rust/compiler/rustc_codegen_llvm/src/abi.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

616 lines
25 KiB
Rust
Raw Normal View History

use crate::attributes;
2019-02-17 18:58:58 +00:00
use crate::builder::Builder;
use crate::context::CodegenCx;
use crate::llvm::{self, Attribute, AttributePlace};
2019-02-17 18:58:58 +00:00
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
2019-02-17 18:58:58 +00:00
use crate::value::Value;
use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
use rustc_codegen_ssa::mir::place::{PlaceRef, PlaceValue};
use rustc_codegen_ssa::traits::*;
use rustc_codegen_ssa::MemFlags;
2020-03-29 15:19:48 +00:00
use rustc_middle::bug;
use rustc_middle::ty::layout::LayoutOf;
pub use rustc_middle::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
2020-03-29 15:19:48 +00:00
use rustc_middle::ty::Ty;
use rustc_session::config;
pub use rustc_target::abi::call::*;
2024-03-17 04:14:20 +00:00
use rustc_target::abi::{self, HasDataLayout, Int, Size};
pub use rustc_target::spec::abi::Abi;
use rustc_target::spec::SanitizerSet;
use libc::c_uint;
use smallvec::SmallVec;
2024-03-17 04:14:20 +00:00
use std::cmp;
pub trait ArgAttributesExt {
fn apply_attrs_to_llfn(&self, idx: AttributePlace, cx: &CodegenCx<'_, '_>, llfn: &Value);
fn apply_attrs_to_callsite(
&self,
idx: AttributePlace,
cx: &CodegenCx<'_, '_>,
callsite: &Value,
);
}
const ABI_AFFECTING_ATTRIBUTES: [(ArgAttribute, llvm::AttributeKind); 1] =
[(ArgAttribute::InReg, llvm::AttributeKind::InReg)];
const OPTIMIZATION_ATTRIBUTES: [(ArgAttribute, llvm::AttributeKind); 5] = [
(ArgAttribute::NoAlias, llvm::AttributeKind::NoAlias),
(ArgAttribute::NoCapture, llvm::AttributeKind::NoCapture),
(ArgAttribute::NonNull, llvm::AttributeKind::NonNull),
(ArgAttribute::ReadOnly, llvm::AttributeKind::ReadOnly),
(ArgAttribute::NoUndef, llvm::AttributeKind::NoUndef),
];
fn get_attrs<'ll>(this: &ArgAttributes, cx: &CodegenCx<'ll, '_>) -> SmallVec<[&'ll Attribute; 8]> {
let mut regular = this.regular;
let mut attrs = SmallVec::new();
// ABI-affecting attributes must always be applied
for (attr, llattr) in ABI_AFFECTING_ATTRIBUTES {
if regular.contains(attr) {
attrs.push(llattr.create_attr(cx.llcx));
}
}
if let Some(align) = this.pointee_align {
attrs.push(llvm::CreateAlignmentAttr(cx.llcx, align.bytes()));
}
match this.arg_ext {
ArgExtension::None => {}
ArgExtension::Zext => attrs.push(llvm::AttributeKind::ZExt.create_attr(cx.llcx)),
ArgExtension::Sext => attrs.push(llvm::AttributeKind::SExt.create_attr(cx.llcx)),
}
// Only apply remaining attributes when optimizing
if cx.sess().opts.optimize != config::OptLevel::No {
let deref = this.pointee_size.bytes();
if deref != 0 {
if regular.contains(ArgAttribute::NonNull) {
attrs.push(llvm::CreateDereferenceableAttr(cx.llcx, deref));
} else {
attrs.push(llvm::CreateDereferenceableOrNullAttr(cx.llcx, deref));
}
regular -= ArgAttribute::NonNull;
}
for (attr, llattr) in OPTIMIZATION_ATTRIBUTES {
if regular.contains(attr) {
attrs.push(llattr.create_attr(cx.llcx));
}
}
} else if cx.tcx.sess.opts.unstable_opts.sanitizer.contains(SanitizerSet::MEMORY) {
// If we're not optimising, *but* memory sanitizer is on, emit noundef, since it affects
// memory sanitizer's behavior.
if regular.contains(ArgAttribute::NoUndef) {
attrs.push(llvm::AttributeKind::NoUndef.create_attr(cx.llcx));
}
}
attrs
}
impl ArgAttributesExt for ArgAttributes {
fn apply_attrs_to_llfn(&self, idx: AttributePlace, cx: &CodegenCx<'_, '_>, llfn: &Value) {
let attrs = get_attrs(self, cx);
attributes::apply_to_llfn(llfn, idx, &attrs);
}
fn apply_attrs_to_callsite(
&self,
idx: AttributePlace,
cx: &CodegenCx<'_, '_>,
callsite: &Value,
) {
let attrs = get_attrs(self, cx);
attributes::apply_to_callsite(callsite, idx, &attrs);
}
}
pub trait LlvmType {
fn llvm_type<'ll>(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type;
}
impl LlvmType for Reg {
fn llvm_type<'ll>(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type {
match self.kind {
RegKind::Integer => cx.type_ix(self.size.bits()),
RegKind::Float => match self.size.bits() {
32 => cx.type_f32(),
64 => cx.type_f64(),
_ => bug!("unsupported float: {:?}", self),
},
RegKind::Vector => cx.type_vector(cx.type_i8(), self.size.bytes()),
}
}
}
impl LlvmType for CastTarget {
fn llvm_type<'ll>(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type {
let rest_ll_unit = self.rest.unit.llvm_type(cx);
2024-03-17 04:14:20 +00:00
let rest_count = if self.rest.total == Size::ZERO {
0
} else {
2024-03-17 04:14:20 +00:00
assert_ne!(
self.rest.unit.size,
Size::ZERO,
"total size {:?} cannot be divided into units of zero size",
self.rest.total
);
if self.rest.total.bytes() % self.rest.unit.size.bytes() != 0 {
assert_eq!(self.rest.unit.kind, RegKind::Integer, "only int regs can be split");
}
self.rest.total.bytes().div_ceil(self.rest.unit.size.bytes())
};
2024-03-17 04:14:20 +00:00
// Simplify to a single unit or an array if there's no prefix.
// This produces the same layout, but using a simpler type.
if self.prefix.iter().all(|x| x.is_none()) {
// We can't do this if is_consecutive is set and the unit would get
// split on the target. Currently, this is only relevant for i128
// registers.
if rest_count == 1 && (!self.rest.is_consecutive || self.rest.unit != Reg::i128()) {
return rest_ll_unit;
}
2024-03-17 04:14:20 +00:00
return cx.type_array(rest_ll_unit, rest_count);
}
2024-03-17 04:14:20 +00:00
// Generate a struct type with the prefix and the "rest" arguments.
let prefix_args =
self.prefix.iter().flat_map(|option_reg| option_reg.map(|reg| reg.llvm_type(cx)));
let rest_args = (0..rest_count).map(|_| rest_ll_unit);
let args: Vec<_> = prefix_args.chain(rest_args).collect();
cx.type_struct(&args, false)
}
}
pub trait ArgAbiExt<'ll, 'tcx> {
fn memory_ty(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
fn store(
&self,
bx: &mut Builder<'_, 'll, 'tcx>,
val: &'ll Value,
dst: PlaceRef<'tcx, &'ll Value>,
);
fn store_fn_arg(
&self,
bx: &mut Builder<'_, 'll, 'tcx>,
idx: &mut usize,
dst: PlaceRef<'tcx, &'ll Value>,
);
}
impl<'ll, 'tcx> ArgAbiExt<'ll, 'tcx> for ArgAbi<'tcx, Ty<'tcx>> {
2019-02-08 13:53:55 +00:00
/// Gets the LLVM type for a place of the original Rust type of
/// this argument/return, i.e., the result of `type_of::type_of`.
fn memory_ty(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
2018-01-05 05:04:08 +00:00
self.layout.llvm_type(cx)
}
/// Stores a direct/indirect value described by this ArgAbi into a
/// place for the original Rust type of this argument/return.
/// Can be used for both storing formal arguments into Rust variables
/// or results of call/invoke instructions into their destinations.
fn store(
&self,
bx: &mut Builder<'_, 'll, 'tcx>,
val: &'ll Value,
dst: PlaceRef<'tcx, &'ll Value>,
) {
match &self.mode {
PassMode::Ignore => {}
// Sized indirect arguments
PassMode::Indirect { attrs, meta_attrs: None, on_stack: _ } => {
let align = attrs.pointee_align.unwrap_or(self.layout.align.abi);
OperandValue::Ref(PlaceValue::new_sized(val, align)).store(bx, dst);
}
// Unsized indirect qrguments
PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } => {
bug!("unsized `ArgAbi` must be handled through `store_fn_arg`");
}
PassMode::Cast { cast, pad_i32: _ } => {
// The ABI mandates that the value is passed as a different struct representation.
// Spill and reload it from the stack to convert from the ABI representation to
// the Rust representation.
let scratch_size = cast.size(bx);
let scratch_align = cast.align(bx);
// Note that the ABI type may be either larger or smaller than the Rust type,
// due to the presence or absence of trailing padding. For example:
// - On some ABIs, the Rust layout { f64, f32, <f32 padding> } may omit padding
// when passed by value, making it smaller.
// - On some ABIs, the Rust layout { u16, u16, u16 } may be padded up to 8 bytes
// when passed by value, making it larger.
let copy_bytes = cmp::min(scratch_size.bytes(), self.layout.size.bytes());
// Allocate some scratch space...
let llscratch = bx.alloca(cast.llvm_type(bx), scratch_align);
bx.lifetime_start(llscratch, scratch_size);
// ...store the value...
bx.store(val, llscratch, scratch_align);
// ... and then memcpy it to the intended destination.
bx.memcpy(
dst.val.llval,
self.layout.align.abi,
llscratch,
scratch_align,
bx.const_usize(copy_bytes),
MemFlags::empty(),
);
bx.lifetime_end(llscratch, scratch_size);
}
_ => {
OperandRef::from_immediate_or_packed_pair(bx, val, self.layout).val.store(bx, dst);
}
}
}
fn store_fn_arg(
&self,
bx: &mut Builder<'_, 'll, 'tcx>,
idx: &mut usize,
dst: PlaceRef<'tcx, &'ll Value>,
) {
let mut next = || {
2018-01-05 05:12:32 +00:00
let val = llvm::get_param(bx.llfn(), *idx as c_uint);
*idx += 1;
val
};
match self.mode {
PassMode::Ignore => {}
PassMode::Pair(..) => {
2018-01-05 05:12:32 +00:00
OperandValue::Pair(next(), next()).store(bx, dst);
}
2023-09-08 06:48:41 +00:00
PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } => {
let place_val = PlaceValue {
llval: next(),
llextra: Some(next()),
align: self.layout.align.abi,
};
OperandValue::Ref(place_val).store(bx, dst);
}
PassMode::Direct(_)
2023-09-08 06:48:41 +00:00
| PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ }
2023-09-07 20:06:37 +00:00
| PassMode::Cast { .. } => {
let next_arg = next();
self.store(bx, next_arg, dst);
}
}
}
}
impl<'ll, 'tcx> ArgAbiMethods<'tcx> for Builder<'_, 'll, 'tcx> {
fn store_fn_arg(
&mut self,
arg_abi: &ArgAbi<'tcx, Ty<'tcx>>,
idx: &mut usize,
dst: PlaceRef<'tcx, Self::Value>,
) {
arg_abi.store_fn_arg(self, idx, dst)
}
fn store_arg(
&mut self,
arg_abi: &ArgAbi<'tcx, Ty<'tcx>>,
val: &'ll Value,
dst: PlaceRef<'tcx, &'ll Value>,
) {
arg_abi.store(self, val, dst)
}
fn arg_memory_ty(&self, arg_abi: &ArgAbi<'tcx, Ty<'tcx>>) -> &'ll Type {
arg_abi.memory_ty(self)
}
}
pub trait FnAbiLlvmExt<'ll, 'tcx> {
fn llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
fn ptr_to_llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
fn llvm_cconv(&self) -> llvm::CallConv;
2019-07-06 19:52:25 +00:00
fn apply_attrs_llfn(&self, cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value);
fn apply_attrs_callsite(&self, bx: &mut Builder<'_, 'll, 'tcx>, callsite: &'ll Value);
}
impl<'ll, 'tcx> FnAbiLlvmExt<'ll, 'tcx> for FnAbi<'tcx, Ty<'tcx>> {
fn llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
// Ignore "extra" args from the call site for C variadic functions.
// Only the "fixed" args are part of the LLVM function signature.
let args =
if self.c_variadic { &self.args[..self.fixed_count as usize] } else { &self.args };
// This capacity calculation is approximate.
let mut llargument_tys = Vec::with_capacity(
self.args.len() + if let PassMode::Indirect { .. } = self.ret.mode { 1 } else { 0 },
);
let llreturn_ty = match &self.ret.mode {
PassMode::Ignore => cx.type_void(),
PassMode::Direct(_) | PassMode::Pair(..) => self.ret.layout.immediate_llvm_type(cx),
2023-09-07 20:06:37 +00:00
PassMode::Cast { cast, pad_i32: _ } => cast.llvm_type(cx),
PassMode::Indirect { .. } => {
llargument_tys.push(cx.type_ptr());
cx.type_void()
}
};
for arg in args {
// Note that the exact number of arguments pushed here is carefully synchronized with
// code all over the place, both in the codegen_llvm and codegen_ssa crates. That's how
// other code then knows which LLVM argument(s) correspond to the n-th Rust argument.
let llarg_ty = match &arg.mode {
PassMode::Ignore => continue,
PassMode::Direct(_) => {
// ABI-compatible Rust types have the same `layout.abi` (up to validity ranges),
// and for Scalar ABIs the LLVM type is fully determined by `layout.abi`,
// guaranteeing that we generate ABI-compatible LLVM IR.
arg.layout.immediate_llvm_type(cx)
}
PassMode::Pair(..) => {
// ABI-compatible Rust types have the same `layout.abi` (up to validity ranges),
// so for ScalarPair we can easily be sure that we are generating ABI-compatible
// LLVM IR.
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 0, true));
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 1, true));
continue;
}
PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } => {
// Construct the type of a (wide) pointer to `ty`, and pass its two fields.
// Any two ABI-compatible unsized types have the same metadata type and
// moreover the same metadata value leads to the same dynamic size and
// alignment, so this respects ABI compatibility.
let ptr_ty = Ty::new_mut_ptr(cx.tcx, arg.layout.ty);
let ptr_layout = cx.layout_of(ptr_ty);
llargument_tys.push(ptr_layout.scalar_pair_element_llvm_type(cx, 0, true));
llargument_tys.push(ptr_layout.scalar_pair_element_llvm_type(cx, 1, true));
continue;
}
PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ } => cx.type_ptr(),
2023-09-07 20:06:37 +00:00
PassMode::Cast { cast, pad_i32 } => {
// add padding
if *pad_i32 {
llargument_tys.push(Reg::i32().llvm_type(cx));
}
// Compute the LLVM type we use for this function from the cast type.
// We assume here that ABI-compatible Rust types have the same cast type.
cast.llvm_type(cx)
}
};
llargument_tys.push(llarg_ty);
}
if self.c_variadic {
cx.type_variadic_func(&llargument_tys, llreturn_ty)
} else {
cx.type_func(&llargument_tys, llreturn_ty)
}
}
fn ptr_to_llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
cx.type_ptr_ext(cx.data_layout().instruction_address_space)
}
fn llvm_cconv(&self) -> llvm::CallConv {
self.conv.into()
}
2019-07-06 19:52:25 +00:00
fn apply_attrs_llfn(&self, cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value) {
feat: `riscv-interrupt-{m,s}` calling conventions Similar to prior support added for the mips430, avr, and x86 targets this change implements the rough equivalent of clang's [`__attribute__((interrupt))`][clang-attr] for riscv targets, enabling e.g. ```rust static mut CNT: usize = 0; pub extern "riscv-interrupt-m" fn isr_m() { unsafe { CNT += 1; } } ``` to produce highly effective assembly like: ```asm pub extern "riscv-interrupt-m" fn isr_m() { 420003a0: 1141 addi sp,sp,-16 unsafe { CNT += 1; 420003a2: c62a sw a0,12(sp) 420003a4: c42e sw a1,8(sp) 420003a6: 3fc80537 lui a0,0x3fc80 420003aa: 63c52583 lw a1,1596(a0) # 3fc8063c <_ZN12esp_riscv_rt3CNT17hcec3e3a214887d53E.0> 420003ae: 0585 addi a1,a1,1 420003b0: 62b52e23 sw a1,1596(a0) } } 420003b4: 4532 lw a0,12(sp) 420003b6: 45a2 lw a1,8(sp) 420003b8: 0141 addi sp,sp,16 420003ba: 30200073 mret ``` (disassembly via `riscv64-unknown-elf-objdump -C -S --disassemble ./esp32c3-hal/target/riscv32imc-unknown-none-elf/release/examples/gpio_interrupt`) This outcome is superior to hand-coded interrupt routines which, lacking visibility into any non-assembly body of the interrupt handler, have to be very conservative and save the [entire CPU state to the stack frame][full-frame-save]. By instead asking LLVM to only save the registers that it uses, we defer the decision to the tool with the best context: it can more accurately account for the cost of spills if it knows that every additional register used is already at the cost of an implicit spill. At the LLVM level, this is apparently [implemented by] marking every register as "[callee-save]," matching the semantics of an interrupt handler nicely (it has to leave the CPU state just as it found it after its `{m|s}ret`). This approach is not suitable for every interrupt handler, as it makes no attempt to e.g. save the state in a user-accessible stack frame. For a full discussion of those challenges and tradeoffs, please refer to [the interrupt calling conventions RFC][rfc]. Inside rustc, this implementation differs from prior art because LLVM does not expose the "all-saved" function flavor as a calling convention directly, instead preferring to use an attribute that allows for differentiating between "machine-mode" and "superivsor-mode" interrupts. Finally, some effort has been made to guide those who may not yet be aware of the differences between machine-mode and supervisor-mode interrupts as to why no `riscv-interrupt` calling convention is exposed through rustc, and similarly for why `riscv-interrupt-u` makes no appearance (as it would complicate future LLVM upgrades). [clang-attr]: https://clang.llvm.org/docs/AttributeReference.html#interrupt-risc-v [full-frame-save]: https://github.com/esp-rs/esp-riscv-rt/blob/9281af2ecffe13e40992917316f36920c26acaf3/src/lib.rs#L440-L469 [implemented by]: https://github.com/llvm/llvm-project/blob/b7fb2a3fec7c187d58a6d338ab512d9173bca987/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp#L61-L67 [callee-save]: https://github.com/llvm/llvm-project/blob/973f1fe7a8591c7af148e573491ab68cc15b6ecf/llvm/lib/Target/RISCV/RISCVCallingConv.td#L30-L37 [rfc]: https://github.com/rust-lang/rfcs/pull/3246
2023-05-23 22:08:23 +00:00
let mut func_attrs = SmallVec::<[_; 3]>::new();
if self.ret.layout.abi.is_uninhabited() {
func_attrs.push(llvm::AttributeKind::NoReturn.create_attr(cx.llcx));
}
2020-03-31 12:27:09 +00:00
if !self.can_unwind {
func_attrs.push(llvm::AttributeKind::NoUnwind.create_attr(cx.llcx));
2020-03-31 12:27:09 +00:00
}
feat: `riscv-interrupt-{m,s}` calling conventions Similar to prior support added for the mips430, avr, and x86 targets this change implements the rough equivalent of clang's [`__attribute__((interrupt))`][clang-attr] for riscv targets, enabling e.g. ```rust static mut CNT: usize = 0; pub extern "riscv-interrupt-m" fn isr_m() { unsafe { CNT += 1; } } ``` to produce highly effective assembly like: ```asm pub extern "riscv-interrupt-m" fn isr_m() { 420003a0: 1141 addi sp,sp,-16 unsafe { CNT += 1; 420003a2: c62a sw a0,12(sp) 420003a4: c42e sw a1,8(sp) 420003a6: 3fc80537 lui a0,0x3fc80 420003aa: 63c52583 lw a1,1596(a0) # 3fc8063c <_ZN12esp_riscv_rt3CNT17hcec3e3a214887d53E.0> 420003ae: 0585 addi a1,a1,1 420003b0: 62b52e23 sw a1,1596(a0) } } 420003b4: 4532 lw a0,12(sp) 420003b6: 45a2 lw a1,8(sp) 420003b8: 0141 addi sp,sp,16 420003ba: 30200073 mret ``` (disassembly via `riscv64-unknown-elf-objdump -C -S --disassemble ./esp32c3-hal/target/riscv32imc-unknown-none-elf/release/examples/gpio_interrupt`) This outcome is superior to hand-coded interrupt routines which, lacking visibility into any non-assembly body of the interrupt handler, have to be very conservative and save the [entire CPU state to the stack frame][full-frame-save]. By instead asking LLVM to only save the registers that it uses, we defer the decision to the tool with the best context: it can more accurately account for the cost of spills if it knows that every additional register used is already at the cost of an implicit spill. At the LLVM level, this is apparently [implemented by] marking every register as "[callee-save]," matching the semantics of an interrupt handler nicely (it has to leave the CPU state just as it found it after its `{m|s}ret`). This approach is not suitable for every interrupt handler, as it makes no attempt to e.g. save the state in a user-accessible stack frame. For a full discussion of those challenges and tradeoffs, please refer to [the interrupt calling conventions RFC][rfc]. Inside rustc, this implementation differs from prior art because LLVM does not expose the "all-saved" function flavor as a calling convention directly, instead preferring to use an attribute that allows for differentiating between "machine-mode" and "superivsor-mode" interrupts. Finally, some effort has been made to guide those who may not yet be aware of the differences between machine-mode and supervisor-mode interrupts as to why no `riscv-interrupt` calling convention is exposed through rustc, and similarly for why `riscv-interrupt-u` makes no appearance (as it would complicate future LLVM upgrades). [clang-attr]: https://clang.llvm.org/docs/AttributeReference.html#interrupt-risc-v [full-frame-save]: https://github.com/esp-rs/esp-riscv-rt/blob/9281af2ecffe13e40992917316f36920c26acaf3/src/lib.rs#L440-L469 [implemented by]: https://github.com/llvm/llvm-project/blob/b7fb2a3fec7c187d58a6d338ab512d9173bca987/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp#L61-L67 [callee-save]: https://github.com/llvm/llvm-project/blob/973f1fe7a8591c7af148e573491ab68cc15b6ecf/llvm/lib/Target/RISCV/RISCVCallingConv.td#L30-L37 [rfc]: https://github.com/rust-lang/rfcs/pull/3246
2023-05-23 22:08:23 +00:00
if let Conv::RiscvInterrupt { kind } = self.conv {
func_attrs.push(llvm::CreateAttrStringValue(cx.llcx, "interrupt", kind.as_str()));
}
attributes::apply_to_llfn(llfn, llvm::AttributePlace::Function, &{ func_attrs });
2020-03-31 12:27:09 +00:00
let mut i = 0;
let mut apply = |attrs: &ArgAttributes| {
attrs.apply_attrs_to_llfn(llvm::AttributePlace::Argument(i), cx, llfn);
i += 1;
i - 1
};
match &self.ret.mode {
PassMode::Direct(attrs) => {
attrs.apply_attrs_to_llfn(llvm::AttributePlace::ReturnValue, cx, llfn);
}
2023-09-08 06:48:41 +00:00
PassMode::Indirect { attrs, meta_attrs: _, on_stack } => {
assert!(!on_stack);
let i = apply(attrs);
let sret = llvm::CreateStructRetAttr(
cx.llcx,
cx.type_array(cx.type_i8(), self.ret.layout.size.bytes()),
);
attributes::apply_to_llfn(llfn, llvm::AttributePlace::Argument(i), &[sret]);
}
2023-09-07 20:06:37 +00:00
PassMode::Cast { cast, pad_i32: _ } => {
cast.attrs.apply_attrs_to_llfn(llvm::AttributePlace::ReturnValue, cx, llfn);
}
_ => {}
}
2022-08-25 09:08:04 +00:00
for arg in self.args.iter() {
match &arg.mode {
PassMode::Ignore => {}
2023-09-08 06:48:41 +00:00
PassMode::Indirect { attrs, meta_attrs: None, on_stack: true } => {
let i = apply(attrs);
let byval = llvm::CreateByValAttr(
cx.llcx,
cx.type_array(cx.type_i8(), arg.layout.size.bytes()),
);
attributes::apply_to_llfn(llfn, llvm::AttributePlace::Argument(i), &[byval]);
}
PassMode::Direct(attrs)
2023-09-08 06:48:41 +00:00
| PassMode::Indirect { attrs, meta_attrs: None, on_stack: false } => {
apply(attrs);
2019-12-22 22:42:04 +00:00
}
2023-09-08 06:48:41 +00:00
PassMode::Indirect { attrs, meta_attrs: Some(meta_attrs), on_stack } => {
assert!(!on_stack);
apply(attrs);
2023-09-08 06:48:41 +00:00
apply(meta_attrs);
}
PassMode::Pair(a, b) => {
apply(a);
apply(b);
}
2023-09-07 20:06:37 +00:00
PassMode::Cast { cast, pad_i32 } => {
if *pad_i32 {
apply(&ArgAttributes::new());
}
apply(&cast.attrs);
}
}
}
}
fn apply_attrs_callsite(&self, bx: &mut Builder<'_, 'll, 'tcx>, callsite: &'ll Value) {
let mut func_attrs = SmallVec::<[_; 2]>::new();
if self.ret.layout.abi.is_uninhabited() {
func_attrs.push(llvm::AttributeKind::NoReturn.create_attr(bx.cx.llcx));
}
if !self.can_unwind {
func_attrs.push(llvm::AttributeKind::NoUnwind.create_attr(bx.cx.llcx));
}
attributes::apply_to_callsite(callsite, llvm::AttributePlace::Function, &{ func_attrs });
2020-03-31 12:27:09 +00:00
let mut i = 0;
let mut apply = |cx: &CodegenCx<'_, '_>, attrs: &ArgAttributes| {
attrs.apply_attrs_to_callsite(llvm::AttributePlace::Argument(i), cx, callsite);
i += 1;
i - 1
};
match &self.ret.mode {
PassMode::Direct(attrs) => {
2021-09-30 17:38:50 +00:00
attrs.apply_attrs_to_callsite(llvm::AttributePlace::ReturnValue, bx.cx, callsite);
}
2023-09-08 06:48:41 +00:00
PassMode::Indirect { attrs, meta_attrs: _, on_stack } => {
assert!(!on_stack);
let i = apply(bx.cx, attrs);
let sret = llvm::CreateStructRetAttr(
bx.cx.llcx,
bx.cx.type_array(bx.cx.type_i8(), self.ret.layout.size.bytes()),
);
attributes::apply_to_callsite(callsite, llvm::AttributePlace::Argument(i), &[sret]);
}
2023-09-07 20:06:37 +00:00
PassMode::Cast { cast, pad_i32: _ } => {
cast.attrs.apply_attrs_to_callsite(
llvm::AttributePlace::ReturnValue,
bx.cx,
callsite,
);
}
_ => {}
}
if let abi::Abi::Scalar(scalar) = self.ret.layout.abi {
// If the value is a boolean, the range is 0..2 and that ultimately
// become 0..0 when the type becomes i1, which would be rejected
// by the LLVM verifier.
if let Int(..) = scalar.primitive() {
2021-09-07 18:51:09 +00:00
if !scalar.is_bool() && !scalar.is_always_valid(bx) {
bx.range_metadata(callsite, scalar.valid_range(bx));
}
}
}
2022-08-25 09:08:04 +00:00
for arg in self.args.iter() {
match &arg.mode {
PassMode::Ignore => {}
2023-09-08 06:48:41 +00:00
PassMode::Indirect { attrs, meta_attrs: None, on_stack: true } => {
let i = apply(bx.cx, attrs);
let byval = llvm::CreateByValAttr(
bx.cx.llcx,
bx.cx.type_array(bx.cx.type_i8(), arg.layout.size.bytes()),
);
attributes::apply_to_callsite(
callsite,
llvm::AttributePlace::Argument(i),
&[byval],
);
2019-12-22 22:42:04 +00:00
}
PassMode::Direct(attrs)
2023-09-08 06:48:41 +00:00
| PassMode::Indirect { attrs, meta_attrs: None, on_stack: false } => {
apply(bx.cx, attrs);
}
2023-09-08 06:48:41 +00:00
PassMode::Indirect { attrs, meta_attrs: Some(meta_attrs), on_stack: _ } => {
apply(bx.cx, attrs);
2023-09-08 06:48:41 +00:00
apply(bx.cx, meta_attrs);
}
PassMode::Pair(a, b) => {
apply(bx.cx, a);
apply(bx.cx, b);
}
2023-09-07 20:06:37 +00:00
PassMode::Cast { cast, pad_i32 } => {
if *pad_i32 {
apply(bx.cx, &ArgAttributes::new());
}
apply(bx.cx, &cast.attrs);
}
}
}
let cconv = self.llvm_cconv();
if cconv != llvm::CCallConv {
llvm::SetInstructionCallConv(callsite, cconv);
}
if self.conv == Conv::CCmseNonSecureCall {
// This will probably get ignored on all targets but those supporting the TrustZone-M
// extension (thumbv8m targets).
let cmse_nonsecure_call = llvm::CreateAttrString(bx.cx.llcx, "cmse_nonsecure_call");
attributes::apply_to_callsite(
Improve `unused_unsafe` lint Main motivation: Fixes some issues with the current behavior. This PR is more-or-less completely re-implementing the unused_unsafe lint; it’s also only done in the MIR-version of the lint, the set of tests for the `-Zthir-unsafeck` version no longer succeeds (and is thus disabled, see `lint-unused-unsafe.rs`). On current nightly, ```rs unsafe fn unsf() {} fn inner_ignored() { unsafe { #[allow(unused_unsafe)] unsafe { unsf() } } } ``` doesn’t create any warnings. This situation is not unrealistic to come by, the inner `unsafe` block could e.g. come from a macro. Actually, this PR even includes removal of one unused `unsafe` in the standard library that was missed in a similar situation. (The inner `unsafe` coming from an external macro hides the warning, too.) The reason behind this problem is how the check currently works: * While generating MIR, it already skips nested unsafe blocks (i.e. unsafe nested in other unsafe) so that the inner one is always the one considered unused * To differentiate the cases of no unsafe operations inside the `unsafe` vs. a surrounding `unsafe` block, there’s some ad-hoc magic walking up the HIR to look for surrounding used `unsafe` blocks. There’s a lot of problems with this approach besides the one presented above. E.g. the MIR-building uses checks for `unsafe_op_in_unsafe_fn` lint to decide early whether or not `unsafe` blocks in an `unsafe fn` are redundant and ought to be removed. ```rs unsafe fn granular_disallow_op_in_unsafe_fn() { unsafe { #[deny(unsafe_op_in_unsafe_fn)] { unsf(); } } } ``` ``` error: call to unsafe function is unsafe and requires unsafe block (error E0133) --> src/main.rs:13:13 | 13 | unsf(); | ^^^^^^ call to unsafe function | note: the lint level is defined here --> src/main.rs:11:16 | 11 | #[deny(unsafe_op_in_unsafe_fn)] | ^^^^^^^^^^^^^^^^^^^^^^ = note: consult the function's documentation for information on how to avoid undefined behavior warning: unnecessary `unsafe` block --> src/main.rs:10:5 | 9 | unsafe fn granular_disallow_op_in_unsafe_fn() { | --------------------------------------------- because it's nested under this `unsafe` fn 10 | unsafe { | ^^^^^^ unnecessary `unsafe` block | = note: `#[warn(unused_unsafe)]` on by default ``` Here, the intermediate `unsafe` was ignored, even though it contains a unsafe operation that is not allowed to happen in an `unsafe fn` without an additional `unsafe` block. Also closures were problematic and the workaround/algorithms used on current nightly didn’t work properly. (I skipped trying to fully understand what it was supposed to do, because this PR uses a completely different approach.) ```rs fn nested() { unsafe { unsafe { unsf() } } } ``` ``` warning: unnecessary `unsafe` block --> src/main.rs:10:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block 10 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block | = note: `#[warn(unused_unsafe)]` on by default ``` vs ```rs fn nested() { let _ = || unsafe { let _ = || unsafe { unsf() }; }; } ``` ``` warning: unnecessary `unsafe` block --> src/main.rs:9:16 | 9 | let _ = || unsafe { | ^^^^^^ unnecessary `unsafe` block | = note: `#[warn(unused_unsafe)]` on by default warning: unnecessary `unsafe` block --> src/main.rs:10:20 | 10 | let _ = || unsafe { unsf() }; | ^^^^^^ unnecessary `unsafe` block ``` *note that this warning kind-of suggests that **both** unsafe blocks are redundant* -------------------------------------------------------------------------------- I also dislike the fact that it always suggests keeping the outermost `unsafe`. E.g. for ```rs fn granularity() { unsafe { unsafe { unsf() } unsafe { unsf() } unsafe { unsf() } } } ``` I prefer if `rustc` suggests removing the more-course outer-level `unsafe` instead of the fine-grained inner `unsafe` blocks, which it currently does on nightly: ``` warning: unnecessary `unsafe` block --> src/main.rs:10:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block 10 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block | = note: `#[warn(unused_unsafe)]` on by default warning: unnecessary `unsafe` block --> src/main.rs:11:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block 10 | unsafe { unsf() } 11 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block warning: unnecessary `unsafe` block --> src/main.rs:12:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block ... 12 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block ``` -------------------------------------------------------------------------------- Needless to say, this PR addresses all these points. For context, as far as my understanding goes, the main advantage of skipping inner unsafe blocks was that a test case like ```rs fn top_level_used() { unsafe { unsf(); unsafe { unsf() } unsafe { unsf() } unsafe { unsf() } } } ``` should generate some warning because there’s redundant nested `unsafe`, however every single `unsafe` block _does_ contain some statement that uses it. Of course this PR doesn’t aim change the warnings on this kind of code example, because the current behavior, warning on all the inner `unsafe` blocks, makes sense in this case. As mentioned, during MIR building all the unsafe blocks *are* kept now, and usage is attributed to them. The way to still generate a warning like ``` warning: unnecessary `unsafe` block --> src/main.rs:11:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block 10 | unsf(); 11 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block | = note: `#[warn(unused_unsafe)]` on by default warning: unnecessary `unsafe` block --> src/main.rs:12:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block ... 12 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block warning: unnecessary `unsafe` block --> src/main.rs:13:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block ... 13 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block ``` in this case is by emitting a `unused_unsafe` warning for all of the `unsafe` blocks that are _within a **used** unsafe block_. The previous code had a little HIR traversal already anyways to collect a set of all the unsafe blocks (in order to afterwards determine which ones are unused afterwards). This PR uses such a traversal to do additional things including logic like _always_ warn for an `unsafe` block that’s inside of another **used** unsafe block. The traversal is expanded to include nested closures in the same go, this simplifies a lot of things. The whole logic around `unsafe_op_in_unsafe_fn` is a little complicated, there’s some test cases of corner-cases in this PR. (The implementation involves differentiating between whether a used unsafe block was used exclusively by operations where `allow(unsafe_op_in_unsafe_fn)` was active.) The main goal was to make sure that code should compile successfully if all the `unused_unsafe`-warnings are addressed _simultaneously_ (by removing the respective `unsafe` blocks) no matter how complicated the patterns of `unsafe_op_in_unsafe_fn` being disallowed and allowed throughout the function are. -------------------------------------------------------------------------------- One noteworthy design decision I took here: An `unsafe` block with `allow(unused_unsafe)` **is considered used** for the purposes of linting about redundant contained unsafe blocks. So while ```rs fn granularity() { unsafe { //~ ERROR: unnecessary `unsafe` block unsafe { unsf() } unsafe { unsf() } unsafe { unsf() } } } ``` warns for the outer `unsafe` block, ```rs fn top_level_ignored() { #[allow(unused_unsafe)] unsafe { #[deny(unused_unsafe)] { unsafe { unsf() } //~ ERROR: unnecessary `unsafe` block unsafe { unsf() } //~ ERROR: unnecessary `unsafe` block unsafe { unsf() } //~ ERROR: unnecessary `unsafe` block } } } ``` warns on the inner ones.
2022-02-03 21:16:06 +00:00
callsite,
llvm::AttributePlace::Function,
&[cmse_nonsecure_call],
Improve `unused_unsafe` lint Main motivation: Fixes some issues with the current behavior. This PR is more-or-less completely re-implementing the unused_unsafe lint; it’s also only done in the MIR-version of the lint, the set of tests for the `-Zthir-unsafeck` version no longer succeeds (and is thus disabled, see `lint-unused-unsafe.rs`). On current nightly, ```rs unsafe fn unsf() {} fn inner_ignored() { unsafe { #[allow(unused_unsafe)] unsafe { unsf() } } } ``` doesn’t create any warnings. This situation is not unrealistic to come by, the inner `unsafe` block could e.g. come from a macro. Actually, this PR even includes removal of one unused `unsafe` in the standard library that was missed in a similar situation. (The inner `unsafe` coming from an external macro hides the warning, too.) The reason behind this problem is how the check currently works: * While generating MIR, it already skips nested unsafe blocks (i.e. unsafe nested in other unsafe) so that the inner one is always the one considered unused * To differentiate the cases of no unsafe operations inside the `unsafe` vs. a surrounding `unsafe` block, there’s some ad-hoc magic walking up the HIR to look for surrounding used `unsafe` blocks. There’s a lot of problems with this approach besides the one presented above. E.g. the MIR-building uses checks for `unsafe_op_in_unsafe_fn` lint to decide early whether or not `unsafe` blocks in an `unsafe fn` are redundant and ought to be removed. ```rs unsafe fn granular_disallow_op_in_unsafe_fn() { unsafe { #[deny(unsafe_op_in_unsafe_fn)] { unsf(); } } } ``` ``` error: call to unsafe function is unsafe and requires unsafe block (error E0133) --> src/main.rs:13:13 | 13 | unsf(); | ^^^^^^ call to unsafe function | note: the lint level is defined here --> src/main.rs:11:16 | 11 | #[deny(unsafe_op_in_unsafe_fn)] | ^^^^^^^^^^^^^^^^^^^^^^ = note: consult the function's documentation for information on how to avoid undefined behavior warning: unnecessary `unsafe` block --> src/main.rs:10:5 | 9 | unsafe fn granular_disallow_op_in_unsafe_fn() { | --------------------------------------------- because it's nested under this `unsafe` fn 10 | unsafe { | ^^^^^^ unnecessary `unsafe` block | = note: `#[warn(unused_unsafe)]` on by default ``` Here, the intermediate `unsafe` was ignored, even though it contains a unsafe operation that is not allowed to happen in an `unsafe fn` without an additional `unsafe` block. Also closures were problematic and the workaround/algorithms used on current nightly didn’t work properly. (I skipped trying to fully understand what it was supposed to do, because this PR uses a completely different approach.) ```rs fn nested() { unsafe { unsafe { unsf() } } } ``` ``` warning: unnecessary `unsafe` block --> src/main.rs:10:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block 10 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block | = note: `#[warn(unused_unsafe)]` on by default ``` vs ```rs fn nested() { let _ = || unsafe { let _ = || unsafe { unsf() }; }; } ``` ``` warning: unnecessary `unsafe` block --> src/main.rs:9:16 | 9 | let _ = || unsafe { | ^^^^^^ unnecessary `unsafe` block | = note: `#[warn(unused_unsafe)]` on by default warning: unnecessary `unsafe` block --> src/main.rs:10:20 | 10 | let _ = || unsafe { unsf() }; | ^^^^^^ unnecessary `unsafe` block ``` *note that this warning kind-of suggests that **both** unsafe blocks are redundant* -------------------------------------------------------------------------------- I also dislike the fact that it always suggests keeping the outermost `unsafe`. E.g. for ```rs fn granularity() { unsafe { unsafe { unsf() } unsafe { unsf() } unsafe { unsf() } } } ``` I prefer if `rustc` suggests removing the more-course outer-level `unsafe` instead of the fine-grained inner `unsafe` blocks, which it currently does on nightly: ``` warning: unnecessary `unsafe` block --> src/main.rs:10:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block 10 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block | = note: `#[warn(unused_unsafe)]` on by default warning: unnecessary `unsafe` block --> src/main.rs:11:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block 10 | unsafe { unsf() } 11 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block warning: unnecessary `unsafe` block --> src/main.rs:12:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block ... 12 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block ``` -------------------------------------------------------------------------------- Needless to say, this PR addresses all these points. For context, as far as my understanding goes, the main advantage of skipping inner unsafe blocks was that a test case like ```rs fn top_level_used() { unsafe { unsf(); unsafe { unsf() } unsafe { unsf() } unsafe { unsf() } } } ``` should generate some warning because there’s redundant nested `unsafe`, however every single `unsafe` block _does_ contain some statement that uses it. Of course this PR doesn’t aim change the warnings on this kind of code example, because the current behavior, warning on all the inner `unsafe` blocks, makes sense in this case. As mentioned, during MIR building all the unsafe blocks *are* kept now, and usage is attributed to them. The way to still generate a warning like ``` warning: unnecessary `unsafe` block --> src/main.rs:11:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block 10 | unsf(); 11 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block | = note: `#[warn(unused_unsafe)]` on by default warning: unnecessary `unsafe` block --> src/main.rs:12:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block ... 12 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block warning: unnecessary `unsafe` block --> src/main.rs:13:9 | 9 | unsafe { | ------ because it's nested under this `unsafe` block ... 13 | unsafe { unsf() } | ^^^^^^ unnecessary `unsafe` block ``` in this case is by emitting a `unused_unsafe` warning for all of the `unsafe` blocks that are _within a **used** unsafe block_. The previous code had a little HIR traversal already anyways to collect a set of all the unsafe blocks (in order to afterwards determine which ones are unused afterwards). This PR uses such a traversal to do additional things including logic like _always_ warn for an `unsafe` block that’s inside of another **used** unsafe block. The traversal is expanded to include nested closures in the same go, this simplifies a lot of things. The whole logic around `unsafe_op_in_unsafe_fn` is a little complicated, there’s some test cases of corner-cases in this PR. (The implementation involves differentiating between whether a used unsafe block was used exclusively by operations where `allow(unsafe_op_in_unsafe_fn)` was active.) The main goal was to make sure that code should compile successfully if all the `unused_unsafe`-warnings are addressed _simultaneously_ (by removing the respective `unsafe` blocks) no matter how complicated the patterns of `unsafe_op_in_unsafe_fn` being disallowed and allowed throughout the function are. -------------------------------------------------------------------------------- One noteworthy design decision I took here: An `unsafe` block with `allow(unused_unsafe)` **is considered used** for the purposes of linting about redundant contained unsafe blocks. So while ```rs fn granularity() { unsafe { //~ ERROR: unnecessary `unsafe` block unsafe { unsf() } unsafe { unsf() } unsafe { unsf() } } } ``` warns for the outer `unsafe` block, ```rs fn top_level_ignored() { #[allow(unused_unsafe)] unsafe { #[deny(unused_unsafe)] { unsafe { unsf() } //~ ERROR: unnecessary `unsafe` block unsafe { unsf() } //~ ERROR: unnecessary `unsafe` block unsafe { unsf() } //~ ERROR: unnecessary `unsafe` block } } } ``` warns on the inner ones.
2022-02-03 21:16:06 +00:00
);
}
// Some intrinsics require that an elementtype attribute (with the pointee type of a
// pointer argument) is added to the callsite.
let element_type_index = unsafe { llvm::LLVMRustGetElementTypeArgIndex(callsite) };
if element_type_index >= 0 {
let arg_ty = self.args[element_type_index as usize].layout.ty;
let pointee_ty = arg_ty.builtin_deref(true).expect("Must be pointer argument").ty;
let element_type_attr = unsafe {
llvm::LLVMRustCreateElementTypeAttr(bx.llcx, bx.layout_of(pointee_ty).llvm_type(bx))
};
attributes::apply_to_callsite(
callsite,
llvm::AttributePlace::Argument(element_type_index as u32),
&[element_type_attr],
);
}
}
}
impl<'tcx> AbiBuilderMethods<'tcx> for Builder<'_, '_, 'tcx> {
fn get_param(&mut self, index: usize) -> Self::Value {
2018-12-04 19:20:45 +00:00
llvm::get_param(self.llfn(), index as c_uint)
}
}
impl From<Conv> for llvm::CallConv {
fn from(conv: Conv) -> Self {
match conv {
feat: `riscv-interrupt-{m,s}` calling conventions Similar to prior support added for the mips430, avr, and x86 targets this change implements the rough equivalent of clang's [`__attribute__((interrupt))`][clang-attr] for riscv targets, enabling e.g. ```rust static mut CNT: usize = 0; pub extern "riscv-interrupt-m" fn isr_m() { unsafe { CNT += 1; } } ``` to produce highly effective assembly like: ```asm pub extern "riscv-interrupt-m" fn isr_m() { 420003a0: 1141 addi sp,sp,-16 unsafe { CNT += 1; 420003a2: c62a sw a0,12(sp) 420003a4: c42e sw a1,8(sp) 420003a6: 3fc80537 lui a0,0x3fc80 420003aa: 63c52583 lw a1,1596(a0) # 3fc8063c <_ZN12esp_riscv_rt3CNT17hcec3e3a214887d53E.0> 420003ae: 0585 addi a1,a1,1 420003b0: 62b52e23 sw a1,1596(a0) } } 420003b4: 4532 lw a0,12(sp) 420003b6: 45a2 lw a1,8(sp) 420003b8: 0141 addi sp,sp,16 420003ba: 30200073 mret ``` (disassembly via `riscv64-unknown-elf-objdump -C -S --disassemble ./esp32c3-hal/target/riscv32imc-unknown-none-elf/release/examples/gpio_interrupt`) This outcome is superior to hand-coded interrupt routines which, lacking visibility into any non-assembly body of the interrupt handler, have to be very conservative and save the [entire CPU state to the stack frame][full-frame-save]. By instead asking LLVM to only save the registers that it uses, we defer the decision to the tool with the best context: it can more accurately account for the cost of spills if it knows that every additional register used is already at the cost of an implicit spill. At the LLVM level, this is apparently [implemented by] marking every register as "[callee-save]," matching the semantics of an interrupt handler nicely (it has to leave the CPU state just as it found it after its `{m|s}ret`). This approach is not suitable for every interrupt handler, as it makes no attempt to e.g. save the state in a user-accessible stack frame. For a full discussion of those challenges and tradeoffs, please refer to [the interrupt calling conventions RFC][rfc]. Inside rustc, this implementation differs from prior art because LLVM does not expose the "all-saved" function flavor as a calling convention directly, instead preferring to use an attribute that allows for differentiating between "machine-mode" and "superivsor-mode" interrupts. Finally, some effort has been made to guide those who may not yet be aware of the differences between machine-mode and supervisor-mode interrupts as to why no `riscv-interrupt` calling convention is exposed through rustc, and similarly for why `riscv-interrupt-u` makes no appearance (as it would complicate future LLVM upgrades). [clang-attr]: https://clang.llvm.org/docs/AttributeReference.html#interrupt-risc-v [full-frame-save]: https://github.com/esp-rs/esp-riscv-rt/blob/9281af2ecffe13e40992917316f36920c26acaf3/src/lib.rs#L440-L469 [implemented by]: https://github.com/llvm/llvm-project/blob/b7fb2a3fec7c187d58a6d338ab512d9173bca987/llvm/lib/Target/RISCV/RISCVRegisterInfo.cpp#L61-L67 [callee-save]: https://github.com/llvm/llvm-project/blob/973f1fe7a8591c7af148e573491ab68cc15b6ecf/llvm/lib/Target/RISCV/RISCVCallingConv.td#L30-L37 [rfc]: https://github.com/rust-lang/rfcs/pull/3246
2023-05-23 22:08:23 +00:00
Conv::C | Conv::Rust | Conv::CCmseNonSecureCall | Conv::RiscvInterrupt { .. } => {
llvm::CCallConv
}
Conv::Cold => llvm::ColdCallConv,
Conv::PreserveMost => llvm::PreserveMost,
Conv::PreserveAll => llvm::PreserveAll,
Conv::AvrInterrupt => llvm::AvrInterrupt,
Conv::AvrNonBlockingInterrupt => llvm::AvrNonBlockingInterrupt,
Conv::ArmAapcs => llvm::ArmAapcsCallConv,
Conv::Msp430Intr => llvm::Msp430Intr,
Conv::PtxKernel => llvm::PtxKernel,
Conv::X86Fastcall => llvm::X86FastcallCallConv,
Conv::X86Intr => llvm::X86_Intr,
Conv::X86Stdcall => llvm::X86StdcallCallConv,
Conv::X86ThisCall => llvm::X86_ThisCall,
Conv::X86VectorCall => llvm::X86_VectorCall,
Conv::X86_64SysV => llvm::X86_64_SysV,
Conv::X86_64Win64 => llvm::X86_64_Win64,
}
}
}