2015-02-14 23:14:52 +00:00
|
|
|
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
|
2012-12-04 00:48:01 +00:00
|
|
|
// file at the top-level directory of this distribution and at
|
|
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
|
|
// option. This file may not be copied, modified, or distributed
|
|
|
|
// except according to those terms.
|
|
|
|
|
2017-04-06 20:30:26 +00:00
|
|
|
//! This module provides constants which are specific to the implementation
|
2017-10-06 14:41:04 +00:00
|
|
|
//! of the `f64` floating point data type.
|
|
|
|
//!
|
|
|
|
//! Mathematically significant numbers are provided in the `consts` sub-module.
|
2015-07-20 18:21:02 +00:00
|
|
|
//!
|
2017-12-22 01:29:14 +00:00
|
|
|
//! *[See also the `f64` primitive type](../../std/primitive.f64.html).*
|
2011-12-14 01:52:02 +00:00
|
|
|
|
2015-01-24 05:48:20 +00:00
|
|
|
#![stable(feature = "rust1", since = "1.0.0")]
|
2014-10-27 22:37:07 +00:00
|
|
|
#![allow(missing_docs)]
|
2013-05-28 21:35:52 +00:00
|
|
|
|
2015-12-18 12:29:49 +00:00
|
|
|
#[cfg(not(test))]
|
2015-01-05 10:14:50 +00:00
|
|
|
use core::num;
|
2015-12-18 12:29:49 +00:00
|
|
|
#[cfg(not(test))]
|
2015-04-18 06:45:55 +00:00
|
|
|
use intrinsics;
|
2015-12-18 12:29:49 +00:00
|
|
|
#[cfg(not(test))]
|
2015-12-03 01:07:29 +00:00
|
|
|
use num::FpCategory;
|
2017-11-01 19:59:40 +00:00
|
|
|
#[cfg(not(test))]
|
|
|
|
use sys::cmath;
|
2015-01-05 10:14:50 +00:00
|
|
|
|
2015-11-16 16:54:28 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-04-17 22:32:42 +00:00
|
|
|
pub use core::f64::{RADIX, MANTISSA_DIGITS, DIGITS, EPSILON};
|
2015-11-16 16:54:28 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-04-17 22:32:42 +00:00
|
|
|
pub use core::f64::{MIN_EXP, MAX_EXP, MIN_10_EXP};
|
2015-11-16 16:54:28 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2014-05-01 05:23:26 +00:00
|
|
|
pub use core::f64::{MAX_10_EXP, NAN, INFINITY, NEG_INFINITY};
|
2015-11-16 16:54:28 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-02-13 03:40:57 +00:00
|
|
|
pub use core::f64::{MIN, MIN_POSITIVE, MAX};
|
2015-11-16 16:54:28 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2014-05-01 05:23:26 +00:00
|
|
|
pub use core::f64::consts;
|
|
|
|
|
2015-03-14 00:13:35 +00:00
|
|
|
#[cfg(not(test))]
|
|
|
|
#[lang = "f64"]
|
|
|
|
impl f64 {
|
|
|
|
/// Returns `true` if this value is `NaN` and false otherwise.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let nan = f64::NAN;
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let f = 7.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// assert!(nan.is_nan());
|
|
|
|
/// assert!(!f.is_nan());
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn is_nan(self) -> bool { num::Float::is_nan(self) }
|
|
|
|
|
|
|
|
/// Returns `true` if this value is positive infinity or negative infinity and
|
|
|
|
/// false otherwise.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// use std::f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let f = 7.0f64;
|
|
|
|
/// let inf = f64::INFINITY;
|
|
|
|
/// let neg_inf = f64::NEG_INFINITY;
|
|
|
|
/// let nan = f64::NAN;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// assert!(!f.is_infinite());
|
|
|
|
/// assert!(!nan.is_infinite());
|
|
|
|
///
|
|
|
|
/// assert!(inf.is_infinite());
|
|
|
|
/// assert!(neg_inf.is_infinite());
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn is_infinite(self) -> bool { num::Float::is_infinite(self) }
|
|
|
|
|
|
|
|
/// Returns `true` if this number is neither infinite nor `NaN`.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// use std::f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let f = 7.0f64;
|
|
|
|
/// let inf: f64 = f64::INFINITY;
|
|
|
|
/// let neg_inf: f64 = f64::NEG_INFINITY;
|
|
|
|
/// let nan: f64 = f64::NAN;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// assert!(f.is_finite());
|
|
|
|
///
|
|
|
|
/// assert!(!nan.is_finite());
|
|
|
|
/// assert!(!inf.is_finite());
|
|
|
|
/// assert!(!neg_inf.is_finite());
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn is_finite(self) -> bool { num::Float::is_finite(self) }
|
|
|
|
|
|
|
|
/// Returns `true` if the number is neither zero, infinite,
|
|
|
|
/// [subnormal][subnormal], or `NaN`.
|
|
|
|
///
|
|
|
|
/// ```
|
2016-06-22 22:33:07 +00:00
|
|
|
/// use std::f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
2016-06-22 22:33:07 +00:00
|
|
|
/// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
|
|
|
|
/// let max = f64::MAX;
|
|
|
|
/// let lower_than_min = 1.0e-308_f64;
|
|
|
|
/// let zero = 0.0f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// assert!(min.is_normal());
|
|
|
|
/// assert!(max.is_normal());
|
|
|
|
///
|
|
|
|
/// assert!(!zero.is_normal());
|
2016-06-22 22:33:07 +00:00
|
|
|
/// assert!(!f64::NAN.is_normal());
|
|
|
|
/// assert!(!f64::INFINITY.is_normal());
|
2015-03-14 00:13:35 +00:00
|
|
|
/// // Values between `0` and `min` are Subnormal.
|
|
|
|
/// assert!(!lower_than_min.is_normal());
|
|
|
|
/// ```
|
2016-06-22 22:33:07 +00:00
|
|
|
/// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn is_normal(self) -> bool { num::Float::is_normal(self) }
|
|
|
|
|
|
|
|
/// Returns the floating point category of the number. If only one property
|
|
|
|
/// is going to be tested, it is generally faster to use the specific
|
|
|
|
/// predicate instead.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// use std::num::FpCategory;
|
|
|
|
/// use std::f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let num = 12.4_f64;
|
|
|
|
/// let inf = f64::INFINITY;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// assert_eq!(num.classify(), FpCategory::Normal);
|
|
|
|
/// assert_eq!(inf.classify(), FpCategory::Infinite);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn classify(self) -> FpCategory { num::Float::classify(self) }
|
|
|
|
|
|
|
|
/// Returns the largest integer less than or equal to a number.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let f = 3.99_f64;
|
|
|
|
/// let g = 3.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// assert_eq!(f.floor(), 3.0);
|
|
|
|
/// assert_eq!(g.floor(), 3.0);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn floor(self) -> f64 {
|
|
|
|
unsafe { intrinsics::floorf64(self) }
|
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
|
|
|
/// Returns the smallest integer greater than or equal to a number.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let f = 3.01_f64;
|
|
|
|
/// let g = 4.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// assert_eq!(f.ceil(), 4.0);
|
|
|
|
/// assert_eq!(g.ceil(), 4.0);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn ceil(self) -> f64 {
|
|
|
|
unsafe { intrinsics::ceilf64(self) }
|
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
|
|
|
/// Returns the nearest integer to a number. Round half-way cases away from
|
|
|
|
/// `0.0`.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let f = 3.3_f64;
|
|
|
|
/// let g = -3.3_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// assert_eq!(f.round(), 3.0);
|
|
|
|
/// assert_eq!(g.round(), -3.0);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn round(self) -> f64 {
|
|
|
|
unsafe { intrinsics::roundf64(self) }
|
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
2015-04-13 14:21:32 +00:00
|
|
|
/// Returns the integer part of a number.
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let f = 3.3_f64;
|
|
|
|
/// let g = -3.7_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// assert_eq!(f.trunc(), 3.0);
|
|
|
|
/// assert_eq!(g.trunc(), -3.0);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn trunc(self) -> f64 {
|
|
|
|
unsafe { intrinsics::truncf64(self) }
|
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
|
|
|
/// Returns the fractional part of a number.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 3.5_f64;
|
|
|
|
/// let y = -3.5_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
/// let abs_difference_x = (x.fract() - 0.5).abs();
|
|
|
|
/// let abs_difference_y = (y.fract() - (-0.5)).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference_x < 1e-10);
|
|
|
|
/// assert!(abs_difference_y < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn fract(self) -> f64 { self - self.trunc() }
|
2015-03-14 00:13:35 +00:00
|
|
|
|
2015-03-20 06:42:18 +00:00
|
|
|
/// Computes the absolute value of `self`. Returns `NAN` if the
|
|
|
|
/// number is `NAN`.
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 3.5_f64;
|
|
|
|
/// let y = -3.5_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// let abs_difference_x = (x.abs() - x).abs();
|
|
|
|
/// let abs_difference_y = (y.abs() - (-y)).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference_x < 1e-10);
|
|
|
|
/// assert!(abs_difference_y < 1e-10);
|
|
|
|
///
|
|
|
|
/// assert!(f64::NAN.abs().is_nan());
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn abs(self) -> f64 { num::Float::abs(self) }
|
|
|
|
|
|
|
|
/// Returns a number that represents the sign of `self`.
|
|
|
|
///
|
2015-03-20 06:42:18 +00:00
|
|
|
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
|
|
|
|
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
|
|
|
|
/// - `NAN` if the number is `NAN`
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let f = 3.5_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// assert_eq!(f.signum(), 1.0);
|
|
|
|
/// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
|
|
|
|
///
|
|
|
|
/// assert!(f64::NAN.signum().is_nan());
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn signum(self) -> f64 { num::Float::signum(self) }
|
|
|
|
|
2017-06-04 18:44:57 +00:00
|
|
|
/// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaN`s with
|
|
|
|
/// positive sign bit and positive infinity.
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let f = 7.0_f64;
|
|
|
|
/// let g = -7.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
2015-03-20 06:42:18 +00:00
|
|
|
/// assert!(f.is_sign_positive());
|
|
|
|
/// assert!(!g.is_sign_positive());
|
2015-03-14 00:13:35 +00:00
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-12-03 01:31:49 +00:00
|
|
|
pub fn is_sign_positive(self) -> bool { num::Float::is_sign_positive(self) }
|
2015-03-20 06:42:18 +00:00
|
|
|
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-11-20 13:11:20 +00:00
|
|
|
#[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_positive")]
|
2015-03-20 06:42:18 +00:00
|
|
|
#[inline]
|
2015-12-03 01:31:49 +00:00
|
|
|
pub fn is_positive(self) -> bool { num::Float::is_sign_positive(self) }
|
2015-03-14 00:13:35 +00:00
|
|
|
|
2017-06-04 18:44:57 +00:00
|
|
|
/// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaN`s with
|
|
|
|
/// negative sign bit and negative infinity.
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let f = 7.0_f64;
|
|
|
|
/// let g = -7.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
2015-03-20 06:42:18 +00:00
|
|
|
/// assert!(!f.is_sign_negative());
|
|
|
|
/// assert!(g.is_sign_negative());
|
2015-03-14 00:13:35 +00:00
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-12-03 01:31:49 +00:00
|
|
|
pub fn is_sign_negative(self) -> bool { num::Float::is_sign_negative(self) }
|
2015-03-20 06:42:18 +00:00
|
|
|
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-11-20 13:11:20 +00:00
|
|
|
#[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_negative")]
|
2015-03-20 06:42:18 +00:00
|
|
|
#[inline]
|
2015-12-03 01:31:49 +00:00
|
|
|
pub fn is_negative(self) -> bool { num::Float::is_sign_negative(self) }
|
2015-03-14 00:13:35 +00:00
|
|
|
|
|
|
|
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
|
|
|
|
/// error. This produces a more accurate result with better performance than
|
|
|
|
/// a separate multiplication operation followed by an add.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let m = 10.0_f64;
|
|
|
|
/// let x = 4.0_f64;
|
|
|
|
/// let b = 60.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// // 100.0
|
|
|
|
/// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn mul_add(self, a: f64, b: f64) -> f64 {
|
|
|
|
unsafe { intrinsics::fmaf64(self, a, b) }
|
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
2015-04-13 14:21:32 +00:00
|
|
|
/// Takes the reciprocal (inverse) of a number, `1/x`.
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 2.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
/// let abs_difference = (x.recip() - (1.0/x)).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn recip(self) -> f64 { num::Float::recip(self) }
|
|
|
|
|
2015-04-13 14:21:32 +00:00
|
|
|
/// Raises a number to an integer power.
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// Using this function is generally faster than using `powf`
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 2.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
/// let abs_difference = (x.powi(2) - x*x).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn powi(self, n: i32) -> f64 { num::Float::powi(self, n) }
|
|
|
|
|
2015-04-13 14:21:32 +00:00
|
|
|
/// Raises a number to a floating point power.
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 2.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
/// let abs_difference = (x.powf(2.0) - x*x).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn powf(self, n: f64) -> f64 {
|
|
|
|
unsafe { intrinsics::powf64(self, n) }
|
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
2015-04-13 14:21:32 +00:00
|
|
|
/// Takes the square root of a number.
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// Returns NaN if `self` is a negative number.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let positive = 4.0_f64;
|
|
|
|
/// let negative = -4.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// let abs_difference = (positive.sqrt() - 2.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// assert!(negative.sqrt().is_nan());
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn sqrt(self) -> f64 {
|
2015-08-23 00:06:25 +00:00
|
|
|
if self < 0.0 {
|
|
|
|
NAN
|
|
|
|
} else {
|
|
|
|
unsafe { intrinsics::sqrtf64(self) }
|
|
|
|
}
|
2015-08-16 07:42:53 +00:00
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
|
|
|
/// Returns `e^(self)`, (the exponential function).
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let one = 1.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
/// // e^1
|
|
|
|
/// let e = one.exp();
|
|
|
|
///
|
|
|
|
/// // ln(e) - 1 == 0
|
|
|
|
/// let abs_difference = (e.ln() - 1.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn exp(self) -> f64 {
|
|
|
|
unsafe { intrinsics::expf64(self) }
|
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
|
|
|
/// Returns `2^(self)`.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let f = 2.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// // 2^2 - 4 == 0
|
|
|
|
/// let abs_difference = (f.exp2() - 4.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn exp2(self) -> f64 {
|
|
|
|
unsafe { intrinsics::exp2f64(self) }
|
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
|
|
|
/// Returns the natural logarithm of the number.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let one = 1.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
/// // e^1
|
|
|
|
/// let e = one.exp();
|
|
|
|
///
|
|
|
|
/// // ln(e) - 1 == 0
|
|
|
|
/// let abs_difference = (e.ln() - 1.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn ln(self) -> f64 {
|
2016-01-27 02:46:28 +00:00
|
|
|
self.log_wrapper(|n| { unsafe { intrinsics::logf64(n) } })
|
2015-08-16 07:42:53 +00:00
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
2018-01-09 11:26:00 +00:00
|
|
|
/// Returns the logarithm of the number with respect to an arbitrary base.
|
2018-01-08 18:22:37 +00:00
|
|
|
///
|
2018-01-09 11:26:00 +00:00
|
|
|
/// The result may not be correctly rounded owing to implementation details;
|
2018-01-08 18:22:37 +00:00
|
|
|
/// `self.log2()` can produce more accurate results for base 2, and
|
|
|
|
/// `self.log10()` can produce more accurate results for base 10.
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// ```
|
2018-01-08 18:22:37 +00:00
|
|
|
/// let five = 5.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
2018-01-08 18:22:37 +00:00
|
|
|
/// // log5(5) - 1 == 0
|
|
|
|
/// let abs_difference = (five.log(5.0) - 1.0).abs();
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
2018-01-08 18:22:37 +00:00
|
|
|
/// assert!(abs_difference < 1e-10);
|
2015-03-14 00:13:35 +00:00
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn log(self, base: f64) -> f64 { self.ln() / base.ln() }
|
2015-03-14 00:13:35 +00:00
|
|
|
|
|
|
|
/// Returns the base 2 logarithm of the number.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let two = 2.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// // log2(2) - 1 == 0
|
|
|
|
/// let abs_difference = (two.log2() - 1.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn log2(self) -> f64 {
|
2016-04-25 20:39:05 +00:00
|
|
|
self.log_wrapper(|n| {
|
|
|
|
#[cfg(target_os = "android")]
|
|
|
|
return ::sys::android::log2f64(n);
|
|
|
|
#[cfg(not(target_os = "android"))]
|
|
|
|
return unsafe { intrinsics::log2f64(n) };
|
|
|
|
})
|
2015-08-16 07:42:53 +00:00
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
|
|
|
/// Returns the base 10 logarithm of the number.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let ten = 10.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// // log10(10) - 1 == 0
|
|
|
|
/// let abs_difference = (ten.log10() - 1.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
2015-08-16 07:42:53 +00:00
|
|
|
pub fn log10(self) -> f64 {
|
2016-01-27 02:46:28 +00:00
|
|
|
self.log_wrapper(|n| { unsafe { intrinsics::log10f64(n) } })
|
2015-08-16 07:42:53 +00:00
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
2015-04-13 14:21:32 +00:00
|
|
|
/// Converts radians to degrees.
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64::consts;
|
|
|
|
///
|
|
|
|
/// let angle = consts::PI;
|
|
|
|
///
|
|
|
|
/// let abs_difference = (angle.to_degrees() - 180.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn to_degrees(self) -> f64 { num::Float::to_degrees(self) }
|
|
|
|
|
2015-04-13 14:21:32 +00:00
|
|
|
/// Converts degrees to radians.
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64::consts;
|
|
|
|
///
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let angle = 180.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// let abs_difference = (angle.to_radians() - consts::PI).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn to_radians(self) -> f64 { num::Float::to_radians(self) }
|
|
|
|
|
|
|
|
/// Returns the maximum of the two numbers.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 1.0_f64;
|
|
|
|
/// let y = 2.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// assert_eq!(x.max(y), y);
|
|
|
|
/// ```
|
2015-06-01 21:59:30 +00:00
|
|
|
///
|
|
|
|
/// If one of the arguments is NaN, then the other argument is returned.
|
2015-03-14 00:13:35 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn max(self, other: f64) -> f64 {
|
2017-06-04 18:39:00 +00:00
|
|
|
num::Float::max(self, other)
|
2015-03-14 00:13:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns the minimum of the two numbers.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 1.0_f64;
|
|
|
|
/// let y = 2.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// assert_eq!(x.min(y), x);
|
|
|
|
/// ```
|
2015-06-01 21:59:30 +00:00
|
|
|
///
|
|
|
|
/// If one of the arguments is NaN, then the other argument is returned.
|
2015-03-14 00:13:35 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn min(self, other: f64) -> f64 {
|
2017-06-04 18:39:00 +00:00
|
|
|
num::Float::min(self, other)
|
2015-03-14 00:13:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// The positive difference of two numbers.
|
|
|
|
///
|
|
|
|
/// * If `self <= other`: `0:0`
|
|
|
|
/// * Else: `self - other`
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 3.0_f64;
|
|
|
|
/// let y = -3.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
|
|
|
|
/// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference_x < 1e-10);
|
|
|
|
/// assert!(abs_difference_y < 1e-10);
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
2016-05-16 04:26:49 +00:00
|
|
|
#[rustc_deprecated(since = "1.10.0",
|
|
|
|
reason = "you probably meant `(self - other).abs()`: \
|
|
|
|
this operation is `(self - other).max(0.0)` (also \
|
|
|
|
known as `fdim` in C). If you truly need the positive \
|
|
|
|
difference, consider using that expression or the C function \
|
|
|
|
`fdim`, depending on how you wish to handle NaN (please consider \
|
|
|
|
filing an issue describing your use-case too).")]
|
|
|
|
pub fn abs_sub(self, other: f64) -> f64 {
|
|
|
|
unsafe { cmath::fdim(self, other) }
|
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
|
2015-04-13 14:21:32 +00:00
|
|
|
/// Takes the cubic root of a number.
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 8.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// // x^(1/3) - 2 == 0
|
|
|
|
/// let abs_difference = (x.cbrt() - 2.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn cbrt(self) -> f64 {
|
|
|
|
unsafe { cmath::cbrt(self) }
|
|
|
|
}
|
|
|
|
|
2015-04-13 14:21:32 +00:00
|
|
|
/// Calculates the length of the hypotenuse of a right-angle triangle given
|
2015-03-14 00:13:35 +00:00
|
|
|
/// legs of length `x` and `y`.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 2.0_f64;
|
|
|
|
/// let y = 3.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// // sqrt(x^2 + y^2)
|
|
|
|
/// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn hypot(self, other: f64) -> f64 {
|
|
|
|
unsafe { cmath::hypot(self, other) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the sine of a number (in radians).
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let x = f64::consts::PI/2.0;
|
|
|
|
///
|
|
|
|
/// let abs_difference = (x.sin() - 1.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn sin(self) -> f64 {
|
|
|
|
unsafe { intrinsics::sinf64(self) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the cosine of a number (in radians).
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let x = 2.0*f64::consts::PI;
|
|
|
|
///
|
|
|
|
/// let abs_difference = (x.cos() - 1.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn cos(self) -> f64 {
|
|
|
|
unsafe { intrinsics::cosf64(self) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the tangent of a number (in radians).
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let x = f64::consts::PI/4.0;
|
|
|
|
/// let abs_difference = (x.tan() - 1.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-14);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn tan(self) -> f64 {
|
|
|
|
unsafe { cmath::tan(self) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the arcsine of a number. Return value is in radians in
|
|
|
|
/// the range [-pi/2, pi/2] or NaN if the number is outside the range
|
|
|
|
/// [-1, 1].
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let f = f64::consts::PI / 2.0;
|
|
|
|
///
|
|
|
|
/// // asin(sin(pi/2))
|
|
|
|
/// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn asin(self) -> f64 {
|
|
|
|
unsafe { cmath::asin(self) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the arccosine of a number. Return value is in radians in
|
|
|
|
/// the range [0, pi] or NaN if the number is outside the range
|
|
|
|
/// [-1, 1].
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let f = f64::consts::PI / 4.0;
|
|
|
|
///
|
|
|
|
/// // acos(cos(pi/4))
|
|
|
|
/// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn acos(self) -> f64 {
|
|
|
|
unsafe { cmath::acos(self) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the arctangent of a number. Return value is in radians in the
|
|
|
|
/// range [-pi/2, pi/2];
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let f = 1.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// // atan(tan(1))
|
|
|
|
/// let abs_difference = (f.tan().atan() - 1.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn atan(self) -> f64 {
|
|
|
|
unsafe { cmath::atan(self) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
|
|
|
|
///
|
|
|
|
/// * `x = 0`, `y = 0`: `0`
|
|
|
|
/// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
|
|
|
|
/// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
|
|
|
|
/// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let pi = f64::consts::PI;
|
|
|
|
/// // All angles from horizontal right (+x)
|
|
|
|
/// // 45 deg counter-clockwise
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x1 = 3.0_f64;
|
|
|
|
/// let y1 = -3.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// // 135 deg clockwise
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x2 = -3.0_f64;
|
|
|
|
/// let y2 = 3.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
|
|
|
|
/// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference_1 < 1e-10);
|
|
|
|
/// assert!(abs_difference_2 < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn atan2(self, other: f64) -> f64 {
|
|
|
|
unsafe { cmath::atan2(self, other) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Simultaneously computes the sine and cosine of the number, `x`. Returns
|
|
|
|
/// `(sin(x), cos(x))`.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let x = f64::consts::PI/4.0;
|
|
|
|
/// let f = x.sin_cos();
|
|
|
|
///
|
|
|
|
/// let abs_difference_0 = (f.0 - x.sin()).abs();
|
|
|
|
/// let abs_difference_1 = (f.1 - x.cos()).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference_0 < 1e-10);
|
2016-04-16 06:42:37 +00:00
|
|
|
/// assert!(abs_difference_1 < 1e-10);
|
2015-03-14 00:13:35 +00:00
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn sin_cos(self) -> (f64, f64) {
|
|
|
|
(self.sin(), self.cos())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns `e^(self) - 1` in a way that is accurate even if the
|
|
|
|
/// number is close to zero.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 7.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// // e^(ln(7)) - 1
|
|
|
|
/// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn exp_m1(self) -> f64 {
|
|
|
|
unsafe { cmath::expm1(self) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns `ln(1+n)` (natural logarithm) more accurately than if
|
|
|
|
/// the operations were performed separately.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let x = f64::consts::E - 1.0;
|
|
|
|
///
|
|
|
|
/// // ln(1 + (e - 1)) == ln(e) == 1
|
|
|
|
/// let abs_difference = (x.ln_1p() - 1.0).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
2015-03-14 00:13:35 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn ln_1p(self) -> f64 {
|
|
|
|
unsafe { cmath::log1p(self) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Hyperbolic sine function.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let e = f64::consts::E;
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 1.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// let f = x.sinh();
|
|
|
|
/// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
|
|
|
|
/// let g = (e*e - 1.0)/(2.0*e);
|
|
|
|
/// let abs_difference = (f - g).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn sinh(self) -> f64 {
|
|
|
|
unsafe { cmath::sinh(self) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Hyperbolic cosine function.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let e = f64::consts::E;
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 1.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
/// let f = x.cosh();
|
|
|
|
/// // Solving cosh() at 1 gives this result
|
|
|
|
/// let g = (e*e + 1.0)/(2.0*e);
|
|
|
|
/// let abs_difference = (f - g).abs();
|
|
|
|
///
|
|
|
|
/// // Same result
|
|
|
|
/// assert!(abs_difference < 1.0e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn cosh(self) -> f64 {
|
|
|
|
unsafe { cmath::cosh(self) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Hyperbolic tangent function.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let e = f64::consts::E;
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 1.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
///
|
|
|
|
/// let f = x.tanh();
|
|
|
|
/// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
|
|
|
|
/// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
|
|
|
|
/// let abs_difference = (f - g).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1.0e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn tanh(self) -> f64 {
|
|
|
|
unsafe { cmath::tanh(self) }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Inverse hyperbolic sine function.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 1.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
/// let f = x.sinh().asinh();
|
|
|
|
///
|
|
|
|
/// let abs_difference = (f - x).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1.0e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn asinh(self) -> f64 {
|
2016-03-11 18:36:46 +00:00
|
|
|
if self == NEG_INFINITY {
|
|
|
|
NEG_INFINITY
|
|
|
|
} else {
|
|
|
|
(self + ((self * self) + 1.0).sqrt()).ln()
|
2015-03-14 00:13:35 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Inverse hyperbolic cosine function.
|
|
|
|
///
|
|
|
|
/// ```
|
2015-03-20 06:42:18 +00:00
|
|
|
/// let x = 1.0_f64;
|
2015-03-14 00:13:35 +00:00
|
|
|
/// let f = x.cosh().acosh();
|
|
|
|
///
|
|
|
|
/// let abs_difference = (f - x).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1.0e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn acosh(self) -> f64 {
|
|
|
|
match self {
|
2015-04-18 06:45:55 +00:00
|
|
|
x if x < 1.0 => NAN,
|
2015-03-14 00:13:35 +00:00
|
|
|
x => (x + ((x * x) - 1.0).sqrt()).ln(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Inverse hyperbolic tangent function.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
|
|
|
///
|
|
|
|
/// let e = f64::consts::E;
|
|
|
|
/// let f = e.tanh().atanh();
|
|
|
|
///
|
|
|
|
/// let abs_difference = (f - e).abs();
|
|
|
|
///
|
|
|
|
/// assert!(abs_difference < 1.0e-10);
|
|
|
|
/// ```
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
#[inline]
|
|
|
|
pub fn atanh(self) -> f64 {
|
|
|
|
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
|
|
|
|
}
|
2016-01-27 02:46:28 +00:00
|
|
|
|
2016-01-28 11:02:31 +00:00
|
|
|
// Solaris/Illumos requires a wrapper around log, log2, and log10 functions
|
2016-01-27 02:46:28 +00:00
|
|
|
// because of their non-standard behavior (e.g. log(-n) returns -Inf instead
|
|
|
|
// of expected NaN).
|
|
|
|
fn log_wrapper<F: Fn(f64) -> f64>(self, log_fn: F) -> f64 {
|
2016-01-28 11:02:31 +00:00
|
|
|
if !cfg!(target_os = "solaris") {
|
2016-01-27 02:46:28 +00:00
|
|
|
log_fn(self)
|
|
|
|
} else {
|
|
|
|
if self.is_finite() {
|
|
|
|
if self > 0.0 {
|
|
|
|
log_fn(self)
|
|
|
|
} else if self == 0.0 {
|
|
|
|
NEG_INFINITY // log(0) = -Inf
|
|
|
|
} else {
|
|
|
|
NAN // log(-n) = NaN
|
|
|
|
}
|
|
|
|
} else if self.is_nan() {
|
|
|
|
self // log(NaN) = NaN
|
|
|
|
} else if self > 0.0 {
|
|
|
|
self // log(Inf) = Inf
|
|
|
|
} else {
|
|
|
|
NAN // log(-Inf) = NaN
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2017-01-24 17:15:11 +00:00
|
|
|
|
|
|
|
/// Raw transmutation to `u64`.
|
|
|
|
///
|
Make float::from_bits transmute (and update the documentation to reflect this).
The current implementation/documentation was made to avoid sNaN because of
potential safety issues implied by old/bad LLVM documentation. These issues
aren't real, so we can just make the implementation transmute (as permitted
by the existing documentation of this method).
Also the documentation didn't actually match the behaviour: it said we may
change sNaNs, but in fact we canonicalized *all* NaNs.
Also an example in the documentation was wrong: it said we *always* change
sNaNs, when the documentation was explicitly written to indicate it was
implementation-defined.
This makes to_bits and from_bits perfectly roundtrip cross-platform, except
for one caveat: although the 2008 edition of IEEE-754 specifies how to
interpet the signaling bit, earlier editions didn't. This lead to some platforms
picking the opposite interpretation, so all signaling NaNs on x86/ARM are quiet
on MIPS, and vice-versa.
NaN-boxing is a fairly important optimization, while we don't even guarantee
that float operations properly preserve signalingness. As such, this seems like
the more natural strategy to take (as opposed to trying to mangle the signaling
bit on a per-platform basis).
This implementation is also, of course, faster.
2017-11-15 20:05:47 +00:00
|
|
|
/// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
|
2017-01-24 17:15:11 +00:00
|
|
|
///
|
Make float::from_bits transmute (and update the documentation to reflect this).
The current implementation/documentation was made to avoid sNaN because of
potential safety issues implied by old/bad LLVM documentation. These issues
aren't real, so we can just make the implementation transmute (as permitted
by the existing documentation of this method).
Also the documentation didn't actually match the behaviour: it said we may
change sNaNs, but in fact we canonicalized *all* NaNs.
Also an example in the documentation was wrong: it said we *always* change
sNaNs, when the documentation was explicitly written to indicate it was
implementation-defined.
This makes to_bits and from_bits perfectly roundtrip cross-platform, except
for one caveat: although the 2008 edition of IEEE-754 specifies how to
interpet the signaling bit, earlier editions didn't. This lead to some platforms
picking the opposite interpretation, so all signaling NaNs on x86/ARM are quiet
on MIPS, and vice-versa.
NaN-boxing is a fairly important optimization, while we don't even guarantee
that float operations properly preserve signalingness. As such, this seems like
the more natural strategy to take (as opposed to trying to mangle the signaling
bit on a per-platform basis).
This implementation is also, of course, faster.
2017-11-15 20:05:47 +00:00
|
|
|
/// See `from_bits` for some discussion of the portability of this operation
|
|
|
|
/// (there are almost no issues).
|
|
|
|
///
|
|
|
|
/// Note that this function is distinct from `as` casting, which attempts to
|
|
|
|
/// preserve the *numeric* value, and not the bitwise value.
|
2017-01-24 17:15:11 +00:00
|
|
|
///
|
2017-01-24 20:28:12 +00:00
|
|
|
/// # Examples
|
|
|
|
///
|
2017-01-24 17:15:11 +00:00
|
|
|
/// ```
|
|
|
|
/// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
|
|
|
|
/// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
|
|
|
|
///
|
|
|
|
/// ```
|
2017-07-18 03:16:46 +00:00
|
|
|
#[stable(feature = "float_bits_conv", since = "1.20.0")]
|
2017-01-24 17:15:11 +00:00
|
|
|
#[inline]
|
|
|
|
pub fn to_bits(self) -> u64 {
|
2017-12-22 01:23:47 +00:00
|
|
|
num::Float::to_bits(self)
|
2017-01-24 17:15:11 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Raw transmutation from `u64`.
|
|
|
|
///
|
Make float::from_bits transmute (and update the documentation to reflect this).
The current implementation/documentation was made to avoid sNaN because of
potential safety issues implied by old/bad LLVM documentation. These issues
aren't real, so we can just make the implementation transmute (as permitted
by the existing documentation of this method).
Also the documentation didn't actually match the behaviour: it said we may
change sNaNs, but in fact we canonicalized *all* NaNs.
Also an example in the documentation was wrong: it said we *always* change
sNaNs, when the documentation was explicitly written to indicate it was
implementation-defined.
This makes to_bits and from_bits perfectly roundtrip cross-platform, except
for one caveat: although the 2008 edition of IEEE-754 specifies how to
interpet the signaling bit, earlier editions didn't. This lead to some platforms
picking the opposite interpretation, so all signaling NaNs on x86/ARM are quiet
on MIPS, and vice-versa.
NaN-boxing is a fairly important optimization, while we don't even guarantee
that float operations properly preserve signalingness. As such, this seems like
the more natural strategy to take (as opposed to trying to mangle the signaling
bit on a per-platform basis).
This implementation is also, of course, faster.
2017-11-15 20:05:47 +00:00
|
|
|
/// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
|
|
|
|
/// It turns out this is incredibly portable, for two reasons:
|
|
|
|
///
|
|
|
|
/// * Floats and Ints have the same endianess on all supported platforms.
|
|
|
|
/// * IEEE-754 very precisely specifies the bit layout of floats.
|
|
|
|
///
|
|
|
|
/// However there is one caveat: prior to the 2008 version of IEEE-754, how
|
|
|
|
/// to interpret the NaN signaling bit wasn't actually specified. Most platforms
|
|
|
|
/// (notably x86 and ARM) picked the interpretation that was ultimately
|
|
|
|
/// standardized in 2008, but some didn't (notably MIPS). As a result, all
|
|
|
|
/// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
|
|
|
|
///
|
|
|
|
/// Rather than trying to preserve signaling-ness cross-platform, this
|
|
|
|
/// implementation favours preserving the exact bits. This means that
|
|
|
|
/// any payloads encoded in NaNs will be preserved even if the result of
|
|
|
|
/// this method is sent over the network from an x86 machine to a MIPS one.
|
|
|
|
///
|
|
|
|
/// If the results of this method are only manipulated by the same
|
|
|
|
/// architecture that produced them, then there is no portability concern.
|
2017-01-24 17:15:11 +00:00
|
|
|
///
|
Make float::from_bits transmute (and update the documentation to reflect this).
The current implementation/documentation was made to avoid sNaN because of
potential safety issues implied by old/bad LLVM documentation. These issues
aren't real, so we can just make the implementation transmute (as permitted
by the existing documentation of this method).
Also the documentation didn't actually match the behaviour: it said we may
change sNaNs, but in fact we canonicalized *all* NaNs.
Also an example in the documentation was wrong: it said we *always* change
sNaNs, when the documentation was explicitly written to indicate it was
implementation-defined.
This makes to_bits and from_bits perfectly roundtrip cross-platform, except
for one caveat: although the 2008 edition of IEEE-754 specifies how to
interpet the signaling bit, earlier editions didn't. This lead to some platforms
picking the opposite interpretation, so all signaling NaNs on x86/ARM are quiet
on MIPS, and vice-versa.
NaN-boxing is a fairly important optimization, while we don't even guarantee
that float operations properly preserve signalingness. As such, this seems like
the more natural strategy to take (as opposed to trying to mangle the signaling
bit on a per-platform basis).
This implementation is also, of course, faster.
2017-11-15 20:05:47 +00:00
|
|
|
/// If the input isn't NaN, then there is no portability concern.
|
2017-01-24 17:15:11 +00:00
|
|
|
///
|
Make float::from_bits transmute (and update the documentation to reflect this).
The current implementation/documentation was made to avoid sNaN because of
potential safety issues implied by old/bad LLVM documentation. These issues
aren't real, so we can just make the implementation transmute (as permitted
by the existing documentation of this method).
Also the documentation didn't actually match the behaviour: it said we may
change sNaNs, but in fact we canonicalized *all* NaNs.
Also an example in the documentation was wrong: it said we *always* change
sNaNs, when the documentation was explicitly written to indicate it was
implementation-defined.
This makes to_bits and from_bits perfectly roundtrip cross-platform, except
for one caveat: although the 2008 edition of IEEE-754 specifies how to
interpet the signaling bit, earlier editions didn't. This lead to some platforms
picking the opposite interpretation, so all signaling NaNs on x86/ARM are quiet
on MIPS, and vice-versa.
NaN-boxing is a fairly important optimization, while we don't even guarantee
that float operations properly preserve signalingness. As such, this seems like
the more natural strategy to take (as opposed to trying to mangle the signaling
bit on a per-platform basis).
This implementation is also, of course, faster.
2017-11-15 20:05:47 +00:00
|
|
|
/// If you don't care about signalingness (very likely), then there is no
|
|
|
|
/// portability concern.
|
|
|
|
///
|
|
|
|
/// Note that this function is distinct from `as` casting, which attempts to
|
|
|
|
/// preserve the *numeric* value, and not the bitwise value.
|
2017-01-24 19:49:33 +00:00
|
|
|
///
|
2017-01-24 20:28:12 +00:00
|
|
|
/// # Examples
|
|
|
|
///
|
2017-01-24 17:15:11 +00:00
|
|
|
/// ```
|
|
|
|
/// use std::f64;
|
2017-03-29 00:39:59 +00:00
|
|
|
/// let v = f64::from_bits(0x4029000000000000);
|
2017-01-24 19:49:33 +00:00
|
|
|
/// let difference = (v - 12.5).abs();
|
2017-01-24 17:15:11 +00:00
|
|
|
/// assert!(difference <= 1e-5);
|
|
|
|
/// ```
|
2017-07-18 03:16:46 +00:00
|
|
|
#[stable(feature = "float_bits_conv", since = "1.20.0")]
|
2017-01-24 17:15:11 +00:00
|
|
|
#[inline]
|
Make float::from_bits transmute (and update the documentation to reflect this).
The current implementation/documentation was made to avoid sNaN because of
potential safety issues implied by old/bad LLVM documentation. These issues
aren't real, so we can just make the implementation transmute (as permitted
by the existing documentation of this method).
Also the documentation didn't actually match the behaviour: it said we may
change sNaNs, but in fact we canonicalized *all* NaNs.
Also an example in the documentation was wrong: it said we *always* change
sNaNs, when the documentation was explicitly written to indicate it was
implementation-defined.
This makes to_bits and from_bits perfectly roundtrip cross-platform, except
for one caveat: although the 2008 edition of IEEE-754 specifies how to
interpet the signaling bit, earlier editions didn't. This lead to some platforms
picking the opposite interpretation, so all signaling NaNs on x86/ARM are quiet
on MIPS, and vice-versa.
NaN-boxing is a fairly important optimization, while we don't even guarantee
that float operations properly preserve signalingness. As such, this seems like
the more natural strategy to take (as opposed to trying to mangle the signaling
bit on a per-platform basis).
This implementation is also, of course, faster.
2017-11-15 20:05:47 +00:00
|
|
|
pub fn from_bits(v: u64) -> Self {
|
2017-12-22 01:23:47 +00:00
|
|
|
num::Float::from_bits(v)
|
2017-01-24 17:15:11 +00:00
|
|
|
}
|
2015-03-14 00:13:35 +00:00
|
|
|
}
|
|
|
|
|
2013-04-23 07:59:49 +00:00
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
2015-04-18 06:45:55 +00:00
|
|
|
use f64;
|
2013-04-23 07:59:49 +00:00
|
|
|
use f64::*;
|
2013-05-25 02:35:29 +00:00
|
|
|
use num::*;
|
2014-12-22 21:50:57 +00:00
|
|
|
use num::FpCategory as Fp;
|
2013-05-25 02:35:29 +00:00
|
|
|
|
2015-02-14 23:14:52 +00:00
|
|
|
#[test]
|
|
|
|
fn test_num_f64() {
|
|
|
|
test_num(10f64, 2f64);
|
|
|
|
}
|
|
|
|
|
2014-03-05 22:18:56 +00:00
|
|
|
#[test]
|
|
|
|
fn test_min_nan() {
|
|
|
|
assert_eq!(NAN.min(2.0), 2.0);
|
|
|
|
assert_eq!(2.0f64.min(NAN), 2.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_max_nan() {
|
|
|
|
assert_eq!(NAN.max(2.0), 2.0);
|
|
|
|
assert_eq!(2.0f64.max(NAN), 2.0);
|
|
|
|
}
|
|
|
|
|
2015-02-14 23:18:41 +00:00
|
|
|
#[test]
|
|
|
|
fn test_nan() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert!(nan.is_nan());
|
|
|
|
assert!(!nan.is_infinite());
|
|
|
|
assert!(!nan.is_finite());
|
|
|
|
assert!(!nan.is_normal());
|
2017-06-04 18:44:57 +00:00
|
|
|
assert!(nan.is_sign_positive());
|
2015-03-20 06:42:18 +00:00
|
|
|
assert!(!nan.is_sign_negative());
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_eq!(Fp::Nan, nan.classify());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_infinity() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let inf: f64 = INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert!(inf.is_infinite());
|
|
|
|
assert!(!inf.is_finite());
|
2015-03-20 06:42:18 +00:00
|
|
|
assert!(inf.is_sign_positive());
|
|
|
|
assert!(!inf.is_sign_negative());
|
2015-02-14 23:18:41 +00:00
|
|
|
assert!(!inf.is_nan());
|
|
|
|
assert!(!inf.is_normal());
|
|
|
|
assert_eq!(Fp::Infinite, inf.classify());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_neg_infinity() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert!(neg_inf.is_infinite());
|
|
|
|
assert!(!neg_inf.is_finite());
|
2015-03-20 06:42:18 +00:00
|
|
|
assert!(!neg_inf.is_sign_positive());
|
|
|
|
assert!(neg_inf.is_sign_negative());
|
2015-02-14 23:18:41 +00:00
|
|
|
assert!(!neg_inf.is_nan());
|
|
|
|
assert!(!neg_inf.is_normal());
|
|
|
|
assert_eq!(Fp::Infinite, neg_inf.classify());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_zero() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let zero: f64 = 0.0f64;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_eq!(0.0, zero);
|
|
|
|
assert!(!zero.is_infinite());
|
|
|
|
assert!(zero.is_finite());
|
2015-03-20 06:42:18 +00:00
|
|
|
assert!(zero.is_sign_positive());
|
|
|
|
assert!(!zero.is_sign_negative());
|
2015-02-14 23:18:41 +00:00
|
|
|
assert!(!zero.is_nan());
|
|
|
|
assert!(!zero.is_normal());
|
|
|
|
assert_eq!(Fp::Zero, zero.classify());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_neg_zero() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let neg_zero: f64 = -0.0;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_eq!(0.0, neg_zero);
|
|
|
|
assert!(!neg_zero.is_infinite());
|
|
|
|
assert!(neg_zero.is_finite());
|
2015-03-20 06:42:18 +00:00
|
|
|
assert!(!neg_zero.is_sign_positive());
|
|
|
|
assert!(neg_zero.is_sign_negative());
|
2015-02-14 23:18:41 +00:00
|
|
|
assert!(!neg_zero.is_nan());
|
|
|
|
assert!(!neg_zero.is_normal());
|
|
|
|
assert_eq!(Fp::Zero, neg_zero.classify());
|
|
|
|
}
|
|
|
|
|
2017-06-13 13:46:54 +00:00
|
|
|
#[cfg_attr(all(target_arch = "wasm32", target_os = "emscripten"), ignore)] // issue 42630
|
2015-02-14 23:18:41 +00:00
|
|
|
#[test]
|
|
|
|
fn test_one() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let one: f64 = 1.0f64;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_eq!(1.0, one);
|
|
|
|
assert!(!one.is_infinite());
|
|
|
|
assert!(one.is_finite());
|
2015-03-20 06:42:18 +00:00
|
|
|
assert!(one.is_sign_positive());
|
|
|
|
assert!(!one.is_sign_negative());
|
2015-02-14 23:18:41 +00:00
|
|
|
assert!(!one.is_nan());
|
|
|
|
assert!(one.is_normal());
|
|
|
|
assert_eq!(Fp::Normal, one.classify());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_is_nan() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert!(nan.is_nan());
|
|
|
|
assert!(!0.0f64.is_nan());
|
|
|
|
assert!(!5.3f64.is_nan());
|
|
|
|
assert!(!(-10.732f64).is_nan());
|
|
|
|
assert!(!inf.is_nan());
|
|
|
|
assert!(!neg_inf.is_nan());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_is_infinite() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert!(!nan.is_infinite());
|
|
|
|
assert!(inf.is_infinite());
|
|
|
|
assert!(neg_inf.is_infinite());
|
|
|
|
assert!(!0.0f64.is_infinite());
|
|
|
|
assert!(!42.8f64.is_infinite());
|
|
|
|
assert!(!(-109.2f64).is_infinite());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_is_finite() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert!(!nan.is_finite());
|
|
|
|
assert!(!inf.is_finite());
|
|
|
|
assert!(!neg_inf.is_finite());
|
|
|
|
assert!(0.0f64.is_finite());
|
|
|
|
assert!(42.8f64.is_finite());
|
|
|
|
assert!((-109.2f64).is_finite());
|
|
|
|
}
|
|
|
|
|
2017-06-13 13:46:54 +00:00
|
|
|
#[cfg_attr(all(target_arch = "wasm32", target_os = "emscripten"), ignore)] // issue 42630
|
2013-04-24 10:08:08 +00:00
|
|
|
#[test]
|
2015-02-14 23:14:52 +00:00
|
|
|
fn test_is_normal() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
|
|
|
let zero: f64 = 0.0f64;
|
|
|
|
let neg_zero: f64 = -0.0;
|
2015-02-14 23:14:52 +00:00
|
|
|
assert!(!nan.is_normal());
|
|
|
|
assert!(!inf.is_normal());
|
|
|
|
assert!(!neg_inf.is_normal());
|
|
|
|
assert!(!zero.is_normal());
|
|
|
|
assert!(!neg_zero.is_normal());
|
|
|
|
assert!(1f64.is_normal());
|
|
|
|
assert!(1e-307f64.is_normal());
|
|
|
|
assert!(!1e-308f64.is_normal());
|
|
|
|
}
|
|
|
|
|
2017-06-13 13:46:54 +00:00
|
|
|
#[cfg_attr(all(target_arch = "wasm32", target_os = "emscripten"), ignore)] // issue 42630
|
2015-02-14 23:14:52 +00:00
|
|
|
#[test]
|
|
|
|
fn test_classify() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
|
|
|
let zero: f64 = 0.0f64;
|
|
|
|
let neg_zero: f64 = -0.0;
|
2015-02-14 23:14:52 +00:00
|
|
|
assert_eq!(nan.classify(), Fp::Nan);
|
|
|
|
assert_eq!(inf.classify(), Fp::Infinite);
|
|
|
|
assert_eq!(neg_inf.classify(), Fp::Infinite);
|
|
|
|
assert_eq!(zero.classify(), Fp::Zero);
|
|
|
|
assert_eq!(neg_zero.classify(), Fp::Zero);
|
|
|
|
assert_eq!(1e-307f64.classify(), Fp::Normal);
|
|
|
|
assert_eq!(1e-308f64.classify(), Fp::Subnormal);
|
|
|
|
}
|
|
|
|
|
2013-04-25 01:53:04 +00:00
|
|
|
#[test]
|
|
|
|
fn test_floor() {
|
2013-05-06 11:51:48 +00:00
|
|
|
assert_approx_eq!(1.0f64.floor(), 1.0f64);
|
|
|
|
assert_approx_eq!(1.3f64.floor(), 1.0f64);
|
|
|
|
assert_approx_eq!(1.5f64.floor(), 1.0f64);
|
|
|
|
assert_approx_eq!(1.7f64.floor(), 1.0f64);
|
|
|
|
assert_approx_eq!(0.0f64.floor(), 0.0f64);
|
|
|
|
assert_approx_eq!((-0.0f64).floor(), -0.0f64);
|
|
|
|
assert_approx_eq!((-1.0f64).floor(), -1.0f64);
|
|
|
|
assert_approx_eq!((-1.3f64).floor(), -2.0f64);
|
|
|
|
assert_approx_eq!((-1.5f64).floor(), -2.0f64);
|
|
|
|
assert_approx_eq!((-1.7f64).floor(), -2.0f64);
|
2013-04-25 01:53:04 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_ceil() {
|
2013-05-06 11:51:48 +00:00
|
|
|
assert_approx_eq!(1.0f64.ceil(), 1.0f64);
|
|
|
|
assert_approx_eq!(1.3f64.ceil(), 2.0f64);
|
|
|
|
assert_approx_eq!(1.5f64.ceil(), 2.0f64);
|
|
|
|
assert_approx_eq!(1.7f64.ceil(), 2.0f64);
|
|
|
|
assert_approx_eq!(0.0f64.ceil(), 0.0f64);
|
|
|
|
assert_approx_eq!((-0.0f64).ceil(), -0.0f64);
|
|
|
|
assert_approx_eq!((-1.0f64).ceil(), -1.0f64);
|
|
|
|
assert_approx_eq!((-1.3f64).ceil(), -1.0f64);
|
|
|
|
assert_approx_eq!((-1.5f64).ceil(), -1.0f64);
|
|
|
|
assert_approx_eq!((-1.7f64).ceil(), -1.0f64);
|
2013-04-25 01:53:04 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_round() {
|
2013-05-06 11:51:48 +00:00
|
|
|
assert_approx_eq!(1.0f64.round(), 1.0f64);
|
|
|
|
assert_approx_eq!(1.3f64.round(), 1.0f64);
|
|
|
|
assert_approx_eq!(1.5f64.round(), 2.0f64);
|
|
|
|
assert_approx_eq!(1.7f64.round(), 2.0f64);
|
|
|
|
assert_approx_eq!(0.0f64.round(), 0.0f64);
|
|
|
|
assert_approx_eq!((-0.0f64).round(), -0.0f64);
|
|
|
|
assert_approx_eq!((-1.0f64).round(), -1.0f64);
|
|
|
|
assert_approx_eq!((-1.3f64).round(), -1.0f64);
|
|
|
|
assert_approx_eq!((-1.5f64).round(), -2.0f64);
|
|
|
|
assert_approx_eq!((-1.7f64).round(), -2.0f64);
|
2013-04-25 01:53:04 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_trunc() {
|
2013-05-06 11:51:48 +00:00
|
|
|
assert_approx_eq!(1.0f64.trunc(), 1.0f64);
|
|
|
|
assert_approx_eq!(1.3f64.trunc(), 1.0f64);
|
|
|
|
assert_approx_eq!(1.5f64.trunc(), 1.0f64);
|
|
|
|
assert_approx_eq!(1.7f64.trunc(), 1.0f64);
|
|
|
|
assert_approx_eq!(0.0f64.trunc(), 0.0f64);
|
|
|
|
assert_approx_eq!((-0.0f64).trunc(), -0.0f64);
|
|
|
|
assert_approx_eq!((-1.0f64).trunc(), -1.0f64);
|
|
|
|
assert_approx_eq!((-1.3f64).trunc(), -1.0f64);
|
|
|
|
assert_approx_eq!((-1.5f64).trunc(), -1.0f64);
|
|
|
|
assert_approx_eq!((-1.7f64).trunc(), -1.0f64);
|
2013-04-25 01:53:04 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_fract() {
|
2013-05-06 11:51:48 +00:00
|
|
|
assert_approx_eq!(1.0f64.fract(), 0.0f64);
|
|
|
|
assert_approx_eq!(1.3f64.fract(), 0.3f64);
|
|
|
|
assert_approx_eq!(1.5f64.fract(), 0.5f64);
|
|
|
|
assert_approx_eq!(1.7f64.fract(), 0.7f64);
|
|
|
|
assert_approx_eq!(0.0f64.fract(), 0.0f64);
|
|
|
|
assert_approx_eq!((-0.0f64).fract(), -0.0f64);
|
|
|
|
assert_approx_eq!((-1.0f64).fract(), -0.0f64);
|
|
|
|
assert_approx_eq!((-1.3f64).fract(), -0.3f64);
|
|
|
|
assert_approx_eq!((-1.5f64).fract(), -0.5f64);
|
|
|
|
assert_approx_eq!((-1.7f64).fract(), -0.7f64);
|
2013-04-25 01:53:04 +00:00
|
|
|
}
|
|
|
|
|
2015-02-14 23:14:52 +00:00
|
|
|
#[test]
|
2015-03-02 23:43:29 +00:00
|
|
|
fn test_abs() {
|
2015-02-14 23:14:52 +00:00
|
|
|
assert_eq!(INFINITY.abs(), INFINITY);
|
|
|
|
assert_eq!(1f64.abs(), 1f64);
|
|
|
|
assert_eq!(0f64.abs(), 0f64);
|
|
|
|
assert_eq!((-0f64).abs(), 0f64);
|
|
|
|
assert_eq!((-1f64).abs(), 1f64);
|
|
|
|
assert_eq!(NEG_INFINITY.abs(), INFINITY);
|
|
|
|
assert_eq!((1f64/NEG_INFINITY).abs(), 0f64);
|
|
|
|
assert!(NAN.abs().is_nan());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_signum() {
|
|
|
|
assert_eq!(INFINITY.signum(), 1f64);
|
|
|
|
assert_eq!(1f64.signum(), 1f64);
|
|
|
|
assert_eq!(0f64.signum(), 1f64);
|
|
|
|
assert_eq!((-0f64).signum(), -1f64);
|
|
|
|
assert_eq!((-1f64).signum(), -1f64);
|
|
|
|
assert_eq!(NEG_INFINITY.signum(), -1f64);
|
|
|
|
assert_eq!((1f64/NEG_INFINITY).signum(), -1f64);
|
|
|
|
assert!(NAN.signum().is_nan());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
2015-03-20 06:42:18 +00:00
|
|
|
fn test_is_sign_positive() {
|
|
|
|
assert!(INFINITY.is_sign_positive());
|
|
|
|
assert!(1f64.is_sign_positive());
|
|
|
|
assert!(0f64.is_sign_positive());
|
|
|
|
assert!(!(-0f64).is_sign_positive());
|
|
|
|
assert!(!(-1f64).is_sign_positive());
|
|
|
|
assert!(!NEG_INFINITY.is_sign_positive());
|
|
|
|
assert!(!(1f64/NEG_INFINITY).is_sign_positive());
|
2017-06-04 18:44:57 +00:00
|
|
|
assert!(NAN.is_sign_positive());
|
|
|
|
assert!(!(-NAN).is_sign_positive());
|
2015-02-14 23:14:52 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
2015-03-20 06:42:18 +00:00
|
|
|
fn test_is_sign_negative() {
|
|
|
|
assert!(!INFINITY.is_sign_negative());
|
|
|
|
assert!(!1f64.is_sign_negative());
|
|
|
|
assert!(!0f64.is_sign_negative());
|
|
|
|
assert!((-0f64).is_sign_negative());
|
|
|
|
assert!((-1f64).is_sign_negative());
|
|
|
|
assert!(NEG_INFINITY.is_sign_negative());
|
|
|
|
assert!((1f64/NEG_INFINITY).is_sign_negative());
|
|
|
|
assert!(!NAN.is_sign_negative());
|
2017-06-04 18:44:57 +00:00
|
|
|
assert!((-NAN).is_sign_negative());
|
2015-02-14 23:14:52 +00:00
|
|
|
}
|
|
|
|
|
2015-02-14 23:18:41 +00:00
|
|
|
#[test]
|
|
|
|
fn test_mul_add() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_approx_eq!(12.3f64.mul_add(4.5, 6.7), 62.05);
|
|
|
|
assert_approx_eq!((-12.3f64).mul_add(-4.5, -6.7), 48.65);
|
|
|
|
assert_approx_eq!(0.0f64.mul_add(8.9, 1.2), 1.2);
|
|
|
|
assert_approx_eq!(3.4f64.mul_add(-0.0, 5.6), 5.6);
|
|
|
|
assert!(nan.mul_add(7.8, 9.0).is_nan());
|
|
|
|
assert_eq!(inf.mul_add(7.8, 9.0), inf);
|
|
|
|
assert_eq!(neg_inf.mul_add(7.8, 9.0), neg_inf);
|
|
|
|
assert_eq!(8.9f64.mul_add(inf, 3.2), inf);
|
|
|
|
assert_eq!((-3.2f64).mul_add(2.4, neg_inf), neg_inf);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_recip() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_eq!(1.0f64.recip(), 1.0);
|
|
|
|
assert_eq!(2.0f64.recip(), 0.5);
|
|
|
|
assert_eq!((-0.4f64).recip(), -2.5);
|
|
|
|
assert_eq!(0.0f64.recip(), inf);
|
|
|
|
assert!(nan.recip().is_nan());
|
|
|
|
assert_eq!(inf.recip(), 0.0);
|
|
|
|
assert_eq!(neg_inf.recip(), 0.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_powi() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_eq!(1.0f64.powi(1), 1.0);
|
|
|
|
assert_approx_eq!((-3.1f64).powi(2), 9.61);
|
|
|
|
assert_approx_eq!(5.9f64.powi(-2), 0.028727);
|
|
|
|
assert_eq!(8.3f64.powi(0), 1.0);
|
|
|
|
assert!(nan.powi(2).is_nan());
|
|
|
|
assert_eq!(inf.powi(3), inf);
|
|
|
|
assert_eq!(neg_inf.powi(2), inf);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_powf() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_eq!(1.0f64.powf(1.0), 1.0);
|
|
|
|
assert_approx_eq!(3.4f64.powf(4.5), 246.408183);
|
|
|
|
assert_approx_eq!(2.7f64.powf(-3.2), 0.041652);
|
|
|
|
assert_approx_eq!((-3.1f64).powf(2.0), 9.61);
|
|
|
|
assert_approx_eq!(5.9f64.powf(-2.0), 0.028727);
|
|
|
|
assert_eq!(8.3f64.powf(0.0), 1.0);
|
|
|
|
assert!(nan.powf(2.0).is_nan());
|
|
|
|
assert_eq!(inf.powf(2.0), inf);
|
|
|
|
assert_eq!(neg_inf.powf(3.0), neg_inf);
|
|
|
|
}
|
|
|
|
|
2015-02-14 23:14:52 +00:00
|
|
|
#[test]
|
|
|
|
fn test_sqrt_domain() {
|
|
|
|
assert!(NAN.sqrt().is_nan());
|
|
|
|
assert!(NEG_INFINITY.sqrt().is_nan());
|
|
|
|
assert!((-1.0f64).sqrt().is_nan());
|
|
|
|
assert_eq!((-0.0f64).sqrt(), -0.0);
|
|
|
|
assert_eq!(0.0f64.sqrt(), 0.0);
|
|
|
|
assert_eq!(1.0f64.sqrt(), 1.0);
|
|
|
|
assert_eq!(INFINITY.sqrt(), INFINITY);
|
|
|
|
}
|
|
|
|
|
2015-02-08 01:02:24 +00:00
|
|
|
#[test]
|
|
|
|
fn test_exp() {
|
|
|
|
assert_eq!(1.0, 0.0f64.exp());
|
|
|
|
assert_approx_eq!(2.718282, 1.0f64.exp());
|
|
|
|
assert_approx_eq!(148.413159, 5.0f64.exp());
|
|
|
|
|
2015-04-18 06:45:55 +00:00
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
|
|
|
let nan: f64 = NAN;
|
2015-02-08 01:02:24 +00:00
|
|
|
assert_eq!(inf, inf.exp());
|
|
|
|
assert_eq!(0.0, neg_inf.exp());
|
|
|
|
assert!(nan.exp().is_nan());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_exp2() {
|
|
|
|
assert_eq!(32.0, 5.0f64.exp2());
|
|
|
|
assert_eq!(1.0, 0.0f64.exp2());
|
|
|
|
|
2015-04-18 06:45:55 +00:00
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
|
|
|
let nan: f64 = NAN;
|
2015-02-08 01:02:24 +00:00
|
|
|
assert_eq!(inf, inf.exp2());
|
|
|
|
assert_eq!(0.0, neg_inf.exp2());
|
|
|
|
assert!(nan.exp2().is_nan());
|
|
|
|
}
|
|
|
|
|
2015-02-14 23:18:41 +00:00
|
|
|
#[test]
|
|
|
|
fn test_ln() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_approx_eq!(1.0f64.exp().ln(), 1.0);
|
|
|
|
assert!(nan.ln().is_nan());
|
|
|
|
assert_eq!(inf.ln(), inf);
|
|
|
|
assert!(neg_inf.ln().is_nan());
|
|
|
|
assert!((-2.3f64).ln().is_nan());
|
|
|
|
assert_eq!((-0.0f64).ln(), neg_inf);
|
|
|
|
assert_eq!(0.0f64.ln(), neg_inf);
|
|
|
|
assert_approx_eq!(4.0f64.ln(), 1.386294);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_log() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_eq!(10.0f64.log(10.0), 1.0);
|
|
|
|
assert_approx_eq!(2.3f64.log(3.5), 0.664858);
|
2015-04-18 06:45:55 +00:00
|
|
|
assert_eq!(1.0f64.exp().log(1.0f64.exp()), 1.0);
|
2015-02-14 23:18:41 +00:00
|
|
|
assert!(1.0f64.log(1.0).is_nan());
|
|
|
|
assert!(1.0f64.log(-13.9).is_nan());
|
|
|
|
assert!(nan.log(2.3).is_nan());
|
|
|
|
assert_eq!(inf.log(10.0), inf);
|
|
|
|
assert!(neg_inf.log(8.8).is_nan());
|
|
|
|
assert!((-2.3f64).log(0.1).is_nan());
|
|
|
|
assert_eq!((-0.0f64).log(2.0), neg_inf);
|
|
|
|
assert_eq!(0.0f64.log(7.0), neg_inf);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_log2() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_approx_eq!(10.0f64.log2(), 3.321928);
|
|
|
|
assert_approx_eq!(2.3f64.log2(), 1.201634);
|
|
|
|
assert_approx_eq!(1.0f64.exp().log2(), 1.442695);
|
|
|
|
assert!(nan.log2().is_nan());
|
|
|
|
assert_eq!(inf.log2(), inf);
|
|
|
|
assert!(neg_inf.log2().is_nan());
|
|
|
|
assert!((-2.3f64).log2().is_nan());
|
|
|
|
assert_eq!((-0.0f64).log2(), neg_inf);
|
|
|
|
assert_eq!(0.0f64.log2(), neg_inf);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_log10() {
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_eq!(10.0f64.log10(), 1.0);
|
|
|
|
assert_approx_eq!(2.3f64.log10(), 0.361728);
|
|
|
|
assert_approx_eq!(1.0f64.exp().log10(), 0.434294);
|
|
|
|
assert_eq!(1.0f64.log10(), 0.0);
|
|
|
|
assert!(nan.log10().is_nan());
|
|
|
|
assert_eq!(inf.log10(), inf);
|
|
|
|
assert!(neg_inf.log10().is_nan());
|
|
|
|
assert!((-2.3f64).log10().is_nan());
|
|
|
|
assert_eq!((-0.0f64).log10(), neg_inf);
|
|
|
|
assert_eq!(0.0f64.log10(), neg_inf);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_to_degrees() {
|
|
|
|
let pi: f64 = consts::PI;
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_eq!(0.0f64.to_degrees(), 0.0);
|
|
|
|
assert_approx_eq!((-5.8f64).to_degrees(), -332.315521);
|
|
|
|
assert_eq!(pi.to_degrees(), 180.0);
|
|
|
|
assert!(nan.to_degrees().is_nan());
|
|
|
|
assert_eq!(inf.to_degrees(), inf);
|
|
|
|
assert_eq!(neg_inf.to_degrees(), neg_inf);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_to_radians() {
|
|
|
|
let pi: f64 = consts::PI;
|
2015-04-18 06:45:55 +00:00
|
|
|
let nan: f64 = NAN;
|
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
2015-02-14 23:18:41 +00:00
|
|
|
assert_eq!(0.0f64.to_radians(), 0.0);
|
|
|
|
assert_approx_eq!(154.6f64.to_radians(), 2.698279);
|
|
|
|
assert_approx_eq!((-332.31f64).to_radians(), -5.799903);
|
|
|
|
assert_eq!(180.0f64.to_radians(), pi);
|
|
|
|
assert!(nan.to_radians().is_nan());
|
|
|
|
assert_eq!(inf.to_radians(), inf);
|
|
|
|
assert_eq!(neg_inf.to_radians(), neg_inf);
|
|
|
|
}
|
|
|
|
|
2013-05-13 14:11:35 +00:00
|
|
|
#[test]
|
|
|
|
fn test_asinh() {
|
|
|
|
assert_eq!(0.0f64.asinh(), 0.0f64);
|
|
|
|
assert_eq!((-0.0f64).asinh(), -0.0f64);
|
2013-08-08 18:38:10 +00:00
|
|
|
|
2015-04-18 06:45:55 +00:00
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
|
|
|
let nan: f64 = NAN;
|
2013-08-08 18:38:10 +00:00
|
|
|
assert_eq!(inf.asinh(), inf);
|
|
|
|
assert_eq!(neg_inf.asinh(), neg_inf);
|
2013-09-19 05:37:34 +00:00
|
|
|
assert!(nan.asinh().is_nan());
|
2013-05-13 14:11:35 +00:00
|
|
|
assert_approx_eq!(2.0f64.asinh(), 1.443635475178810342493276740273105f64);
|
|
|
|
assert_approx_eq!((-2.0f64).asinh(), -1.443635475178810342493276740273105f64);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_acosh() {
|
|
|
|
assert_eq!(1.0f64.acosh(), 0.0f64);
|
2013-09-19 05:37:34 +00:00
|
|
|
assert!(0.999f64.acosh().is_nan());
|
2013-08-08 18:38:10 +00:00
|
|
|
|
2015-04-18 06:45:55 +00:00
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
|
|
|
let nan: f64 = NAN;
|
2013-08-08 18:38:10 +00:00
|
|
|
assert_eq!(inf.acosh(), inf);
|
2013-09-19 05:37:34 +00:00
|
|
|
assert!(neg_inf.acosh().is_nan());
|
|
|
|
assert!(nan.acosh().is_nan());
|
2013-05-13 14:11:35 +00:00
|
|
|
assert_approx_eq!(2.0f64.acosh(), 1.31695789692481670862504634730796844f64);
|
|
|
|
assert_approx_eq!(3.0f64.acosh(), 1.76274717403908605046521864995958461f64);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_atanh() {
|
|
|
|
assert_eq!(0.0f64.atanh(), 0.0f64);
|
|
|
|
assert_eq!((-0.0f64).atanh(), -0.0f64);
|
2013-08-08 18:38:10 +00:00
|
|
|
|
2015-04-18 06:45:55 +00:00
|
|
|
let inf: f64 = INFINITY;
|
|
|
|
let neg_inf: f64 = NEG_INFINITY;
|
|
|
|
let nan: f64 = NAN;
|
2013-08-08 18:38:10 +00:00
|
|
|
assert_eq!(1.0f64.atanh(), inf);
|
|
|
|
assert_eq!((-1.0f64).atanh(), neg_inf);
|
2013-09-19 05:37:34 +00:00
|
|
|
assert!(2f64.atanh().atanh().is_nan());
|
|
|
|
assert!((-2f64).atanh().atanh().is_nan());
|
|
|
|
assert!(inf.atanh().is_nan());
|
|
|
|
assert!(neg_inf.atanh().is_nan());
|
|
|
|
assert!(nan.atanh().is_nan());
|
2013-05-13 14:11:35 +00:00
|
|
|
assert_approx_eq!(0.5f64.atanh(), 0.54930614433405484569762261846126285f64);
|
|
|
|
assert_approx_eq!((-0.5f64).atanh(), -0.54930614433405484569762261846126285f64);
|
|
|
|
}
|
|
|
|
|
2013-04-24 22:12:26 +00:00
|
|
|
#[test]
|
|
|
|
fn test_real_consts() {
|
2014-12-23 19:53:35 +00:00
|
|
|
use super::consts;
|
|
|
|
let pi: f64 = consts::PI;
|
|
|
|
let frac_pi_2: f64 = consts::FRAC_PI_2;
|
|
|
|
let frac_pi_3: f64 = consts::FRAC_PI_3;
|
|
|
|
let frac_pi_4: f64 = consts::FRAC_PI_4;
|
|
|
|
let frac_pi_6: f64 = consts::FRAC_PI_6;
|
|
|
|
let frac_pi_8: f64 = consts::FRAC_PI_8;
|
|
|
|
let frac_1_pi: f64 = consts::FRAC_1_PI;
|
|
|
|
let frac_2_pi: f64 = consts::FRAC_2_PI;
|
2015-04-18 06:45:55 +00:00
|
|
|
let frac_2_sqrtpi: f64 = consts::FRAC_2_SQRT_PI;
|
|
|
|
let sqrt2: f64 = consts::SQRT_2;
|
|
|
|
let frac_1_sqrt2: f64 = consts::FRAC_1_SQRT_2;
|
2014-12-23 19:53:35 +00:00
|
|
|
let e: f64 = consts::E;
|
|
|
|
let log2_e: f64 = consts::LOG2_E;
|
|
|
|
let log10_e: f64 = consts::LOG10_E;
|
|
|
|
let ln_2: f64 = consts::LN_2;
|
|
|
|
let ln_10: f64 = consts::LN_10;
|
2013-08-08 18:38:10 +00:00
|
|
|
|
|
|
|
assert_approx_eq!(frac_pi_2, pi / 2f64);
|
|
|
|
assert_approx_eq!(frac_pi_3, pi / 3f64);
|
|
|
|
assert_approx_eq!(frac_pi_4, pi / 4f64);
|
|
|
|
assert_approx_eq!(frac_pi_6, pi / 6f64);
|
|
|
|
assert_approx_eq!(frac_pi_8, pi / 8f64);
|
|
|
|
assert_approx_eq!(frac_1_pi, 1f64 / pi);
|
|
|
|
assert_approx_eq!(frac_2_pi, 2f64 / pi);
|
|
|
|
assert_approx_eq!(frac_2_sqrtpi, 2f64 / pi.sqrt());
|
|
|
|
assert_approx_eq!(sqrt2, 2f64.sqrt());
|
|
|
|
assert_approx_eq!(frac_1_sqrt2, 1f64 / 2f64.sqrt());
|
|
|
|
assert_approx_eq!(log2_e, e.log2());
|
|
|
|
assert_approx_eq!(log10_e, e.log10());
|
|
|
|
assert_approx_eq!(ln_2, 2f64.ln());
|
|
|
|
assert_approx_eq!(ln_10, 10f64.ln());
|
2013-04-24 22:12:26 +00:00
|
|
|
}
|
2017-01-24 17:15:11 +00:00
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_float_bits_conv() {
|
|
|
|
assert_eq!((1f64).to_bits(), 0x3ff0000000000000);
|
|
|
|
assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
|
|
|
|
assert_eq!((1337f64).to_bits(), 0x4094e40000000000);
|
|
|
|
assert_eq!((-14.25f64).to_bits(), 0xc02c800000000000);
|
2017-03-29 00:39:59 +00:00
|
|
|
assert_approx_eq!(f64::from_bits(0x3ff0000000000000), 1.0);
|
|
|
|
assert_approx_eq!(f64::from_bits(0x4029000000000000), 12.5);
|
|
|
|
assert_approx_eq!(f64::from_bits(0x4094e40000000000), 1337.0);
|
|
|
|
assert_approx_eq!(f64::from_bits(0xc02c800000000000), -14.25);
|
Make float::from_bits transmute (and update the documentation to reflect this).
The current implementation/documentation was made to avoid sNaN because of
potential safety issues implied by old/bad LLVM documentation. These issues
aren't real, so we can just make the implementation transmute (as permitted
by the existing documentation of this method).
Also the documentation didn't actually match the behaviour: it said we may
change sNaNs, but in fact we canonicalized *all* NaNs.
Also an example in the documentation was wrong: it said we *always* change
sNaNs, when the documentation was explicitly written to indicate it was
implementation-defined.
This makes to_bits and from_bits perfectly roundtrip cross-platform, except
for one caveat: although the 2008 edition of IEEE-754 specifies how to
interpet the signaling bit, earlier editions didn't. This lead to some platforms
picking the opposite interpretation, so all signaling NaNs on x86/ARM are quiet
on MIPS, and vice-versa.
NaN-boxing is a fairly important optimization, while we don't even guarantee
that float operations properly preserve signalingness. As such, this seems like
the more natural strategy to take (as opposed to trying to mangle the signaling
bit on a per-platform basis).
This implementation is also, of course, faster.
2017-11-15 20:05:47 +00:00
|
|
|
|
|
|
|
// Check that NaNs roundtrip their bits regardless of signalingness
|
|
|
|
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
|
|
|
|
let masked_nan1 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA;
|
|
|
|
let masked_nan2 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555;
|
|
|
|
assert!(f64::from_bits(masked_nan1).is_nan());
|
|
|
|
assert!(f64::from_bits(masked_nan2).is_nan());
|
|
|
|
|
|
|
|
assert_eq!(f64::from_bits(masked_nan1).to_bits(), masked_nan1);
|
|
|
|
assert_eq!(f64::from_bits(masked_nan2).to_bits(), masked_nan2);
|
2017-01-24 17:15:11 +00:00
|
|
|
}
|
2013-04-23 07:59:49 +00:00
|
|
|
}
|