertraits with
// the same associated type name.
err.help(where_msg);
}
if suggestions.len() != 1 || already_has_generics_args_suggestion {
// We don't need this label if there's an inline suggestion, show otherwise.
for (span, assoc_items) in &associated_types {
let mut names: FxHashMap<_, usize> = FxHashMap::default();
for item in assoc_items {
types_count += 1;
*names.entry(item.name).or_insert(0) += 1;
}
let mut label = vec![];
for item in assoc_items {
let postfix = if names[&item.name] > 1 {
2022-03-12 23:52:25 +00:00
let trait_def_id = item.container_id(tcx);
format!(" (from trait `{}`)", tcx.def_path_str(trait_def_id))
} else {
String::new()
};
label.push(format!("`{}`{}", item.name, postfix));
}
if !label.is_empty() {
err.span_label(
*span,
format!(
"associated type{} {} must be specified",
pluralize!(label.len()),
label.join(", "),
),
);
}
}
}
if !suggestions.is_empty() {
err.multipart_suggestion(
&format!("specify the associated type{}", pluralize!(types_count)),
suggestions,
Applicability::HasPlaceholders,
);
if !where_constraints.is_empty() {
err.span_help(where_constraints, where_msg);
}
}
err.emit();
}
}