rust/src/test/run-pass/extern/extern-crosscrate.rs

32 lines
927 B
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// run-pass
std: Add a new wasm32-unknown-unknown target This commit adds a new target to the compiler: wasm32-unknown-unknown. This target is a reimagining of what it looks like to generate WebAssembly code from Rust. Instead of using Emscripten which can bring with it a weighty runtime this instead is a target which uses only the LLVM backend for WebAssembly and a "custom linker" for now which will hopefully one day be direct calls to lld. Notable features of this target include: * There is zero runtime footprint. The target assumes nothing exists other than the wasm32 instruction set. * There is zero toolchain footprint beyond adding the target. No custom linker is needed, rustc contains everything. * Very small wasm modules can be generated directly from Rust code using this target. * Most of the standard library is stubbed out to return an error, but anything related to allocation works (aka `HashMap`, `Vec`, etc). * Naturally, any `#[no_std]` crate should be 100% compatible with this new target. This target is currently somewhat janky due to how linking works. The "linking" is currently unconditional whole program LTO (aka LLVM is being used as a linker). Naturally that means compiling programs is pretty slow! Eventually though this target should have a linker. This target is also intended to be quite experimental. I'm hoping that this can act as a catalyst for further experimentation in Rust with WebAssembly. Breaking changes are very likely to land to this target, so it's not recommended to rely on it in any critical capacity yet. We'll let you know when it's "production ready". --- Currently testing-wise this target is looking pretty good but isn't complete. I've got almost the entire `run-pass` test suite working with this target (lots of tests ignored, but many passing as well). The `core` test suite is still getting LLVM bugs fixed to get that working and will take some time. Relatively simple programs all seem to work though! --- It's worth nothing that you may not immediately see the "smallest possible wasm module" for the input you feed to rustc. For various reasons it's very difficult to get rid of the final "bloat" in vanilla rustc (again, a real linker should fix all this). For now what you'll have to do is: cargo install --git https://github.com/alexcrichton/wasm-gc wasm-gc foo.wasm bar.wasm And then `bar.wasm` should be the smallest we can get it! --- In any case for now I'd love feedback on this, particularly on the various integration points if you've got better ideas of how to approach them!
2017-10-23 03:01:00 +00:00
// aux-build:extern-crosscrate-source.rs
// ignore-wasm32-bare no libc to test ffi with
#![feature(libc)]
extern crate externcallback;
extern crate libc;
fn fact(n: libc::uintptr_t) -> libc::uintptr_t {
2013-01-24 00:29:31 +00:00
unsafe {
log: Introduce liblog, the old std::logging This commit moves all logging out of the standard library into an external crate. This crate is the new crate which is responsible for all logging macros and logging implementation. A few reasons for this change are: * The crate map has always been a bit of a code smell among rust programs. It has difficulty being loaded on almost all platforms, and it's used almost exclusively for logging and only logging. Removing the crate map is one of the end goals of this movement. * The compiler has a fair bit of special support for logging. It has the __log_level() expression as well as generating a global word per module specifying the log level. This is unfairly favoring the built-in logging system, and is much better done purely in libraries instead of the compiler itself. * Initialization of logging is much easier to do if there is no reliance on a magical crate map being available to set module log levels. * If the logging library can be written outside of the standard library, there's no reason that it shouldn't be. It's likely that we're not going to build the highest quality logging library of all time, so third-party libraries should be able to provide just as high-quality logging systems as the default one provided in the rust distribution. With a migration such as this, the change does not come for free. There are some subtle changes in the behavior of liblog vs the previous logging macros: * The core change of this migration is that there is no longer a physical log-level per module. This concept is still emulated (it is quite useful), but there is now only a global log level, not a local one. This global log level is a reflection of the maximum of all log levels specified. The previously generated logging code looked like: if specified_level <= __module_log_level() { println!(...) } The newly generated code looks like: if specified_level <= ::log::LOG_LEVEL { if ::log::module_enabled(module_path!()) { println!(...) } } Notably, the first layer of checking is still intended to be "super fast" in that it's just a load of a global word and a compare. The second layer of checking is executed to determine if the current module does indeed have logging turned on. This means that if any module has a debug log level turned on, all modules with debug log levels get a little bit slower (they all do more expensive dynamic checks to determine if they're turned on or not). Semantically, this migration brings no change in this respect, but runtime-wise, this will have a perf impact on some code. * A `RUST_LOG=::help` directive will no longer print out a list of all modules that can be logged. This is because the crate map will no longer specify the log levels of all modules, so the list of modules is not known. Additionally, warnings can no longer be provided if a malformed logging directive was supplied. The new "hello world" for logging looks like: #[phase(syntax, link)] extern crate log; fn main() { debug!("Hello, world!"); }
2014-03-09 06:11:44 +00:00
println!("n = {}", n);
2013-01-24 00:29:31 +00:00
externcallback::rustrt::rust_dbg_call(externcallback::cb, n)
}
}
pub fn main() {
let result = fact(10);
log: Introduce liblog, the old std::logging This commit moves all logging out of the standard library into an external crate. This crate is the new crate which is responsible for all logging macros and logging implementation. A few reasons for this change are: * The crate map has always been a bit of a code smell among rust programs. It has difficulty being loaded on almost all platforms, and it's used almost exclusively for logging and only logging. Removing the crate map is one of the end goals of this movement. * The compiler has a fair bit of special support for logging. It has the __log_level() expression as well as generating a global word per module specifying the log level. This is unfairly favoring the built-in logging system, and is much better done purely in libraries instead of the compiler itself. * Initialization of logging is much easier to do if there is no reliance on a magical crate map being available to set module log levels. * If the logging library can be written outside of the standard library, there's no reason that it shouldn't be. It's likely that we're not going to build the highest quality logging library of all time, so third-party libraries should be able to provide just as high-quality logging systems as the default one provided in the rust distribution. With a migration such as this, the change does not come for free. There are some subtle changes in the behavior of liblog vs the previous logging macros: * The core change of this migration is that there is no longer a physical log-level per module. This concept is still emulated (it is quite useful), but there is now only a global log level, not a local one. This global log level is a reflection of the maximum of all log levels specified. The previously generated logging code looked like: if specified_level <= __module_log_level() { println!(...) } The newly generated code looks like: if specified_level <= ::log::LOG_LEVEL { if ::log::module_enabled(module_path!()) { println!(...) } } Notably, the first layer of checking is still intended to be "super fast" in that it's just a load of a global word and a compare. The second layer of checking is executed to determine if the current module does indeed have logging turned on. This means that if any module has a debug log level turned on, all modules with debug log levels get a little bit slower (they all do more expensive dynamic checks to determine if they're turned on or not). Semantically, this migration brings no change in this respect, but runtime-wise, this will have a perf impact on some code. * A `RUST_LOG=::help` directive will no longer print out a list of all modules that can be logged. This is because the crate map will no longer specify the log levels of all modules, so the list of modules is not known. Additionally, warnings can no longer be provided if a malformed logging directive was supplied. The new "hello world" for logging looks like: #[phase(syntax, link)] extern crate log; fn main() { debug!("Hello, world!"); }
2014-03-09 06:11:44 +00:00
println!("result = {}", result);
assert_eq!(result, 3628800);
}