rust/src/libsyntax/parse/literal.rs

504 lines
20 KiB
Rust
Raw Normal View History

//! Code related to parsing literals.
use crate::ast::{self, Ident, Lit, LitKind};
use crate::parse::parser::Parser;
use crate::parse::PResult;
use crate::parse::token;
use crate::parse::unescape::{unescape_str, unescape_char, unescape_byte_str, unescape_byte};
use crate::print::pprust;
2019-05-11 14:41:37 +00:00
use crate::symbol::{kw, Symbol};
use crate::tokenstream::{TokenStream, TokenTree};
use errors::{Applicability, Handler};
use log::debug;
use rustc_data_structures::sync::Lrc;
use syntax_pos::Span;
use std::ascii;
crate enum LitError {
NotLiteral,
LexerError,
InvalidSuffix,
InvalidIntSuffix,
InvalidFloatSuffix,
NonDecimalFloat(&'static str),
IntTooLarge,
}
impl LitError {
crate fn report(&self, diag: &Handler, lit: token::Lit, suf: Option<Symbol>, span: Span) {
match *self {
LitError::NotLiteral | LitError::LexerError => {}
LitError::InvalidSuffix => {
expect_no_suffix(diag, span, &format!("{} {}", lit.article(), lit.descr()), suf);
}
LitError::InvalidIntSuffix => {
let suf = suf.expect("suffix error with no suffix").as_str();
if looks_like_width_suffix(&['i', 'u'], &suf) {
// If it looks like a width, try to be helpful.
let msg = format!("invalid width `{}` for integer literal", &suf[1..]);
diag.struct_span_err(span, &msg)
.help("valid widths are 8, 16, 32, 64 and 128")
.emit();
} else {
let msg = format!("invalid suffix `{}` for integer literal", suf);
diag.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("the suffix must be one of the integral types (`u32`, `isize`, etc)")
.emit();
}
}
LitError::InvalidFloatSuffix => {
let suf = suf.expect("suffix error with no suffix").as_str();
if looks_like_width_suffix(&['f'], &suf) {
// If it looks like a width, try to be helpful.
let msg = format!("invalid width `{}` for float literal", &suf[1..]);
diag.struct_span_err(span, &msg)
.help("valid widths are 32 and 64")
.emit();
} else {
let msg = format!("invalid suffix `{}` for float literal", suf);
diag.struct_span_err(span, &msg)
.span_label(span, format!("invalid suffix `{}`", suf))
.help("valid suffixes are `f32` and `f64`")
.emit();
}
}
LitError::NonDecimalFloat(descr) => {
diag.struct_span_err(span, &format!("{} float literal is not supported", descr))
.span_label(span, "not supported")
.emit();
}
LitError::IntTooLarge => {
diag.struct_span_err(span, "integer literal is too large")
.emit();
}
}
}
}
impl LitKind {
/// Converts literal token with a suffix into a semantic literal.
2019-05-11 13:03:27 +00:00
/// Works speculatively and may return `None` if diagnostic handler is not passed.
/// If diagnostic handler is passed, always returns `Some`,
/// possibly after reporting non-fatal errors and recovery.
fn from_lit_token(
lit: token::Lit,
suf: Option<Symbol>,
) -> Result<LitKind, LitError> {
if suf.is_some() && !lit.may_have_suffix() {
return Err(LitError::InvalidSuffix);
}
Ok(match lit {
token::Bool(i) => {
assert!(i == kw::True || i == kw::False);
LitKind::Bool(i == kw::True)
}
token::Byte(i) => {
match unescape_byte(&i.as_str()) {
Ok(c) => LitKind::Byte(c),
Err(_) => LitKind::Err(i),
}
},
token::Char(i) => {
match unescape_char(&i.as_str()) {
Ok(c) => LitKind::Char(c),
Err(_) => return Err(LitError::LexerError),
}
},
token::Err(i) => LitKind::Err(i),
// There are some valid suffixes for integer and float literals,
// so all the handling is done internally.
token::Integer(s) => return integer_lit(s, suf),
token::Float(s) => return float_lit(s, suf),
token::Str_(mut sym) => {
// If there are no characters requiring special treatment we can
// reuse the symbol from the token. Otherwise, we must generate a
// new symbol because the string in the LitKind is different to the
// string in the token.
let mut error = None;
let s = &sym.as_str();
if s.as_bytes().iter().any(|&c| c == b'\\' || c == b'\r') {
let mut buf = String::with_capacity(s.len());
unescape_str(s, &mut |_, unescaped_char| {
match unescaped_char {
Ok(c) => buf.push(c),
Err(_) => error = Some(LitError::LexerError),
}
});
if let Some(error) = error {
return Err(error);
}
sym = Symbol::intern(&buf)
}
LitKind::Str(sym, ast::StrStyle::Cooked)
}
token::StrRaw(mut sym, n) => {
// Ditto.
let s = &sym.as_str();
if s.contains('\r') {
sym = Symbol::intern(&raw_str_lit(s));
}
LitKind::Str(sym, ast::StrStyle::Raw(n))
}
token::ByteStr(i) => {
let s = &i.as_str();
let mut buf = Vec::with_capacity(s.len());
let mut error = None;
unescape_byte_str(s, &mut |_, unescaped_byte| {
match unescaped_byte {
Ok(c) => buf.push(c),
Err(_) => error = Some(LitError::LexerError),
}
});
if let Some(error) = error {
return Err(error);
}
buf.shrink_to_fit();
LitKind::ByteStr(Lrc::new(buf))
}
token::ByteStrRaw(i, _) => {
LitKind::ByteStr(Lrc::new(i.to_string().into_bytes()))
}
})
}
/// Attempts to recover a token from semantic literal.
/// This function is used when the original token doesn't exist (e.g. the literal is created
/// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
pub fn to_lit_token(&self) -> (token::Lit, Option<Symbol>) {
match *self {
LitKind::Str(string, ast::StrStyle::Cooked) => {
let escaped = string.as_str().escape_default().to_string();
(token::Lit::Str_(Symbol::intern(&escaped)), None)
}
LitKind::Str(string, ast::StrStyle::Raw(n)) => {
(token::Lit::StrRaw(string, n), None)
}
LitKind::ByteStr(ref bytes) => {
let string = bytes.iter().cloned().flat_map(ascii::escape_default)
.map(Into::<char>::into).collect::<String>();
(token::Lit::ByteStr(Symbol::intern(&string)), None)
}
LitKind::Byte(byte) => {
let string: String = ascii::escape_default(byte).map(Into::<char>::into).collect();
(token::Lit::Byte(Symbol::intern(&string)), None)
}
LitKind::Char(ch) => {
let string: String = ch.escape_default().map(Into::<char>::into).collect();
(token::Lit::Char(Symbol::intern(&string)), None)
}
LitKind::Int(n, ty) => {
let suffix = match ty {
ast::LitIntType::Unsigned(ty) => Some(Symbol::intern(ty.ty_to_string())),
ast::LitIntType::Signed(ty) => Some(Symbol::intern(ty.ty_to_string())),
ast::LitIntType::Unsuffixed => None,
};
(token::Lit::Integer(Symbol::intern(&n.to_string())), suffix)
}
LitKind::Float(symbol, ty) => {
(token::Lit::Float(symbol), Some(Symbol::intern(ty.ty_to_string())))
}
LitKind::FloatUnsuffixed(symbol) => (token::Lit::Float(symbol), None),
LitKind::Bool(value) => {
let kw = if value { kw::True } else { kw::False };
(token::Lit::Bool(kw), None)
}
LitKind::Err(val) => (token::Lit::Err(val), None),
}
}
}
impl Lit {
fn from_lit_token(
token: token::Lit,
suffix: Option<Symbol>,
span: Span,
) -> Result<Lit, LitError> {
let node = LitKind::from_lit_token(token, suffix)?;
Ok(Lit { node, token, suffix, span })
}
/// Converts literal token with a suffix into an AST literal.
2019-05-11 13:03:27 +00:00
/// Works speculatively and may return `None` if diagnostic handler is not passed.
/// If diagnostic handler is passed, may return `Some`,
/// possibly after reporting non-fatal errors and recovery, or `None` for irrecoverable errors.
crate fn from_token(
token: &token::Token,
span: Span,
) -> Result<Lit, LitError> {
let (lit, suf) = match *token {
token::Ident(ident, false) if ident.name == kw::True || ident.name == kw::False =>
(token::Bool(ident.name), None),
token::Literal(token, suffix) =>
(token, suffix),
token::Interpolated(ref nt) => {
if let token::NtExpr(expr) | token::NtLiteral(expr) = &**nt {
if let ast::ExprKind::Lit(lit) = &expr.node {
return Ok(lit.clone());
}
}
return Err(LitError::NotLiteral);
}
_ => return Err(LitError::NotLiteral)
};
Lit::from_lit_token(lit, suf, span)
}
/// Attempts to recover an AST literal from semantic literal.
/// This function is used when the original token doesn't exist (e.g. the literal is created
/// by an AST-based macro) or unavailable (e.g. from HIR pretty-printing).
pub fn from_lit_kind(node: LitKind, span: Span) -> Lit {
let (token, suffix) = node.to_lit_token();
Lit { node, token, suffix, span }
}
/// Losslessly convert an AST literal into a token stream.
crate fn tokens(&self) -> TokenStream {
let token = match self.token {
token::Bool(symbol) => token::Ident(Ident::new(symbol, self.span), false),
token => token::Literal(token, self.suffix),
};
TokenTree::Token(self.span, token).into()
}
}
impl<'a> Parser<'a> {
/// Matches `lit = true | false | token_lit`.
crate fn parse_lit(&mut self) -> PResult<'a, Lit> {
let mut recovered = None;
if self.token == token::Dot {
// Attempt to recover `.4` as `0.4`.
recovered = self.look_ahead(1, |t| {
if let token::Literal(token::Integer(val), suf) = *t {
let next_span = self.look_ahead_span(1);
if self.span.hi() == next_span.lo() {
let sym = String::from("0.") + &val.as_str();
let token = token::Literal(token::Float(Symbol::intern(&sym)), suf);
return Some((token, self.span.to(next_span)));
}
}
None
});
if let Some((ref token, span)) = recovered {
self.diagnostic()
.struct_span_err(span, "float literals must have an integer part")
.span_suggestion(
span,
"must have an integer part",
pprust::token_to_string(&token),
Applicability::MachineApplicable,
)
.emit();
self.bump();
}
}
let (token, span) = recovered.as_ref().map_or((&self.token, self.span),
|(token, span)| (token, *span));
match Lit::from_token(token, span) {
Ok(lit) => {
self.bump();
return Ok(lit);
}
Err(LitError::NotLiteral) => {
let msg = format!("unexpected token: {}", self.this_token_descr());
return Err(self.span_fatal(span, &msg));
}
Err(err) => {
let (lit, suf) = token.expect_lit();
self.bump();
err.report(&self.sess.span_diagnostic, lit, suf, span);
return Ok(Lit::from_lit_token(token::Err(lit.symbol()), suf, span).ok().unwrap());
}
}
}
}
crate fn expect_no_suffix(diag: &Handler, sp: Span, kind: &str, suffix: Option<ast::Name>) {
match suffix {
None => {/* everything ok */}
Some(suf) => {
let text = suf.as_str();
let mut err = if kind == "a tuple index" &&
["i32", "u32", "isize", "usize"].contains(&text.to_string().as_str())
{
// #59553: warn instead of reject out of hand to allow the fix to percolate
// through the ecosystem when people fix their macros
let mut err = diag.struct_span_warn(
sp,
&format!("suffixes on {} are invalid", kind),
);
err.note(&format!(
"`{}` is *temporarily* accepted on tuple index fields as it was \
incorrectly accepted on stable for a few releases",
text,
));
err.help(
"on proc macros, you'll want to use `syn::Index::from` or \
`proc_macro::Literal::*_unsuffixed` for code that will desugar \
to tuple field access",
);
err.note(
"for more context, see https://github.com/rust-lang/rust/issues/60210",
);
err
} else {
diag.struct_span_err(sp, &format!("suffixes on {} are invalid", kind))
};
err.span_label(sp, format!("invalid suffix `{}`", text));
err.emit();
}
}
}
/// Parses a string representing a raw string literal into its final form. The
/// only operation this does is convert embedded CRLF into a single LF.
fn raw_str_lit(lit: &str) -> String {
debug!("raw_str_lit: given {}", lit.escape_default());
let mut res = String::with_capacity(lit.len());
let mut chars = lit.chars().peekable();
while let Some(c) = chars.next() {
if c == '\r' {
if *chars.peek().unwrap() != '\n' {
panic!("lexer accepted bare CR");
}
chars.next();
res.push('\n');
} else {
res.push(c);
}
}
res.shrink_to_fit();
res
}
// Checks if `s` looks like i32 or u1234 etc.
fn looks_like_width_suffix(first_chars: &[char], s: &str) -> bool {
s.len() > 1 && s.starts_with(first_chars) && s[1..].chars().all(|c| c.is_ascii_digit())
}
fn filtered_float_lit(data: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
debug!("filtered_float_lit: {}, {:?}", data, suffix);
let suffix = match suffix {
Some(suffix) => suffix,
None => return Ok(LitKind::FloatUnsuffixed(data)),
};
Ok(match &*suffix.as_str() {
"f32" => LitKind::Float(data, ast::FloatTy::F32),
"f64" => LitKind::Float(data, ast::FloatTy::F64),
_ => return Err(LitError::InvalidFloatSuffix),
})
}
fn float_lit(s: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
debug!("float_lit: {:?}, {:?}", s, suffix);
// FIXME #2252: bounds checking float literals is deferred until trans
// Strip underscores without allocating a new String unless necessary.
let s2;
let s = s.as_str();
let s = s.get();
let s = if s.chars().any(|c| c == '_') {
s2 = s.chars().filter(|&c| c != '_').collect::<String>();
&s2
} else {
s
};
filtered_float_lit(Symbol::intern(s), suffix)
}
fn integer_lit(s: Symbol, suffix: Option<Symbol>) -> Result<LitKind, LitError> {
// s can only be ascii, byte indexing is fine
// Strip underscores without allocating a new String unless necessary.
let s2;
let orig = s;
let s = s.as_str();
let s = s.get();
let mut s = if s.chars().any(|c| c == '_') {
s2 = s.chars().filter(|&c| c != '_').collect::<String>();
&s2
} else {
s
};
debug!("integer_lit: {}, {:?}", s, suffix);
let mut base = 10;
let mut ty = ast::LitIntType::Unsuffixed;
if s.starts_with('0') && s.len() > 1 {
match s.as_bytes()[1] {
b'x' => base = 16,
b'o' => base = 8,
b'b' => base = 2,
_ => { }
}
}
// 1f64 and 2f32 etc. are valid float literals.
if let Some(suf) = suffix {
if looks_like_width_suffix(&['f'], &suf.as_str()) {
let err = match base {
16 => Some(LitError::NonDecimalFloat("hexadecimal")),
8 => Some(LitError::NonDecimalFloat("octal")),
2 => Some(LitError::NonDecimalFloat("binary")),
_ => None,
};
if let Some(err) = err {
return Err(err);
}
return filtered_float_lit(Symbol::intern(s), Some(suf))
}
}
if base != 10 {
s = &s[2..];
}
if let Some(suf) = suffix {
ty = match &*suf.as_str() {
"isize" => ast::LitIntType::Signed(ast::IntTy::Isize),
"i8" => ast::LitIntType::Signed(ast::IntTy::I8),
"i16" => ast::LitIntType::Signed(ast::IntTy::I16),
"i32" => ast::LitIntType::Signed(ast::IntTy::I32),
"i64" => ast::LitIntType::Signed(ast::IntTy::I64),
"i128" => ast::LitIntType::Signed(ast::IntTy::I128),
"usize" => ast::LitIntType::Unsigned(ast::UintTy::Usize),
"u8" => ast::LitIntType::Unsigned(ast::UintTy::U8),
"u16" => ast::LitIntType::Unsigned(ast::UintTy::U16),
"u32" => ast::LitIntType::Unsigned(ast::UintTy::U32),
"u64" => ast::LitIntType::Unsigned(ast::UintTy::U64),
"u128" => ast::LitIntType::Unsigned(ast::UintTy::U128),
_ => return Err(LitError::InvalidIntSuffix),
}
}
debug!("integer_lit: the type is {:?}, base {:?}, the new string is {:?}, the original \
string was {:?}, the original suffix was {:?}", ty, base, s, orig, suffix);
Ok(match u128::from_str_radix(s, base) {
Ok(r) => LitKind::Int(r, ty),
Err(_) => {
// Small bases are lexed as if they were base 10, e.g, the string
// might be `0b10201`. This will cause the conversion above to fail,
// but these kinds of errors are already reported by the lexer.
let from_lexer =
base < 10 && s.chars().any(|c| c.to_digit(10).map_or(false, |d| d >= base));
return Err(if from_lexer { LitError::LexerError } else { LitError::IntTooLarge });
}
})
}