rust/src/rustllvm/PassWrapper.cpp

582 lines
18 KiB
C++
Raw Normal View History

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2013-08-23 03:58:42 +00:00
#include <stdio.h>
#include "rustllvm.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSubtargetInfo.h"
2013-08-23 03:58:42 +00:00
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#if LLVM_VERSION_GE(4, 0)
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#endif
2013-08-23 03:58:42 +00:00
#include "llvm-c/Transforms/PassManagerBuilder.h"
2013-08-23 03:58:42 +00:00
using namespace llvm;
using namespace llvm::legacy;
2013-08-23 03:58:42 +00:00
extern cl::opt<bool> EnableARMEHABI;
2013-08-23 03:58:42 +00:00
typedef struct LLVMOpaquePass *LLVMPassRef;
typedef struct LLVMOpaqueTargetMachine *LLVMTargetMachineRef;
DEFINE_STDCXX_CONVERSION_FUNCTIONS(Pass, LLVMPassRef)
DEFINE_STDCXX_CONVERSION_FUNCTIONS(TargetMachine, LLVMTargetMachineRef)
DEFINE_STDCXX_CONVERSION_FUNCTIONS(PassManagerBuilder,
LLVMPassManagerBuilderRef)
extern "C" void LLVMInitializePasses() {
PassRegistry &Registry = *PassRegistry::getPassRegistry();
initializeCore(Registry);
initializeCodeGen(Registry);
initializeScalarOpts(Registry);
initializeVectorization(Registry);
initializeIPO(Registry);
initializeAnalysis(Registry);
#if LLVM_VERSION_EQ(3, 7)
initializeIPA(Registry);
2015-10-24 09:42:23 +00:00
#endif
initializeTransformUtils(Registry);
initializeInstCombine(Registry);
initializeInstrumentation(Registry);
initializeTarget(Registry);
}
enum class LLVMRustPassKind {
Other,
Function,
Module,
};
static LLVMRustPassKind to_rust(PassKind kind) {
switch (kind) {
case PT_Function:
return LLVMRustPassKind::Function;
case PT_Module:
return LLVMRustPassKind::Module;
default:
return LLVMRustPassKind::Other;
}
}
extern "C" LLVMPassRef LLVMRustFindAndCreatePass(const char *PassName) {
StringRef SR(PassName);
PassRegistry *PR = PassRegistry::getPassRegistry();
const PassInfo *PI = PR->getPassInfo(SR);
if (PI) {
return wrap(PI->createPass());
}
return nullptr;
}
extern "C" LLVMRustPassKind LLVMRustPassKind(LLVMPassRef rust_pass) {
assert(rust_pass);
Pass *pass = unwrap(rust_pass);
return to_rust(pass->getPassKind());
}
extern "C" void LLVMRustAddPass(LLVMPassManagerRef PM, LLVMPassRef rust_pass) {
assert(rust_pass);
Pass *pass = unwrap(rust_pass);
PassManagerBase *pm = unwrap(PM);
pm->add(pass);
2013-08-23 03:58:42 +00:00
}
#ifdef LLVM_COMPONENT_X86
#define SUBTARGET_X86 SUBTARGET(X86)
#else
#define SUBTARGET_X86
#endif
#ifdef LLVM_COMPONENT_ARM
#define SUBTARGET_ARM SUBTARGET(ARM)
#else
#define SUBTARGET_ARM
#endif
#ifdef LLVM_COMPONENT_AARCH64
#define SUBTARGET_AARCH64 SUBTARGET(AArch64)
#else
#define SUBTARGET_AARCH64
#endif
#ifdef LLVM_COMPONENT_MIPS
#define SUBTARGET_MIPS SUBTARGET(Mips)
#else
#define SUBTARGET_MIPS
#endif
#ifdef LLVM_COMPONENT_POWERPC
#define SUBTARGET_PPC SUBTARGET(PPC)
#else
#define SUBTARGET_PPC
#endif
#ifdef LLVM_COMPONENT_SYSTEMZ
#define SUBTARGET_SYSTEMZ SUBTARGET(SystemZ)
#else
#define SUBTARGET_SYSTEMZ
#endif
#ifdef LLVM_COMPONENT_MSP430
#define SUBTARGET_MSP430 SUBTARGET(MSP430)
#else
#define SUBTARGET_MSP430
#endif
#define GEN_SUBTARGETS \
SUBTARGET_X86 \
SUBTARGET_ARM \
SUBTARGET_AARCH64 \
SUBTARGET_MIPS \
SUBTARGET_PPC \
SUBTARGET_SYSTEMZ \
SUBTARGET_MSP430
#define SUBTARGET(x) \
namespace llvm { \
extern const SubtargetFeatureKV x##FeatureKV[]; \
extern const SubtargetFeatureKV x##SubTypeKV[]; \
}
GEN_SUBTARGETS
#undef SUBTARGET
extern "C" bool LLVMRustHasFeature(LLVMTargetMachineRef TM,
const char *feature) {
TargetMachine *Target = unwrap(TM);
const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
const FeatureBitset &Bits = MCInfo->getFeatureBits();
const llvm::SubtargetFeatureKV *FeatureEntry;
#define SUBTARGET(x) \
if (MCInfo->isCPUStringValid(x##SubTypeKV[0].Key)) { \
FeatureEntry = x##FeatureKV; \
} else
GEN_SUBTARGETS { return false; }
#undef SUBTARGET
while (strcmp(feature, FeatureEntry->Key) != 0)
FeatureEntry++;
return (Bits & FeatureEntry->Value) == FeatureEntry->Value;
}
enum class LLVMRustCodeModel {
Other,
Default,
JITDefault,
Small,
Kernel,
Medium,
Large,
};
static CodeModel::Model from_rust(LLVMRustCodeModel model) {
switch (model) {
case LLVMRustCodeModel::Default:
return CodeModel::Default;
case LLVMRustCodeModel::JITDefault:
return CodeModel::JITDefault;
case LLVMRustCodeModel::Small:
return CodeModel::Small;
case LLVMRustCodeModel::Kernel:
return CodeModel::Kernel;
case LLVMRustCodeModel::Medium:
return CodeModel::Medium;
case LLVMRustCodeModel::Large:
return CodeModel::Large;
default:
llvm_unreachable("Bad CodeModel.");
}
}
enum class LLVMRustCodeGenOptLevel {
Other,
None,
Less,
Default,
Aggressive,
};
static CodeGenOpt::Level from_rust(LLVMRustCodeGenOptLevel level) {
switch (level) {
case LLVMRustCodeGenOptLevel::None:
return CodeGenOpt::None;
case LLVMRustCodeGenOptLevel::Less:
return CodeGenOpt::Less;
case LLVMRustCodeGenOptLevel::Default:
return CodeGenOpt::Default;
case LLVMRustCodeGenOptLevel::Aggressive:
return CodeGenOpt::Aggressive;
default:
llvm_unreachable("Bad CodeGenOptLevel.");
}
}
#if LLVM_RUSTLLVM
/// getLongestEntryLength - Return the length of the longest entry in the table.
///
static size_t getLongestEntryLength(ArrayRef<SubtargetFeatureKV> Table) {
size_t MaxLen = 0;
for (auto &I : Table)
MaxLen = std::max(MaxLen, std::strlen(I.Key));
return MaxLen;
}
extern "C" void LLVMRustPrintTargetCPUs(LLVMTargetMachineRef TM) {
const TargetMachine *Target = unwrap(TM);
const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
const ArrayRef<SubtargetFeatureKV> CPUTable = MCInfo->getCPUTable();
unsigned MaxCPULen = getLongestEntryLength(CPUTable);
printf("Available CPUs for this target:\n");
for (auto &CPU : CPUTable)
printf(" %-*s - %s.\n", MaxCPULen, CPU.Key, CPU.Desc);
printf("\n");
}
extern "C" void LLVMRustPrintTargetFeatures(LLVMTargetMachineRef TM) {
const TargetMachine *Target = unwrap(TM);
const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
const ArrayRef<SubtargetFeatureKV> FeatTable = MCInfo->getFeatureTable();
unsigned MaxFeatLen = getLongestEntryLength(FeatTable);
printf("Available features for this target:\n");
for (auto &Feature : FeatTable)
printf(" %-*s - %s.\n", MaxFeatLen, Feature.Key, Feature.Desc);
printf("\n");
printf("Use +feature to enable a feature, or -feature to disable it.\n"
"For example, rustc -C -target-cpu=mycpu -C "
"target-feature=+feature1,-feature2\n\n");
}
#else
extern "C" void LLVMRustPrintTargetCPUs(LLVMTargetMachineRef) {
printf("Target CPU help is not supported by this LLVM version.\n\n");
}
extern "C" void LLVMRustPrintTargetFeatures(LLVMTargetMachineRef) {
printf("Target features help is not supported by this LLVM version.\n\n");
}
#endif
extern "C" LLVMTargetMachineRef LLVMRustCreateTargetMachine(
const char *triple, const char *cpu, const char *feature,
LLVMRustCodeModel rust_CM, LLVMRelocMode Reloc,
LLVMRustCodeGenOptLevel rust_OptLevel, bool UseSoftFloat,
bool PositionIndependentExecutable, bool FunctionSections,
bool DataSections) {
#if LLVM_VERSION_LE(3, 8)
Reloc::Model RM;
#else
Optional<Reloc::Model> RM;
#endif
auto CM = from_rust(rust_CM);
auto OptLevel = from_rust(rust_OptLevel);
switch (Reloc) {
case LLVMRelocStatic:
RM = Reloc::Static;
break;
case LLVMRelocPIC:
RM = Reloc::PIC_;
break;
case LLVMRelocDynamicNoPic:
RM = Reloc::DynamicNoPIC;
break;
default:
#if LLVM_VERSION_LE(3, 8)
RM = Reloc::Default;
#endif
break;
}
std::string Error;
Triple Trip(Triple::normalize(triple));
const llvm::Target *TheTarget =
TargetRegistry::lookupTarget(Trip.getTriple(), Error);
if (TheTarget == nullptr) {
LLVMRustSetLastError(Error.c_str());
return nullptr;
}
2013-08-23 03:58:42 +00:00
StringRef real_cpu = cpu;
if (real_cpu == "native") {
real_cpu = sys::getHostCPUName();
}
2015-03-10 00:46:45 +00:00
TargetOptions Options;
#if LLVM_VERSION_LE(3, 8)
Options.PositionIndependentExecutable = PositionIndependentExecutable;
#endif
Options.FloatABIType = FloatABI::Default;
if (UseSoftFloat) {
Options.FloatABIType = FloatABI::Soft;
}
Options.DataSections = DataSections;
Options.FunctionSections = FunctionSections;
TargetMachine *TM = TheTarget->createTargetMachine(
Trip.getTriple(), real_cpu, feature, Options, RM, CM, OptLevel);
return wrap(TM);
2013-08-23 03:58:42 +00:00
}
extern "C" void LLVMRustDisposeTargetMachine(LLVMTargetMachineRef TM) {
delete unwrap(TM);
2013-08-23 03:58:42 +00:00
}
// Unfortunately, LLVM doesn't expose a C API to add the corresponding analysis
// passes for a target to a pass manager. We export that functionality through
// this function.
extern "C" void LLVMRustAddAnalysisPasses(LLVMTargetMachineRef TM,
LLVMPassManagerRef PMR,
LLVMModuleRef M) {
PassManagerBase *PM = unwrap(PMR);
PM->add(
createTargetTransformInfoWrapperPass(unwrap(TM)->getTargetIRAnalysis()));
}
extern "C" void LLVMRustConfigurePassManagerBuilder(
LLVMPassManagerBuilderRef PMB, LLVMRustCodeGenOptLevel OptLevel,
bool MergeFunctions, bool SLPVectorize, bool LoopVectorize) {
// Ignore mergefunc for now as enabling it causes crashes.
// unwrap(PMB)->MergeFunctions = MergeFunctions;
unwrap(PMB)->SLPVectorize = SLPVectorize;
unwrap(PMB)->OptLevel = from_rust(OptLevel);
unwrap(PMB)->LoopVectorize = LoopVectorize;
2013-08-23 03:58:42 +00:00
}
// Unfortunately, the LLVM C API doesn't provide a way to set the `LibraryInfo`
// field of a PassManagerBuilder, we expose our own method of doing so.
extern "C" void LLVMRustAddBuilderLibraryInfo(LLVMPassManagerBuilderRef PMB,
LLVMModuleRef M,
bool DisableSimplifyLibCalls) {
Triple TargetTriple(unwrap(M)->getTargetTriple());
TargetLibraryInfoImpl *TLI = new TargetLibraryInfoImpl(TargetTriple);
if (DisableSimplifyLibCalls)
TLI->disableAllFunctions();
unwrap(PMB)->LibraryInfo = TLI;
2013-08-23 03:58:42 +00:00
}
// Unfortunately, the LLVM C API doesn't provide a way to create the
// TargetLibraryInfo pass, so we use this method to do so.
extern "C" void LLVMRustAddLibraryInfo(LLVMPassManagerRef PMB, LLVMModuleRef M,
bool DisableSimplifyLibCalls) {
Triple TargetTriple(unwrap(M)->getTargetTriple());
TargetLibraryInfoImpl TLII(TargetTriple);
if (DisableSimplifyLibCalls)
TLII.disableAllFunctions();
unwrap(PMB)->add(new TargetLibraryInfoWrapperPass(TLII));
2013-08-23 03:58:42 +00:00
}
// Unfortunately, the LLVM C API doesn't provide an easy way of iterating over
// all the functions in a module, so we do that manually here. You'll find
// similar code in clang's BackendUtil.cpp file.
extern "C" void LLVMRustRunFunctionPassManager(LLVMPassManagerRef PM,
LLVMModuleRef M) {
llvm::legacy::FunctionPassManager *P =
unwrap<llvm::legacy::FunctionPassManager>(PM);
P->doInitialization();
// Upgrade all calls to old intrinsics first.
for (Module::iterator I = unwrap(M)->begin(), E = unwrap(M)->end(); I != E;)
UpgradeCallsToIntrinsic(&*I++); // must be post-increment, as we remove
for (Module::iterator I = unwrap(M)->begin(), E = unwrap(M)->end(); I != E;
++I)
if (!I->isDeclaration())
P->run(*I);
P->doFinalization();
2013-08-23 03:58:42 +00:00
}
extern "C" void LLVMRustSetLLVMOptions(int Argc, char **Argv) {
// Initializing the command-line options more than once is not allowed. So,
// check if they've already been initialized. (This could happen if we're
// being called from rustpkg, for example). If the arguments change, then
// that's just kinda unfortunate.
static bool initialized = false;
if (initialized)
return;
initialized = true;
cl::ParseCommandLineOptions(Argc, Argv);
2013-08-23 03:58:42 +00:00
}
enum class LLVMRustFileType {
Other,
AssemblyFile,
ObjectFile,
};
static TargetMachine::CodeGenFileType from_rust(LLVMRustFileType type) {
switch (type) {
case LLVMRustFileType::AssemblyFile:
return TargetMachine::CGFT_AssemblyFile;
case LLVMRustFileType::ObjectFile:
return TargetMachine::CGFT_ObjectFile;
default:
llvm_unreachable("Bad FileType.");
}
}
extern "C" LLVMRustResult
LLVMRustWriteOutputFile(LLVMTargetMachineRef Target, LLVMPassManagerRef PMR,
LLVMModuleRef M, const char *path,
LLVMRustFileType rust_FileType) {
llvm::legacy::PassManager *PM = unwrap<llvm::legacy::PassManager>(PMR);
auto FileType = from_rust(rust_FileType);
2013-08-23 03:58:42 +00:00
std::string ErrorInfo;
2014-09-30 21:20:22 +00:00
std::error_code EC;
raw_fd_ostream OS(path, EC, sys::fs::F_None);
if (EC)
ErrorInfo = EC.message();
2013-08-23 03:58:42 +00:00
if (ErrorInfo != "") {
LLVMRustSetLastError(ErrorInfo.c_str());
return LLVMRustResult::Failure;
2013-08-23 03:58:42 +00:00
}
unwrap(Target)->addPassesToEmitFile(*PM, OS, FileType, false);
2013-08-23 03:58:42 +00:00
PM->run(*unwrap(M));
// Apparently `addPassesToEmitFile` adds a pointer to our on-the-stack output
// stream (OS), so the only real safe place to delete this is here? Don't we
// wish this was written in Rust?
delete PM;
return LLVMRustResult::Success;
2013-08-23 03:58:42 +00:00
}
extern "C" void LLVMRustPrintModule(LLVMPassManagerRef PMR, LLVMModuleRef M,
const char *path) {
llvm::legacy::PassManager *PM = unwrap<llvm::legacy::PassManager>(PMR);
2013-08-23 03:58:42 +00:00
std::string ErrorInfo;
2014-09-30 21:20:22 +00:00
std::error_code EC;
raw_fd_ostream OS(path, EC, sys::fs::F_None);
if (EC)
ErrorInfo = EC.message();
2013-08-23 03:58:42 +00:00
formatted_raw_ostream FOS(OS);
PM->add(createPrintModulePass(FOS));
2013-08-23 03:58:42 +00:00
PM->run(*unwrap(M));
}
extern "C" void LLVMRustPrintPasses() {
LLVMInitializePasses();
struct MyListener : PassRegistrationListener {
void passEnumerate(const PassInfo *info) {
#if LLVM_VERSION_GE(4, 0)
StringRef PassArg = info->getPassArgument();
StringRef PassName = info->getPassName();
if (!PassArg.empty()) {
// These unsigned->signed casts could theoretically overflow, but
// realistically never will (and even if, the result is implementation
// defined rather plain UB).
printf("%15.*s - %.*s\n", (int)PassArg.size(), PassArg.data(),
(int)PassName.size(), PassName.data());
}
#else
if (info->getPassArgument() && *info->getPassArgument()) {
printf("%15s - %s\n", info->getPassArgument(), info->getPassName());
}
#endif
}
} listener;
2013-08-23 03:58:42 +00:00
PassRegistry *PR = PassRegistry::getPassRegistry();
PR->enumerateWith(&listener);
}
extern "C" void LLVMRustAddAlwaysInlinePass(LLVMPassManagerBuilderRef PMB,
bool AddLifetimes) {
#if LLVM_VERSION_GE(4, 0)
unwrap(PMB)->Inliner = llvm::createAlwaysInlinerLegacyPass(AddLifetimes);
#else
unwrap(PMB)->Inliner = createAlwaysInlinerPass(AddLifetimes);
#endif
}
Implement LTO This commit implements LTO for rust leveraging LLVM's passes. What this means is: * When compiling an rlib, in addition to insdering foo.o into the archive, also insert foo.bc (the LLVM bytecode) of the optimized module. * When the compiler detects the -Z lto option, it will attempt to perform LTO on a staticlib or binary output. The compiler will emit an error if a dylib or rlib output is being generated. * The actual act of performing LTO is as follows: 1. Force all upstream libraries to have an rlib version available. 2. Load the bytecode of each upstream library from the rlib. 3. Link all this bytecode into the current LLVM module (just using llvm apis) 4. Run an internalization pass which internalizes all symbols except those found reachable for the local crate of compilation. 5. Run the LLVM LTO pass manager over this entire module 6a. If assembling an archive, then add all upstream rlibs into the output archive. This ignores all of the object/bitcode/metadata files rust generated and placed inside the rlibs. 6b. If linking a binary, create copies of all upstream rlibs, remove the rust-generated object-file, and then link everything as usual. As I have explained in #10741, this process is excruciatingly slow, so this is *not* turned on by default, and it is also why I have decided to hide it behind a -Z flag for now. The good news is that the binary sizes are about as small as they can be as a result of LTO, so it's definitely working. Closes #10741 Closes #10740
2013-12-03 07:19:29 +00:00
extern "C" void LLVMRustRunRestrictionPass(LLVMModuleRef M, char **symbols,
size_t len) {
llvm::legacy::PassManager passes;
#if LLVM_VERSION_LE(3, 8)
ArrayRef<const char *> ref(symbols, len);
passes.add(llvm::createInternalizePass(ref));
#else
auto PreserveFunctions = [=](const GlobalValue &GV) {
for (size_t i = 0; i < len; i++) {
if (GV.getName() == symbols[i]) {
return true;
}
}
return false;
};
passes.add(llvm::createInternalizePass(PreserveFunctions));
#endif
passes.run(*unwrap(M));
Implement LTO This commit implements LTO for rust leveraging LLVM's passes. What this means is: * When compiling an rlib, in addition to insdering foo.o into the archive, also insert foo.bc (the LLVM bytecode) of the optimized module. * When the compiler detects the -Z lto option, it will attempt to perform LTO on a staticlib or binary output. The compiler will emit an error if a dylib or rlib output is being generated. * The actual act of performing LTO is as follows: 1. Force all upstream libraries to have an rlib version available. 2. Load the bytecode of each upstream library from the rlib. 3. Link all this bytecode into the current LLVM module (just using llvm apis) 4. Run an internalization pass which internalizes all symbols except those found reachable for the local crate of compilation. 5. Run the LLVM LTO pass manager over this entire module 6a. If assembling an archive, then add all upstream rlibs into the output archive. This ignores all of the object/bitcode/metadata files rust generated and placed inside the rlibs. 6b. If linking a binary, create copies of all upstream rlibs, remove the rust-generated object-file, and then link everything as usual. As I have explained in #10741, this process is excruciatingly slow, so this is *not* turned on by default, and it is also why I have decided to hide it behind a -Z flag for now. The good news is that the binary sizes are about as small as they can be as a result of LTO, so it's definitely working. Closes #10741 Closes #10740
2013-12-03 07:19:29 +00:00
}
extern "C" void LLVMRustMarkAllFunctionsNounwind(LLVMModuleRef M) {
for (Module::iterator GV = unwrap(M)->begin(), E = unwrap(M)->end(); GV != E;
++GV) {
GV->setDoesNotThrow();
Function *F = dyn_cast<Function>(GV);
if (F == nullptr)
continue;
for (Function::iterator B = F->begin(), BE = F->end(); B != BE; ++B) {
for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ++I) {
if (isa<InvokeInst>(I)) {
InvokeInst *CI = cast<InvokeInst>(I);
CI->setDoesNotThrow();
}
}
}
}
}
extern "C" void
LLVMRustSetDataLayoutFromTargetMachine(LLVMModuleRef Module,
LLVMTargetMachineRef TMR) {
TargetMachine *Target = unwrap(TMR);
unwrap(Module)->setDataLayout(Target->createDataLayout());
}
extern "C" LLVMTargetDataRef LLVMRustGetModuleDataLayout(LLVMModuleRef M) {
return wrap(&unwrap(M)->getDataLayout());
}
extern "C" void LLVMRustSetModulePIELevel(LLVMModuleRef M) {
#if LLVM_VERSION_GE(3, 9)
unwrap(M)->setPIELevel(PIELevel::Level::Large);
#endif
}