rust/library/std/src/sys/windows/c.rs

1146 lines
36 KiB
Rust
Raw Normal View History

//! C definitions used by libnative that don't belong in liblibc
#![allow(nonstandard_style)]
2016-02-20 07:18:02 +00:00
#![cfg_attr(test, allow(dead_code))]
#![unstable(issue = "none", feature = "windows_c")]
2019-12-22 22:42:04 +00:00
use crate::os::raw::{c_char, c_int, c_long, c_longlong, c_uint, c_ulong, c_ushort};
2019-02-10 19:23:21 +00:00
use crate::ptr;
2019-12-22 22:42:04 +00:00
use libc::{c_void, size_t, wchar_t};
pub use self::EXCEPTION_DISPOSITION::*;
2019-12-22 22:42:04 +00:00
pub use self::FILE_INFO_BY_HANDLE_CLASS::*;
std: Add a new `env` module This is an implementation of [RFC 578][rfc] which adds a new `std::env` module to replace most of the functionality in the current `std::os` module. More details can be found in the RFC itself, but as a summary the following methods have all been deprecated: [rfc]: https://github.com/rust-lang/rfcs/pull/578 * `os::args_as_bytes` => `env::args` * `os::args` => `env::args` * `os::consts` => `env::consts` * `os::dll_filename` => no replacement, use `env::consts` directly * `os::page_size` => `env::page_size` * `os::make_absolute` => use `env::current_dir` + `join` instead * `os::getcwd` => `env::current_dir` * `os::change_dir` => `env::set_current_dir` * `os::homedir` => `env::home_dir` * `os::tmpdir` => `env::temp_dir` * `os::join_paths` => `env::join_paths` * `os::split_paths` => `env::split_paths` * `os::self_exe_name` => `env::current_exe` * `os::self_exe_path` => use `env::current_exe` + `pop` * `os::set_exit_status` => `env::set_exit_status` * `os::get_exit_status` => `env::get_exit_status` * `os::env` => `env::vars` * `os::env_as_bytes` => `env::vars` * `os::getenv` => `env::var` or `env::var_string` * `os::getenv_as_bytes` => `env::var` * `os::setenv` => `env::set_var` * `os::unsetenv` => `env::remove_var` Many function signatures have also been tweaked for various purposes, but the main changes were: * `Vec`-returning APIs now all return iterators instead * All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`. There is currently on convenience API, `env::var_string`, which can be used to get the value of an environment variable as a unicode `String`. All old APIs are `#[deprecated]` in-place and will remain for some time to allow for migrations. The semantics of the APIs have been tweaked slightly with regard to dealing with invalid unicode (panic instead of replacement). The new `std::env` module is all contained within the `env` feature, so crates must add the following to access the new APIs: #![feature(env)] [breaking-change]
2015-01-27 20:20:58 +00:00
pub type DWORD = c_ulong;
pub type HANDLE = LPVOID;
pub type HINSTANCE = HANDLE;
pub type HMODULE = HINSTANCE;
2017-09-06 19:40:34 +00:00
pub type HRESULT = LONG;
pub type BOOL = c_int;
pub type BYTE = u8;
pub type BOOLEAN = BYTE;
pub type GROUP = c_uint;
pub type LARGE_INTEGER = c_longlong;
pub type LONG = c_long;
pub type UINT = c_uint;
pub type WCHAR = u16;
pub type USHORT = c_ushort;
pub type SIZE_T = usize;
pub type WORD = u16;
pub type CHAR = c_char;
2017-05-06 14:46:16 +00:00
pub type ULONG_PTR = usize;
pub type ULONG = c_ulong;
pub type NTSTATUS = LONG;
pub type ACCESS_MASK = DWORD;
pub type LPBOOL = *mut BOOL;
pub type LPBYTE = *mut BYTE;
pub type LPCSTR = *const CHAR;
pub type LPCWSTR = *const WCHAR;
pub type LPDWORD = *mut DWORD;
pub type LPHANDLE = *mut HANDLE;
pub type LPOVERLAPPED = *mut OVERLAPPED;
pub type LPPROCESS_INFORMATION = *mut PROCESS_INFORMATION;
pub type LPSECURITY_ATTRIBUTES = *mut SECURITY_ATTRIBUTES;
pub type LPSTARTUPINFO = *mut STARTUPINFO;
pub type LPVOID = *mut c_void;
pub type LPWCH = *mut WCHAR;
pub type LPWIN32_FIND_DATAW = *mut WIN32_FIND_DATAW;
pub type LPWSADATA = *mut WSADATA;
pub type LPWSAPROTOCOL_INFO = *mut WSAPROTOCOL_INFO;
pub type LPWSTR = *mut WCHAR;
pub type LPFILETIME = *mut FILETIME;
pub type LPWSABUF = *mut WSABUF;
pub type LPWSAOVERLAPPED = *mut c_void;
pub type LPWSAOVERLAPPED_COMPLETION_ROUTINE = *mut c_void;
pub type PCONDITION_VARIABLE = *mut CONDITION_VARIABLE;
pub type PLARGE_INTEGER = *mut c_longlong;
pub type PSRWLOCK = *mut SRWLOCK;
2019-02-10 19:23:21 +00:00
pub type SOCKET = crate::os::windows::raw::SOCKET;
pub type socklen_t = c_int;
pub type ADDRESS_FAMILY = USHORT;
pub const TRUE: BOOL = 1;
pub const FALSE: BOOL = 0;
pub const FILE_ATTRIBUTE_READONLY: DWORD = 0x1;
pub const FILE_ATTRIBUTE_DIRECTORY: DWORD = 0x10;
pub const FILE_ATTRIBUTE_REPARSE_POINT: DWORD = 0x400;
2016-02-20 07:18:02 +00:00
pub const FILE_SHARE_DELETE: DWORD = 0x4;
pub const FILE_SHARE_READ: DWORD = 0x1;
pub const FILE_SHARE_WRITE: DWORD = 0x2;
2016-02-20 07:18:02 +00:00
pub const CREATE_ALWAYS: DWORD = 2;
pub const CREATE_NEW: DWORD = 1;
pub const OPEN_ALWAYS: DWORD = 4;
pub const OPEN_EXISTING: DWORD = 3;
pub const TRUNCATE_EXISTING: DWORD = 5;
pub const FILE_WRITE_DATA: DWORD = 0x00000002;
pub const FILE_APPEND_DATA: DWORD = 0x00000004;
pub const FILE_WRITE_EA: DWORD = 0x00000010;
pub const FILE_WRITE_ATTRIBUTES: DWORD = 0x00000100;
pub const READ_CONTROL: DWORD = 0x00020000;
pub const SYNCHRONIZE: DWORD = 0x00100000;
pub const GENERIC_READ: DWORD = 0x80000000;
pub const GENERIC_WRITE: DWORD = 0x40000000;
pub const STANDARD_RIGHTS_WRITE: DWORD = READ_CONTROL;
2019-12-22 22:42:04 +00:00
pub const FILE_GENERIC_WRITE: DWORD = STANDARD_RIGHTS_WRITE
| FILE_WRITE_DATA
| FILE_WRITE_ATTRIBUTES
| FILE_WRITE_EA
| FILE_APPEND_DATA
| SYNCHRONIZE;
2016-02-20 07:18:02 +00:00
pub const FILE_FLAG_OPEN_REPARSE_POINT: DWORD = 0x00200000;
pub const FILE_FLAG_BACKUP_SEMANTICS: DWORD = 0x02000000;
pub const SECURITY_SQOS_PRESENT: DWORD = 0x00100000;
2016-02-27 22:15:19 +00:00
pub const FIONBIO: c_ulong = 0x8004667e;
#[repr(C)]
#[derive(Copy)]
pub struct WIN32_FIND_DATAW {
pub dwFileAttributes: DWORD,
pub ftCreationTime: FILETIME,
pub ftLastAccessTime: FILETIME,
pub ftLastWriteTime: FILETIME,
pub nFileSizeHigh: DWORD,
pub nFileSizeLow: DWORD,
pub dwReserved0: DWORD,
pub dwReserved1: DWORD,
pub cFileName: [wchar_t; 260], // #define MAX_PATH 260
pub cAlternateFileName: [wchar_t; 14],
}
impl Clone for WIN32_FIND_DATAW {
2019-12-22 22:42:04 +00:00
fn clone(&self) -> Self {
*self
}
}
pub const WSA_FLAG_OVERLAPPED: DWORD = 0x01;
pub const WSA_FLAG_NO_HANDLE_INHERIT: DWORD = 0x80;
pub const WSADESCRIPTION_LEN: usize = 256;
pub const WSASYS_STATUS_LEN: usize = 128;
pub const WSAPROTOCOL_LEN: DWORD = 255;
pub const INVALID_SOCKET: SOCKET = !0;
pub const WSAEACCES: c_int = 10013;
pub const WSAEINVAL: c_int = 10022;
pub const WSAEWOULDBLOCK: c_int = 10035;
pub const WSAEPROTOTYPE: c_int = 10041;
pub const WSAEADDRINUSE: c_int = 10048;
pub const WSAEADDRNOTAVAIL: c_int = 10049;
pub const WSAECONNABORTED: c_int = 10053;
pub const WSAECONNRESET: c_int = 10054;
pub const WSAENOTCONN: c_int = 10057;
pub const WSAESHUTDOWN: c_int = 10058;
pub const WSAETIMEDOUT: c_int = 10060;
pub const WSAECONNREFUSED: c_int = 10061;
2016-02-20 07:18:02 +00:00
pub const MAX_PROTOCOL_CHAIN: DWORD = 7;
pub const MAXIMUM_REPARSE_DATA_BUFFER_SIZE: usize = 16 * 1024;
pub const FSCTL_GET_REPARSE_POINT: DWORD = 0x900a8;
pub const IO_REPARSE_TAG_SYMLINK: DWORD = 0xa000000c;
pub const IO_REPARSE_TAG_MOUNT_POINT: DWORD = 0xa0000003;
pub const SYMLINK_FLAG_RELATIVE: DWORD = 0x00000001;
pub const FSCTL_SET_REPARSE_POINT: DWORD = 0x900a4;
std: Add a new `env` module This is an implementation of [RFC 578][rfc] which adds a new `std::env` module to replace most of the functionality in the current `std::os` module. More details can be found in the RFC itself, but as a summary the following methods have all been deprecated: [rfc]: https://github.com/rust-lang/rfcs/pull/578 * `os::args_as_bytes` => `env::args` * `os::args` => `env::args` * `os::consts` => `env::consts` * `os::dll_filename` => no replacement, use `env::consts` directly * `os::page_size` => `env::page_size` * `os::make_absolute` => use `env::current_dir` + `join` instead * `os::getcwd` => `env::current_dir` * `os::change_dir` => `env::set_current_dir` * `os::homedir` => `env::home_dir` * `os::tmpdir` => `env::temp_dir` * `os::join_paths` => `env::join_paths` * `os::split_paths` => `env::split_paths` * `os::self_exe_name` => `env::current_exe` * `os::self_exe_path` => use `env::current_exe` + `pop` * `os::set_exit_status` => `env::set_exit_status` * `os::get_exit_status` => `env::get_exit_status` * `os::env` => `env::vars` * `os::env_as_bytes` => `env::vars` * `os::getenv` => `env::var` or `env::var_string` * `os::getenv_as_bytes` => `env::var` * `os::setenv` => `env::set_var` * `os::unsetenv` => `env::remove_var` Many function signatures have also been tweaked for various purposes, but the main changes were: * `Vec`-returning APIs now all return iterators instead * All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`. There is currently on convenience API, `env::var_string`, which can be used to get the value of an environment variable as a unicode `String`. All old APIs are `#[deprecated]` in-place and will remain for some time to allow for migrations. The semantics of the APIs have been tweaked slightly with regard to dealing with invalid unicode (panic instead of replacement). The new `std::env` module is all contained within the `env` feature, so crates must add the following to access the new APIs: #![feature(env)] [breaking-change]
2015-01-27 20:20:58 +00:00
pub const SYMBOLIC_LINK_FLAG_DIRECTORY: DWORD = 0x1;
pub const SYMBOLIC_LINK_FLAG_ALLOW_UNPRIVILEGED_CREATE: DWORD = 0x2;
// Note that these are not actually HANDLEs, just values to pass to GetStdHandle
pub const STD_INPUT_HANDLE: DWORD = -10i32 as DWORD;
pub const STD_OUTPUT_HANDLE: DWORD = -11i32 as DWORD;
pub const STD_ERROR_HANDLE: DWORD = -12i32 as DWORD;
pub const PROGRESS_CONTINUE: DWORD = 0;
// List of Windows system error codes with descriptions:
// https://docs.microsoft.com/en-us/windows/win32/debug/system-error-codes#system-error-codes
pub const ERROR_FILE_NOT_FOUND: DWORD = 2;
pub const ERROR_PATH_NOT_FOUND: DWORD = 3;
pub const ERROR_ACCESS_DENIED: DWORD = 5;
pub const ERROR_INVALID_HANDLE: DWORD = 6;
pub const ERROR_NO_MORE_FILES: DWORD = 18;
pub const ERROR_HANDLE_EOF: DWORD = 38;
pub const ERROR_FILE_EXISTS: DWORD = 80;
pub const ERROR_INVALID_PARAMETER: DWORD = 87;
pub const ERROR_BROKEN_PIPE: DWORD = 109;
pub const ERROR_CALL_NOT_IMPLEMENTED: DWORD = 120;
pub const ERROR_SEM_TIMEOUT: DWORD = 121;
pub const ERROR_INSUFFICIENT_BUFFER: DWORD = 122;
pub const ERROR_ALREADY_EXISTS: DWORD = 183;
pub const ERROR_ENVVAR_NOT_FOUND: DWORD = 203;
pub const ERROR_NO_DATA: DWORD = 232;
pub const ERROR_DRIVER_CANCEL_TIMEOUT: DWORD = 594;
pub const ERROR_OPERATION_ABORTED: DWORD = 995;
pub const ERROR_IO_PENDING: DWORD = 997;
pub const ERROR_SERVICE_REQUEST_TIMEOUT: DWORD = 1053;
pub const ERROR_COUNTER_TIMEOUT: DWORD = 1121;
pub const ERROR_TIMEOUT: DWORD = 1460;
pub const ERROR_RESOURCE_CALL_TIMED_OUT: DWORD = 5910;
pub const ERROR_CTX_MODEM_RESPONSE_TIMEOUT: DWORD = 7012;
pub const ERROR_CTX_CLIENT_QUERY_TIMEOUT: DWORD = 7040;
pub const FRS_ERR_SYSVOL_POPULATE_TIMEOUT: DWORD = 8014;
pub const ERROR_DS_TIMELIMIT_EXCEEDED: DWORD = 8226;
pub const DNS_ERROR_RECORD_TIMED_OUT: DWORD = 9705;
pub const ERROR_IPSEC_IKE_TIMED_OUT: DWORD = 13805;
pub const ERROR_RUNLEVEL_SWITCH_TIMEOUT: DWORD = 15402;
pub const ERROR_RUNLEVEL_SWITCH_AGENT_TIMEOUT: DWORD = 15403;
2017-09-06 19:40:34 +00:00
pub const E_NOTIMPL: HRESULT = 0x80004001u32 as HRESULT;
pub const INVALID_HANDLE_VALUE: HANDLE = !0 as HANDLE;
pub const FACILITY_NT_BIT: DWORD = 0x1000_0000;
pub const FORMAT_MESSAGE_FROM_SYSTEM: DWORD = 0x00001000;
pub const FORMAT_MESSAGE_FROM_HMODULE: DWORD = 0x00000800;
pub const FORMAT_MESSAGE_IGNORE_INSERTS: DWORD = 0x00000200;
pub const TLS_OUT_OF_INDEXES: DWORD = 0xFFFFFFFF;
pub const DLL_THREAD_DETACH: DWORD = 3;
pub const DLL_PROCESS_DETACH: DWORD = 0;
pub const INFINITE: DWORD = !0;
pub const DUPLICATE_SAME_ACCESS: DWORD = 0x00000002;
2019-12-22 22:42:04 +00:00
pub const CONDITION_VARIABLE_INIT: CONDITION_VARIABLE = CONDITION_VARIABLE { ptr: ptr::null_mut() };
pub const SRWLOCK_INIT: SRWLOCK = SRWLOCK { ptr: ptr::null_mut() };
pub const DETACHED_PROCESS: DWORD = 0x00000008;
pub const CREATE_NEW_PROCESS_GROUP: DWORD = 0x00000200;
pub const CREATE_UNICODE_ENVIRONMENT: DWORD = 0x00000400;
pub const STARTF_USESTDHANDLES: DWORD = 0x00000100;
pub const AF_INET: c_int = 2;
pub const AF_INET6: c_int = 23;
pub const SD_BOTH: c_int = 2;
pub const SD_RECEIVE: c_int = 0;
pub const SD_SEND: c_int = 1;
pub const SOCK_DGRAM: c_int = 2;
pub const SOCK_STREAM: c_int = 1;
pub const SOL_SOCKET: c_int = 0xffff;
pub const SO_RCVTIMEO: c_int = 0x1006;
pub const SO_SNDTIMEO: c_int = 0x1005;
pub const IPPROTO_IP: c_int = 0;
pub const IPPROTO_TCP: c_int = 6;
pub const IPPROTO_IPV6: c_int = 41;
pub const TCP_NODELAY: c_int = 0x0001;
pub const IP_TTL: c_int = 4;
pub const IPV6_V6ONLY: c_int = 27;
pub const SO_ERROR: c_int = 0x1007;
pub const SO_BROADCAST: c_int = 0x0020;
pub const IP_MULTICAST_LOOP: c_int = 11;
pub const IPV6_MULTICAST_LOOP: c_int = 11;
pub const IP_MULTICAST_TTL: c_int = 10;
pub const IP_ADD_MEMBERSHIP: c_int = 12;
pub const IP_DROP_MEMBERSHIP: c_int = 13;
pub const IPV6_ADD_MEMBERSHIP: c_int = 12;
pub const IPV6_DROP_MEMBERSHIP: c_int = 13;
pub const MSG_PEEK: c_int = 0x2;
#[repr(C)]
pub struct ip_mreq {
pub imr_multiaddr: in_addr,
pub imr_interface: in_addr,
}
#[repr(C)]
pub struct ipv6_mreq {
pub ipv6mr_multiaddr: in6_addr,
pub ipv6mr_interface: c_uint,
}
pub const VOLUME_NAME_DOS: DWORD = 0x0;
pub const MOVEFILE_REPLACE_EXISTING: DWORD = 1;
pub const FILE_BEGIN: DWORD = 0;
pub const FILE_CURRENT: DWORD = 1;
pub const FILE_END: DWORD = 2;
pub const WAIT_OBJECT_0: DWORD = 0x00000000;
pub const WAIT_TIMEOUT: DWORD = 258;
pub const WAIT_FAILED: DWORD = 0xFFFFFFFF;
pub const PIPE_ACCESS_INBOUND: DWORD = 0x00000001;
pub const PIPE_ACCESS_OUTBOUND: DWORD = 0x00000002;
pub const FILE_FLAG_FIRST_PIPE_INSTANCE: DWORD = 0x00080000;
pub const FILE_FLAG_OVERLAPPED: DWORD = 0x40000000;
pub const PIPE_WAIT: DWORD = 0x00000000;
pub const PIPE_TYPE_BYTE: DWORD = 0x00000000;
pub const PIPE_REJECT_REMOTE_CLIENTS: DWORD = 0x00000008;
pub const PIPE_READMODE_BYTE: DWORD = 0x00000000;
pub const FD_SETSIZE: usize = 64;
2018-07-30 04:02:09 +00:00
pub const STACK_SIZE_PARAM_IS_A_RESERVATION: DWORD = 0x00010000;
pub const HEAP_ZERO_MEMORY: DWORD = 0x00000008;
pub const STATUS_SUCCESS: NTSTATUS = 0x00000000;
2014-06-08 19:55:17 +00:00
#[repr(C)]
#[cfg(not(target_pointer_width = "64"))]
pub struct WSADATA {
pub wVersion: WORD,
pub wHighVersion: WORD,
2015-01-01 04:40:24 +00:00
pub szDescription: [u8; WSADESCRIPTION_LEN + 1],
pub szSystemStatus: [u8; WSASYS_STATUS_LEN + 1],
pub iMaxSockets: u16,
pub iMaxUdpDg: u16,
2014-06-25 19:47:34 +00:00
pub lpVendorInfo: *mut u8,
}
#[repr(C)]
#[cfg(target_pointer_width = "64")]
pub struct WSADATA {
pub wVersion: WORD,
pub wHighVersion: WORD,
pub iMaxSockets: u16,
pub iMaxUdpDg: u16,
pub lpVendorInfo: *mut u8,
2015-01-01 04:40:24 +00:00
pub szDescription: [u8; WSADESCRIPTION_LEN + 1],
pub szSystemStatus: [u8; WSASYS_STATUS_LEN + 1],
}
2020-02-23 17:18:45 +00:00
#[derive(Copy, Clone)]
#[repr(C)]
pub struct WSABUF {
pub len: ULONG,
pub buf: *mut CHAR,
}
2015-02-11 23:29:51 +00:00
#[repr(C)]
pub struct WSAPROTOCOL_INFO {
pub dwServiceFlags1: DWORD,
pub dwServiceFlags2: DWORD,
pub dwServiceFlags3: DWORD,
pub dwServiceFlags4: DWORD,
pub dwProviderFlags: DWORD,
2015-02-11 23:29:51 +00:00
pub ProviderId: GUID,
pub dwCatalogEntryId: DWORD,
2015-02-11 23:29:51 +00:00
pub ProtocolChain: WSAPROTOCOLCHAIN,
pub iVersion: c_int,
pub iAddressFamily: c_int,
pub iMaxSockAddr: c_int,
pub iMinSockAddr: c_int,
pub iSocketType: c_int,
pub iProtocol: c_int,
pub iProtocolMaxOffset: c_int,
pub iNetworkByteOrder: c_int,
pub iSecurityScheme: c_int,
pub dwMessageSize: DWORD,
pub dwProviderReserved: DWORD,
pub szProtocol: [u16; (WSAPROTOCOL_LEN as usize) + 1],
2015-02-11 23:29:51 +00:00
}
std: Add a new `env` module This is an implementation of [RFC 578][rfc] which adds a new `std::env` module to replace most of the functionality in the current `std::os` module. More details can be found in the RFC itself, but as a summary the following methods have all been deprecated: [rfc]: https://github.com/rust-lang/rfcs/pull/578 * `os::args_as_bytes` => `env::args` * `os::args` => `env::args` * `os::consts` => `env::consts` * `os::dll_filename` => no replacement, use `env::consts` directly * `os::page_size` => `env::page_size` * `os::make_absolute` => use `env::current_dir` + `join` instead * `os::getcwd` => `env::current_dir` * `os::change_dir` => `env::set_current_dir` * `os::homedir` => `env::home_dir` * `os::tmpdir` => `env::temp_dir` * `os::join_paths` => `env::join_paths` * `os::split_paths` => `env::split_paths` * `os::self_exe_name` => `env::current_exe` * `os::self_exe_path` => use `env::current_exe` + `pop` * `os::set_exit_status` => `env::set_exit_status` * `os::get_exit_status` => `env::get_exit_status` * `os::env` => `env::vars` * `os::env_as_bytes` => `env::vars` * `os::getenv` => `env::var` or `env::var_string` * `os::getenv_as_bytes` => `env::var` * `os::setenv` => `env::set_var` * `os::unsetenv` => `env::remove_var` Many function signatures have also been tweaked for various purposes, but the main changes were: * `Vec`-returning APIs now all return iterators instead * All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`. There is currently on convenience API, `env::var_string`, which can be used to get the value of an environment variable as a unicode `String`. All old APIs are `#[deprecated]` in-place and will remain for some time to allow for migrations. The semantics of the APIs have been tweaked slightly with regard to dealing with invalid unicode (panic instead of replacement). The new `std::env` module is all contained within the `env` feature, so crates must add the following to access the new APIs: #![feature(env)] [breaking-change]
2015-01-27 20:20:58 +00:00
#[repr(C)]
#[derive(Copy, Clone)]
std: Add a new `env` module This is an implementation of [RFC 578][rfc] which adds a new `std::env` module to replace most of the functionality in the current `std::os` module. More details can be found in the RFC itself, but as a summary the following methods have all been deprecated: [rfc]: https://github.com/rust-lang/rfcs/pull/578 * `os::args_as_bytes` => `env::args` * `os::args` => `env::args` * `os::consts` => `env::consts` * `os::dll_filename` => no replacement, use `env::consts` directly * `os::page_size` => `env::page_size` * `os::make_absolute` => use `env::current_dir` + `join` instead * `os::getcwd` => `env::current_dir` * `os::change_dir` => `env::set_current_dir` * `os::homedir` => `env::home_dir` * `os::tmpdir` => `env::temp_dir` * `os::join_paths` => `env::join_paths` * `os::split_paths` => `env::split_paths` * `os::self_exe_name` => `env::current_exe` * `os::self_exe_path` => use `env::current_exe` + `pop` * `os::set_exit_status` => `env::set_exit_status` * `os::get_exit_status` => `env::get_exit_status` * `os::env` => `env::vars` * `os::env_as_bytes` => `env::vars` * `os::getenv` => `env::var` or `env::var_string` * `os::getenv_as_bytes` => `env::var` * `os::setenv` => `env::set_var` * `os::unsetenv` => `env::remove_var` Many function signatures have also been tweaked for various purposes, but the main changes were: * `Vec`-returning APIs now all return iterators instead * All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`. There is currently on convenience API, `env::var_string`, which can be used to get the value of an environment variable as a unicode `String`. All old APIs are `#[deprecated]` in-place and will remain for some time to allow for migrations. The semantics of the APIs have been tweaked slightly with regard to dealing with invalid unicode (panic instead of replacement). The new `std::env` module is all contained within the `env` feature, so crates must add the following to access the new APIs: #![feature(env)] [breaking-change]
2015-01-27 20:20:58 +00:00
pub struct WIN32_FILE_ATTRIBUTE_DATA {
pub dwFileAttributes: DWORD,
pub ftCreationTime: FILETIME,
pub ftLastAccessTime: FILETIME,
pub ftLastWriteTime: FILETIME,
pub nFileSizeHigh: DWORD,
pub nFileSizeLow: DWORD,
std: Add a new `env` module This is an implementation of [RFC 578][rfc] which adds a new `std::env` module to replace most of the functionality in the current `std::os` module. More details can be found in the RFC itself, but as a summary the following methods have all been deprecated: [rfc]: https://github.com/rust-lang/rfcs/pull/578 * `os::args_as_bytes` => `env::args` * `os::args` => `env::args` * `os::consts` => `env::consts` * `os::dll_filename` => no replacement, use `env::consts` directly * `os::page_size` => `env::page_size` * `os::make_absolute` => use `env::current_dir` + `join` instead * `os::getcwd` => `env::current_dir` * `os::change_dir` => `env::set_current_dir` * `os::homedir` => `env::home_dir` * `os::tmpdir` => `env::temp_dir` * `os::join_paths` => `env::join_paths` * `os::split_paths` => `env::split_paths` * `os::self_exe_name` => `env::current_exe` * `os::self_exe_path` => use `env::current_exe` + `pop` * `os::set_exit_status` => `env::set_exit_status` * `os::get_exit_status` => `env::get_exit_status` * `os::env` => `env::vars` * `os::env_as_bytes` => `env::vars` * `os::getenv` => `env::var` or `env::var_string` * `os::getenv_as_bytes` => `env::var` * `os::setenv` => `env::set_var` * `os::unsetenv` => `env::remove_var` Many function signatures have also been tweaked for various purposes, but the main changes were: * `Vec`-returning APIs now all return iterators instead * All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`. There is currently on convenience API, `env::var_string`, which can be used to get the value of an environment variable as a unicode `String`. All old APIs are `#[deprecated]` in-place and will remain for some time to allow for migrations. The semantics of the APIs have been tweaked slightly with regard to dealing with invalid unicode (panic instead of replacement). The new `std::env` module is all contained within the `env` feature, so crates must add the following to access the new APIs: #![feature(env)] [breaking-change]
2015-01-27 20:20:58 +00:00
}
#[repr(C)]
2016-02-20 07:18:02 +00:00
#[allow(dead_code)] // we only use some variants
std: Add a new `env` module This is an implementation of [RFC 578][rfc] which adds a new `std::env` module to replace most of the functionality in the current `std::os` module. More details can be found in the RFC itself, but as a summary the following methods have all been deprecated: [rfc]: https://github.com/rust-lang/rfcs/pull/578 * `os::args_as_bytes` => `env::args` * `os::args` => `env::args` * `os::consts` => `env::consts` * `os::dll_filename` => no replacement, use `env::consts` directly * `os::page_size` => `env::page_size` * `os::make_absolute` => use `env::current_dir` + `join` instead * `os::getcwd` => `env::current_dir` * `os::change_dir` => `env::set_current_dir` * `os::homedir` => `env::home_dir` * `os::tmpdir` => `env::temp_dir` * `os::join_paths` => `env::join_paths` * `os::split_paths` => `env::split_paths` * `os::self_exe_name` => `env::current_exe` * `os::self_exe_path` => use `env::current_exe` + `pop` * `os::set_exit_status` => `env::set_exit_status` * `os::get_exit_status` => `env::get_exit_status` * `os::env` => `env::vars` * `os::env_as_bytes` => `env::vars` * `os::getenv` => `env::var` or `env::var_string` * `os::getenv_as_bytes` => `env::var` * `os::setenv` => `env::set_var` * `os::unsetenv` => `env::remove_var` Many function signatures have also been tweaked for various purposes, but the main changes were: * `Vec`-returning APIs now all return iterators instead * All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`. There is currently on convenience API, `env::var_string`, which can be used to get the value of an environment variable as a unicode `String`. All old APIs are `#[deprecated]` in-place and will remain for some time to allow for migrations. The semantics of the APIs have been tweaked slightly with regard to dealing with invalid unicode (panic instead of replacement). The new `std::env` module is all contained within the `env` feature, so crates must add the following to access the new APIs: #![feature(env)] [breaking-change]
2015-01-27 20:20:58 +00:00
pub enum FILE_INFO_BY_HANDLE_CLASS {
2019-12-22 22:42:04 +00:00
FileBasicInfo = 0,
FileStandardInfo = 1,
FileNameInfo = 2,
FileRenameInfo = 3,
FileDispositionInfo = 4,
FileAllocationInfo = 5,
FileEndOfFileInfo = 6,
FileStreamInfo = 7,
FileCompressionInfo = 8,
FileAttributeTagInfo = 9,
FileIdBothDirectoryInfo = 10, // 0xA
FileIdBothDirectoryRestartInfo = 11, // 0xB
FileIoPriorityHintInfo = 12, // 0xC
FileRemoteProtocolInfo = 13, // 0xD
FileFullDirectoryInfo = 14, // 0xE
FileFullDirectoryRestartInfo = 15, // 0xF
FileStorageInfo = 16, // 0x10
FileAlignmentInfo = 17, // 0x11
FileIdInfo = 18, // 0x12
FileIdExtdDirectoryInfo = 19, // 0x13
FileIdExtdDirectoryRestartInfo = 20, // 0x14
MaximumFileInfoByHandlesClass,
std: Add a new `env` module This is an implementation of [RFC 578][rfc] which adds a new `std::env` module to replace most of the functionality in the current `std::os` module. More details can be found in the RFC itself, but as a summary the following methods have all been deprecated: [rfc]: https://github.com/rust-lang/rfcs/pull/578 * `os::args_as_bytes` => `env::args` * `os::args` => `env::args` * `os::consts` => `env::consts` * `os::dll_filename` => no replacement, use `env::consts` directly * `os::page_size` => `env::page_size` * `os::make_absolute` => use `env::current_dir` + `join` instead * `os::getcwd` => `env::current_dir` * `os::change_dir` => `env::set_current_dir` * `os::homedir` => `env::home_dir` * `os::tmpdir` => `env::temp_dir` * `os::join_paths` => `env::join_paths` * `os::split_paths` => `env::split_paths` * `os::self_exe_name` => `env::current_exe` * `os::self_exe_path` => use `env::current_exe` + `pop` * `os::set_exit_status` => `env::set_exit_status` * `os::get_exit_status` => `env::get_exit_status` * `os::env` => `env::vars` * `os::env_as_bytes` => `env::vars` * `os::getenv` => `env::var` or `env::var_string` * `os::getenv_as_bytes` => `env::var` * `os::setenv` => `env::set_var` * `os::unsetenv` => `env::remove_var` Many function signatures have also been tweaked for various purposes, but the main changes were: * `Vec`-returning APIs now all return iterators instead * All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`. There is currently on convenience API, `env::var_string`, which can be used to get the value of an environment variable as a unicode `String`. All old APIs are `#[deprecated]` in-place and will remain for some time to allow for migrations. The semantics of the APIs have been tweaked slightly with regard to dealing with invalid unicode (panic instead of replacement). The new `std::env` module is all contained within the `env` feature, so crates must add the following to access the new APIs: #![feature(env)] [breaking-change]
2015-01-27 20:20:58 +00:00
}
#[repr(C)]
pub struct FILE_BASIC_INFO {
pub CreationTime: LARGE_INTEGER,
pub LastAccessTime: LARGE_INTEGER,
pub LastWriteTime: LARGE_INTEGER,
pub ChangeTime: LARGE_INTEGER,
pub FileAttributes: DWORD,
}
std: Add a new `env` module This is an implementation of [RFC 578][rfc] which adds a new `std::env` module to replace most of the functionality in the current `std::os` module. More details can be found in the RFC itself, but as a summary the following methods have all been deprecated: [rfc]: https://github.com/rust-lang/rfcs/pull/578 * `os::args_as_bytes` => `env::args` * `os::args` => `env::args` * `os::consts` => `env::consts` * `os::dll_filename` => no replacement, use `env::consts` directly * `os::page_size` => `env::page_size` * `os::make_absolute` => use `env::current_dir` + `join` instead * `os::getcwd` => `env::current_dir` * `os::change_dir` => `env::set_current_dir` * `os::homedir` => `env::home_dir` * `os::tmpdir` => `env::temp_dir` * `os::join_paths` => `env::join_paths` * `os::split_paths` => `env::split_paths` * `os::self_exe_name` => `env::current_exe` * `os::self_exe_path` => use `env::current_exe` + `pop` * `os::set_exit_status` => `env::set_exit_status` * `os::get_exit_status` => `env::get_exit_status` * `os::env` => `env::vars` * `os::env_as_bytes` => `env::vars` * `os::getenv` => `env::var` or `env::var_string` * `os::getenv_as_bytes` => `env::var` * `os::setenv` => `env::set_var` * `os::unsetenv` => `env::remove_var` Many function signatures have also been tweaked for various purposes, but the main changes were: * `Vec`-returning APIs now all return iterators instead * All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`. There is currently on convenience API, `env::var_string`, which can be used to get the value of an environment variable as a unicode `String`. All old APIs are `#[deprecated]` in-place and will remain for some time to allow for migrations. The semantics of the APIs have been tweaked slightly with regard to dealing with invalid unicode (panic instead of replacement). The new `std::env` module is all contained within the `env` feature, so crates must add the following to access the new APIs: #![feature(env)] [breaking-change]
2015-01-27 20:20:58 +00:00
#[repr(C)]
pub struct FILE_END_OF_FILE_INFO {
pub EndOfFile: LARGE_INTEGER,
std: Add a new `env` module This is an implementation of [RFC 578][rfc] which adds a new `std::env` module to replace most of the functionality in the current `std::os` module. More details can be found in the RFC itself, but as a summary the following methods have all been deprecated: [rfc]: https://github.com/rust-lang/rfcs/pull/578 * `os::args_as_bytes` => `env::args` * `os::args` => `env::args` * `os::consts` => `env::consts` * `os::dll_filename` => no replacement, use `env::consts` directly * `os::page_size` => `env::page_size` * `os::make_absolute` => use `env::current_dir` + `join` instead * `os::getcwd` => `env::current_dir` * `os::change_dir` => `env::set_current_dir` * `os::homedir` => `env::home_dir` * `os::tmpdir` => `env::temp_dir` * `os::join_paths` => `env::join_paths` * `os::split_paths` => `env::split_paths` * `os::self_exe_name` => `env::current_exe` * `os::self_exe_path` => use `env::current_exe` + `pop` * `os::set_exit_status` => `env::set_exit_status` * `os::get_exit_status` => `env::get_exit_status` * `os::env` => `env::vars` * `os::env_as_bytes` => `env::vars` * `os::getenv` => `env::var` or `env::var_string` * `os::getenv_as_bytes` => `env::var` * `os::setenv` => `env::set_var` * `os::unsetenv` => `env::remove_var` Many function signatures have also been tweaked for various purposes, but the main changes were: * `Vec`-returning APIs now all return iterators instead * All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`. There is currently on convenience API, `env::var_string`, which can be used to get the value of an environment variable as a unicode `String`. All old APIs are `#[deprecated]` in-place and will remain for some time to allow for migrations. The semantics of the APIs have been tweaked slightly with regard to dealing with invalid unicode (panic instead of replacement). The new `std::env` module is all contained within the `env` feature, so crates must add the following to access the new APIs: #![feature(env)] [breaking-change]
2015-01-27 20:20:58 +00:00
}
#[repr(C)]
pub struct REPARSE_DATA_BUFFER {
pub ReparseTag: c_uint,
pub ReparseDataLength: c_ushort,
pub Reserved: c_ushort,
pub rest: (),
}
#[repr(C)]
pub struct SYMBOLIC_LINK_REPARSE_BUFFER {
pub SubstituteNameOffset: c_ushort,
pub SubstituteNameLength: c_ushort,
pub PrintNameOffset: c_ushort,
pub PrintNameLength: c_ushort,
pub Flags: c_ulong,
pub PathBuffer: WCHAR,
}
#[repr(C)]
pub struct MOUNT_POINT_REPARSE_BUFFER {
pub SubstituteNameOffset: c_ushort,
pub SubstituteNameLength: c_ushort,
pub PrintNameOffset: c_ushort,
pub PrintNameLength: c_ushort,
pub PathBuffer: WCHAR,
}
2019-12-22 22:42:04 +00:00
pub type LPPROGRESS_ROUTINE = crate::option::Option<
unsafe extern "system" fn(
TotalFileSize: LARGE_INTEGER,
TotalBytesTransferred: LARGE_INTEGER,
StreamSize: LARGE_INTEGER,
StreamBytesTransferred: LARGE_INTEGER,
dwStreamNumber: DWORD,
dwCallbackReason: DWORD,
hSourceFile: HANDLE,
hDestinationFile: HANDLE,
lpData: LPVOID,
) -> DWORD,
>;
std: Fix Windows XP compatibility This commit enables executables linked against the standard library to run on Windows XP. There are two main components of this commit: * APIs not available on XP are shimmed to have a fallback implementation and use runtime detection to determine if they are available. * Mutexes on Windows were reimplemented to use critical sections on XP where rwlocks are not available. The APIs which are not available on XP are: * SetFileInformationByHandle - this is just used by `File::truncate` and that function just returns an error now. * SetThreadStackGuarantee - this is used by the stack overflow support on windows, but if this isn't available then it's just ignored (it seems non-critical). * All condition variable APIs are missing - the shims added for these apis simply always panic for now. We may eventually provide a fallback implementation, but for now the standard library does not rely on condition variables for normal use. * RWLocks, like condition variables, are missing entirely. The same story for condition variables is taken here. These APIs are all now panicking stubs as the standard library doesn't rely on RWLocks for normal use. Currently, as an optimization, we use SRWLOCKs for the standard `sync::Mutex` implementation on Windows, which is indeed required for normal operation of the standard library. To allow the standard library to run on XP, this commit reimplements mutexes on Windows to use SRWLOCK instances *if available* and otherwise a CriticalSection is used (with some checking for recursive locking). With all these changes put together, a 32-bit MSVC-built executable can run on Windows XP and print "hello world" Closes #12842 Closes #19992 Closes #24776
2015-06-26 16:30:35 +00:00
#[repr(C)]
2019-12-22 22:42:04 +00:00
pub struct CONDITION_VARIABLE {
pub ptr: LPVOID,
}
std: Fix Windows XP compatibility This commit enables executables linked against the standard library to run on Windows XP. There are two main components of this commit: * APIs not available on XP are shimmed to have a fallback implementation and use runtime detection to determine if they are available. * Mutexes on Windows were reimplemented to use critical sections on XP where rwlocks are not available. The APIs which are not available on XP are: * SetFileInformationByHandle - this is just used by `File::truncate` and that function just returns an error now. * SetThreadStackGuarantee - this is used by the stack overflow support on windows, but if this isn't available then it's just ignored (it seems non-critical). * All condition variable APIs are missing - the shims added for these apis simply always panic for now. We may eventually provide a fallback implementation, but for now the standard library does not rely on condition variables for normal use. * RWLocks, like condition variables, are missing entirely. The same story for condition variables is taken here. These APIs are all now panicking stubs as the standard library doesn't rely on RWLocks for normal use. Currently, as an optimization, we use SRWLOCKs for the standard `sync::Mutex` implementation on Windows, which is indeed required for normal operation of the standard library. To allow the standard library to run on XP, this commit reimplements mutexes on Windows to use SRWLOCK instances *if available* and otherwise a CriticalSection is used (with some checking for recursive locking). With all these changes put together, a 32-bit MSVC-built executable can run on Windows XP and print "hello world" Closes #12842 Closes #19992 Closes #24776
2015-06-26 16:30:35 +00:00
#[repr(C)]
2019-12-22 22:42:04 +00:00
pub struct SRWLOCK {
pub ptr: LPVOID,
}
std: Fix Windows XP compatibility This commit enables executables linked against the standard library to run on Windows XP. There are two main components of this commit: * APIs not available on XP are shimmed to have a fallback implementation and use runtime detection to determine if they are available. * Mutexes on Windows were reimplemented to use critical sections on XP where rwlocks are not available. The APIs which are not available on XP are: * SetFileInformationByHandle - this is just used by `File::truncate` and that function just returns an error now. * SetThreadStackGuarantee - this is used by the stack overflow support on windows, but if this isn't available then it's just ignored (it seems non-critical). * All condition variable APIs are missing - the shims added for these apis simply always panic for now. We may eventually provide a fallback implementation, but for now the standard library does not rely on condition variables for normal use. * RWLocks, like condition variables, are missing entirely. The same story for condition variables is taken here. These APIs are all now panicking stubs as the standard library doesn't rely on RWLocks for normal use. Currently, as an optimization, we use SRWLOCKs for the standard `sync::Mutex` implementation on Windows, which is indeed required for normal operation of the standard library. To allow the standard library to run on XP, this commit reimplements mutexes on Windows to use SRWLOCK instances *if available* and otherwise a CriticalSection is used (with some checking for recursive locking). With all these changes put together, a 32-bit MSVC-built executable can run on Windows XP and print "hello world" Closes #12842 Closes #19992 Closes #24776
2015-06-26 16:30:35 +00:00
#[repr(C)]
pub struct CRITICAL_SECTION {
CriticalSectionDebug: LPVOID,
LockCount: LONG,
RecursionCount: LONG,
OwningThread: HANDLE,
LockSemaphore: HANDLE,
2019-12-22 22:42:04 +00:00
SpinCount: ULONG_PTR,
std: Fix Windows XP compatibility This commit enables executables linked against the standard library to run on Windows XP. There are two main components of this commit: * APIs not available on XP are shimmed to have a fallback implementation and use runtime detection to determine if they are available. * Mutexes on Windows were reimplemented to use critical sections on XP where rwlocks are not available. The APIs which are not available on XP are: * SetFileInformationByHandle - this is just used by `File::truncate` and that function just returns an error now. * SetThreadStackGuarantee - this is used by the stack overflow support on windows, but if this isn't available then it's just ignored (it seems non-critical). * All condition variable APIs are missing - the shims added for these apis simply always panic for now. We may eventually provide a fallback implementation, but for now the standard library does not rely on condition variables for normal use. * RWLocks, like condition variables, are missing entirely. The same story for condition variables is taken here. These APIs are all now panicking stubs as the standard library doesn't rely on RWLocks for normal use. Currently, as an optimization, we use SRWLOCKs for the standard `sync::Mutex` implementation on Windows, which is indeed required for normal operation of the standard library. To allow the standard library to run on XP, this commit reimplements mutexes on Windows to use SRWLOCK instances *if available* and otherwise a CriticalSection is used (with some checking for recursive locking). With all these changes put together, a 32-bit MSVC-built executable can run on Windows XP and print "hello world" Closes #12842 Closes #19992 Closes #24776
2015-06-26 16:30:35 +00:00
}
#[repr(C)]
pub struct REPARSE_MOUNTPOINT_DATA_BUFFER {
pub ReparseTag: DWORD,
pub ReparseDataLength: DWORD,
pub Reserved: WORD,
pub ReparseTargetLength: WORD,
pub ReparseTargetMaximumLength: WORD,
pub Reserved1: WORD,
pub ReparseTarget: WCHAR,
}
#[repr(C)]
pub struct GUID {
pub Data1: DWORD,
pub Data2: WORD,
pub Data3: WORD,
pub Data4: [BYTE; 8],
}
#[repr(C)]
pub struct WSAPROTOCOLCHAIN {
pub ChainLen: c_int,
pub ChainEntries: [DWORD; MAX_PROTOCOL_CHAIN as usize],
}
#[repr(C)]
pub struct SECURITY_ATTRIBUTES {
pub nLength: DWORD,
pub lpSecurityDescriptor: LPVOID,
pub bInheritHandle: BOOL,
}
#[repr(C)]
pub struct PROCESS_INFORMATION {
pub hProcess: HANDLE,
pub hThread: HANDLE,
pub dwProcessId: DWORD,
pub dwThreadId: DWORD,
}
#[repr(C)]
pub struct STARTUPINFO {
pub cb: DWORD,
pub lpReserved: LPWSTR,
pub lpDesktop: LPWSTR,
pub lpTitle: LPWSTR,
pub dwX: DWORD,
pub dwY: DWORD,
pub dwXSize: DWORD,
pub dwYSize: DWORD,
pub dwXCountChars: DWORD,
pub dwYCountCharts: DWORD,
pub dwFillAttribute: DWORD,
pub dwFlags: DWORD,
pub wShowWindow: WORD,
pub cbReserved2: WORD,
pub lpReserved2: LPBYTE,
pub hStdInput: HANDLE,
pub hStdOutput: HANDLE,
pub hStdError: HANDLE,
}
#[repr(C)]
pub struct SOCKADDR {
pub sa_family: ADDRESS_FAMILY,
pub sa_data: [CHAR; 14],
}
#[repr(C)]
#[derive(Copy, Clone)]
pub struct FILETIME {
pub dwLowDateTime: DWORD,
pub dwHighDateTime: DWORD,
}
#[repr(C)]
pub struct OVERLAPPED {
pub Internal: *mut c_ulong,
pub InternalHigh: *mut c_ulong,
pub Offset: DWORD,
pub OffsetHigh: DWORD,
pub hEvent: HANDLE,
}
#[repr(C)]
2016-02-20 07:18:02 +00:00
#[allow(dead_code)] // we only use some variants
pub enum ADDRESS_MODE {
AddrMode1616,
AddrMode1632,
AddrModeReal,
AddrModeFlat,
}
#[repr(C)]
pub struct SOCKADDR_STORAGE_LH {
pub ss_family: ADDRESS_FAMILY,
pub __ss_pad1: [CHAR; 6],
pub __ss_align: i64,
pub __ss_pad2: [CHAR; 112],
}
#[repr(C)]
pub struct ADDRINFOA {
pub ai_flags: c_int,
pub ai_family: c_int,
pub ai_socktype: c_int,
pub ai_protocol: c_int,
pub ai_addrlen: size_t,
pub ai_canonname: *mut c_char,
pub ai_addr: *mut SOCKADDR,
pub ai_next: *mut ADDRINFOA,
}
#[repr(C)]
#[derive(Copy, Clone)]
pub struct sockaddr_in {
pub sin_family: ADDRESS_FAMILY,
pub sin_port: USHORT,
pub sin_addr: in_addr,
pub sin_zero: [CHAR; 8],
}
#[repr(C)]
#[derive(Copy, Clone)]
pub struct sockaddr_in6 {
pub sin6_family: ADDRESS_FAMILY,
pub sin6_port: USHORT,
pub sin6_flowinfo: c_ulong,
pub sin6_addr: in6_addr,
pub sin6_scope_id: c_ulong,
}
#[repr(C)]
#[derive(Copy, Clone)]
pub struct in_addr {
pub s_addr: u32,
}
#[repr(C)]
#[derive(Copy, Clone)]
pub struct in6_addr {
pub s6_addr: [u8; 16],
}
#[repr(C)]
#[derive(Copy, Clone)]
2016-02-20 07:18:02 +00:00
#[allow(dead_code)] // we only use some variants
pub enum EXCEPTION_DISPOSITION {
ExceptionContinueExecution,
ExceptionContinueSearch,
ExceptionNestedException,
2019-12-22 22:42:04 +00:00
ExceptionCollidedUnwind,
}
#[repr(C)]
#[derive(Copy)]
pub struct fd_set {
pub fd_count: c_uint,
pub fd_array: [SOCKET; FD_SETSIZE],
}
impl Clone for fd_set {
fn clone(&self) -> fd_set {
*self
}
}
#[repr(C)]
#[derive(Copy, Clone)]
pub struct timeval {
pub tv_sec: c_long,
pub tv_usec: c_long,
}
// Functions forbidden when targeting UWP
cfg_if::cfg_if! {
if #[cfg(not(target_vendor = "uwp"))] {
pub const EXCEPTION_CONTINUE_SEARCH: LONG = 0;
pub const EXCEPTION_STACK_OVERFLOW: DWORD = 0xc00000fd;
pub const EXCEPTION_MAXIMUM_PARAMETERS: usize = 15;
#[repr(C)]
pub struct EXCEPTION_RECORD {
pub ExceptionCode: DWORD,
pub ExceptionFlags: DWORD,
pub ExceptionRecord: *mut EXCEPTION_RECORD,
pub ExceptionAddress: LPVOID,
pub NumberParameters: DWORD,
pub ExceptionInformation: [LPVOID; EXCEPTION_MAXIMUM_PARAMETERS]
}
pub enum CONTEXT {}
#[repr(C)]
pub struct EXCEPTION_POINTERS {
pub ExceptionRecord: *mut EXCEPTION_RECORD,
pub ContextRecord: *mut CONTEXT,
}
pub type PVECTORED_EXCEPTION_HANDLER = extern "system"
fn(ExceptionInfo: *mut EXCEPTION_POINTERS) -> LONG;
#[repr(C)]
#[derive(Copy, Clone)]
pub struct CONSOLE_READCONSOLE_CONTROL {
pub nLength: ULONG,
pub nInitialChars: ULONG,
pub dwCtrlWakeupMask: ULONG,
pub dwControlKeyState: ULONG,
}
pub type PCONSOLE_READCONSOLE_CONTROL = *mut CONSOLE_READCONSOLE_CONTROL;
#[repr(C)]
pub struct BY_HANDLE_FILE_INFORMATION {
pub dwFileAttributes: DWORD,
pub ftCreationTime: FILETIME,
pub ftLastAccessTime: FILETIME,
pub ftLastWriteTime: FILETIME,
pub dwVolumeSerialNumber: DWORD,
pub nFileSizeHigh: DWORD,
pub nFileSizeLow: DWORD,
pub nNumberOfLinks: DWORD,
pub nFileIndexHigh: DWORD,
pub nFileIndexLow: DWORD,
}
pub type LPBY_HANDLE_FILE_INFORMATION = *mut BY_HANDLE_FILE_INFORMATION;
pub type LPCVOID = *const c_void;
pub const HANDLE_FLAG_INHERIT: DWORD = 0x00000001;
pub const TOKEN_READ: DWORD = 0x20008;
extern "system" {
#[link_name = "SystemFunction036"]
pub fn RtlGenRandom(RandomBuffer: *mut u8, RandomBufferLength: ULONG) -> BOOLEAN;
pub fn ReadConsoleW(hConsoleInput: HANDLE,
lpBuffer: LPVOID,
nNumberOfCharsToRead: DWORD,
lpNumberOfCharsRead: LPDWORD,
pInputControl: PCONSOLE_READCONSOLE_CONTROL) -> BOOL;
pub fn WriteConsoleW(hConsoleOutput: HANDLE,
lpBuffer: LPCVOID,
nNumberOfCharsToWrite: DWORD,
lpNumberOfCharsWritten: LPDWORD,
lpReserved: LPVOID) -> BOOL;
pub fn GetConsoleMode(hConsoleHandle: HANDLE,
lpMode: LPDWORD) -> BOOL;
// Allowed but unused by UWP
pub fn OpenProcessToken(ProcessHandle: HANDLE,
DesiredAccess: DWORD,
TokenHandle: *mut HANDLE) -> BOOL;
pub fn GetUserProfileDirectoryW(hToken: HANDLE,
lpProfileDir: LPWSTR,
lpcchSize: *mut DWORD) -> BOOL;
pub fn GetFileInformationByHandle(hFile: HANDLE,
lpFileInformation: LPBY_HANDLE_FILE_INFORMATION)
-> BOOL;
pub fn SetHandleInformation(hObject: HANDLE,
dwMask: DWORD,
dwFlags: DWORD) -> BOOL;
pub fn AddVectoredExceptionHandler(FirstHandler: ULONG,
VectoredHandler: PVECTORED_EXCEPTION_HANDLER)
-> LPVOID;
pub fn CreateHardLinkW(lpSymlinkFileName: LPCWSTR,
lpTargetFileName: LPCWSTR,
lpSecurityAttributes: LPSECURITY_ATTRIBUTES)
-> BOOL;
}
}
}
// UWP specific functions & types
cfg_if::cfg_if! {
if #[cfg(target_vendor = "uwp")] {
pub const BCRYPT_USE_SYSTEM_PREFERRED_RNG: DWORD = 0x00000002;
#[repr(C)]
pub struct FILE_STANDARD_INFO {
pub AllocationSize: LARGE_INTEGER,
pub EndOfFile: LARGE_INTEGER,
2019-07-31 03:56:56 +00:00
pub NumberOfLinks: DWORD,
pub DeletePending: BOOLEAN,
pub Directory: BOOLEAN,
}
extern "system" {
pub fn GetFileInformationByHandleEx(hFile: HANDLE,
fileInfoClass: FILE_INFO_BY_HANDLE_CLASS,
lpFileInformation: LPVOID,
dwBufferSize: DWORD) -> BOOL;
pub fn BCryptGenRandom(hAlgorithm: LPVOID, pBuffer: *mut u8,
cbBuffer: ULONG, dwFlags: ULONG) -> LONG;
}
}
}
// Shared between Desktop & UWP
extern "system" {
2019-12-22 22:42:04 +00:00
pub fn WSAStartup(wVersionRequested: WORD, lpWSAData: LPWSADATA) -> c_int;
pub fn WSACleanup() -> c_int;
pub fn WSAGetLastError() -> c_int;
2019-12-22 22:42:04 +00:00
pub fn WSADuplicateSocketW(
s: SOCKET,
dwProcessId: DWORD,
lpProtocolInfo: LPWSAPROTOCOL_INFO,
) -> c_int;
pub fn WSASend(
s: SOCKET,
lpBuffers: LPWSABUF,
dwBufferCount: DWORD,
lpNumberOfBytesSent: LPDWORD,
dwFlags: DWORD,
lpOverlapped: LPWSAOVERLAPPED,
lpCompletionRoutine: LPWSAOVERLAPPED_COMPLETION_ROUTINE,
) -> c_int;
pub fn WSARecv(
s: SOCKET,
lpBuffers: LPWSABUF,
dwBufferCount: DWORD,
lpNumberOfBytesRecvd: LPDWORD,
lpFlags: LPDWORD,
lpOverlapped: LPWSAOVERLAPPED,
lpCompletionRoutine: LPWSAOVERLAPPED_COMPLETION_ROUTINE,
) -> c_int;
pub fn GetCurrentProcessId() -> DWORD;
2019-12-22 22:42:04 +00:00
pub fn WSASocketW(
af: c_int,
kind: c_int,
protocol: c_int,
lpProtocolInfo: LPWSAPROTOCOL_INFO,
g: GROUP,
dwFlags: DWORD,
) -> SOCKET;
pub fn ioctlsocket(s: SOCKET, cmd: c_long, argp: *mut c_ulong) -> c_int;
std: Fix Windows XP compatibility This commit enables executables linked against the standard library to run on Windows XP. There are two main components of this commit: * APIs not available on XP are shimmed to have a fallback implementation and use runtime detection to determine if they are available. * Mutexes on Windows were reimplemented to use critical sections on XP where rwlocks are not available. The APIs which are not available on XP are: * SetFileInformationByHandle - this is just used by `File::truncate` and that function just returns an error now. * SetThreadStackGuarantee - this is used by the stack overflow support on windows, but if this isn't available then it's just ignored (it seems non-critical). * All condition variable APIs are missing - the shims added for these apis simply always panic for now. We may eventually provide a fallback implementation, but for now the standard library does not rely on condition variables for normal use. * RWLocks, like condition variables, are missing entirely. The same story for condition variables is taken here. These APIs are all now panicking stubs as the standard library doesn't rely on RWLocks for normal use. Currently, as an optimization, we use SRWLOCKs for the standard `sync::Mutex` implementation on Windows, which is indeed required for normal operation of the standard library. To allow the standard library to run on XP, this commit reimplements mutexes on Windows to use SRWLOCK instances *if available* and otherwise a CriticalSection is used (with some checking for recursive locking). With all these changes put together, a 32-bit MSVC-built executable can run on Windows XP and print "hello world" Closes #12842 Closes #19992 Closes #24776
2015-06-26 16:30:35 +00:00
pub fn InitializeCriticalSection(CriticalSection: *mut CRITICAL_SECTION);
pub fn EnterCriticalSection(CriticalSection: *mut CRITICAL_SECTION);
pub fn TryEnterCriticalSection(CriticalSection: *mut CRITICAL_SECTION) -> BOOL;
std: Fix Windows XP compatibility This commit enables executables linked against the standard library to run on Windows XP. There are two main components of this commit: * APIs not available on XP are shimmed to have a fallback implementation and use runtime detection to determine if they are available. * Mutexes on Windows were reimplemented to use critical sections on XP where rwlocks are not available. The APIs which are not available on XP are: * SetFileInformationByHandle - this is just used by `File::truncate` and that function just returns an error now. * SetThreadStackGuarantee - this is used by the stack overflow support on windows, but if this isn't available then it's just ignored (it seems non-critical). * All condition variable APIs are missing - the shims added for these apis simply always panic for now. We may eventually provide a fallback implementation, but for now the standard library does not rely on condition variables for normal use. * RWLocks, like condition variables, are missing entirely. The same story for condition variables is taken here. These APIs are all now panicking stubs as the standard library doesn't rely on RWLocks for normal use. Currently, as an optimization, we use SRWLOCKs for the standard `sync::Mutex` implementation on Windows, which is indeed required for normal operation of the standard library. To allow the standard library to run on XP, this commit reimplements mutexes on Windows to use SRWLOCK instances *if available* and otherwise a CriticalSection is used (with some checking for recursive locking). With all these changes put together, a 32-bit MSVC-built executable can run on Windows XP and print "hello world" Closes #12842 Closes #19992 Closes #24776
2015-06-26 16:30:35 +00:00
pub fn LeaveCriticalSection(CriticalSection: *mut CRITICAL_SECTION);
pub fn DeleteCriticalSection(CriticalSection: *mut CRITICAL_SECTION);
pub fn RemoveDirectoryW(lpPathName: LPCWSTR) -> BOOL;
2019-12-22 22:42:04 +00:00
pub fn SetFileAttributesW(lpFileName: LPCWSTR, dwFileAttributes: DWORD) -> BOOL;
pub fn SetLastError(dwErrCode: DWORD);
pub fn GetCommandLineW() -> *mut LPCWSTR;
2019-12-22 22:42:04 +00:00
pub fn GetTempPathW(nBufferLength: DWORD, lpBuffer: LPCWSTR) -> DWORD;
pub fn GetCurrentProcess() -> HANDLE;
pub fn GetCurrentThread() -> HANDLE;
pub fn GetStdHandle(which: DWORD) -> HANDLE;
pub fn ExitProcess(uExitCode: c_uint) -> !;
2019-12-22 22:42:04 +00:00
pub fn DeviceIoControl(
hDevice: HANDLE,
dwIoControlCode: DWORD,
lpInBuffer: LPVOID,
nInBufferSize: DWORD,
lpOutBuffer: LPVOID,
nOutBufferSize: DWORD,
lpBytesReturned: LPDWORD,
lpOverlapped: LPOVERLAPPED,
) -> BOOL;
pub fn CreateThread(
lpThreadAttributes: LPSECURITY_ATTRIBUTES,
dwStackSize: SIZE_T,
lpStartAddress: extern "system" fn(*mut c_void) -> DWORD,
lpParameter: LPVOID,
dwCreationFlags: DWORD,
lpThreadId: LPDWORD,
) -> HANDLE;
pub fn WaitForSingleObject(hHandle: HANDLE, dwMilliseconds: DWORD) -> DWORD;
pub fn SwitchToThread() -> BOOL;
pub fn Sleep(dwMilliseconds: DWORD);
pub fn GetProcessId(handle: HANDLE) -> DWORD;
2019-12-22 22:42:04 +00:00
pub fn CopyFileExW(
lpExistingFileName: LPCWSTR,
lpNewFileName: LPCWSTR,
lpProgressRoutine: LPPROGRESS_ROUTINE,
lpData: LPVOID,
pbCancel: LPBOOL,
dwCopyFlags: DWORD,
) -> BOOL;
pub fn FormatMessageW(
flags: DWORD,
lpSrc: LPVOID,
msgId: DWORD,
langId: DWORD,
buf: LPWSTR,
nsize: DWORD,
args: *const c_void,
) -> DWORD;
pub fn TlsAlloc() -> DWORD;
pub fn TlsGetValue(dwTlsIndex: DWORD) -> LPVOID;
pub fn TlsSetValue(dwTlsIndex: DWORD, lpTlsvalue: LPVOID) -> BOOL;
pub fn GetLastError() -> DWORD;
pub fn QueryPerformanceFrequency(lpFrequency: *mut LARGE_INTEGER) -> BOOL;
2019-12-22 22:42:04 +00:00
pub fn QueryPerformanceCounter(lpPerformanceCount: *mut LARGE_INTEGER) -> BOOL;
pub fn GetExitCodeProcess(hProcess: HANDLE, lpExitCode: LPDWORD) -> BOOL;
pub fn TerminateProcess(hProcess: HANDLE, uExitCode: UINT) -> BOOL;
2019-12-22 22:42:04 +00:00
pub fn CreateProcessW(
lpApplicationName: LPCWSTR,
lpCommandLine: LPWSTR,
lpProcessAttributes: LPSECURITY_ATTRIBUTES,
lpThreadAttributes: LPSECURITY_ATTRIBUTES,
bInheritHandles: BOOL,
dwCreationFlags: DWORD,
lpEnvironment: LPVOID,
lpCurrentDirectory: LPCWSTR,
lpStartupInfo: LPSTARTUPINFO,
lpProcessInformation: LPPROCESS_INFORMATION,
) -> BOOL;
pub fn GetEnvironmentVariableW(n: LPCWSTR, v: LPWSTR, nsize: DWORD) -> DWORD;
pub fn SetEnvironmentVariableW(n: LPCWSTR, v: LPCWSTR) -> BOOL;
pub fn GetEnvironmentStringsW() -> LPWCH;
pub fn FreeEnvironmentStringsW(env_ptr: LPWCH) -> BOOL;
2019-12-22 22:42:04 +00:00
pub fn GetModuleFileNameW(hModule: HMODULE, lpFilename: LPWSTR, nSize: DWORD) -> DWORD;
pub fn CreateDirectoryW(
lpPathName: LPCWSTR,
lpSecurityAttributes: LPSECURITY_ATTRIBUTES,
) -> BOOL;
pub fn DeleteFileW(lpPathName: LPCWSTR) -> BOOL;
pub fn GetCurrentDirectoryW(nBufferLength: DWORD, lpBuffer: LPWSTR) -> DWORD;
pub fn SetCurrentDirectoryW(lpPathName: LPCWSTR) -> BOOL;
pub fn closesocket(socket: SOCKET) -> c_int;
2019-12-22 22:42:04 +00:00
pub fn recv(socket: SOCKET, buf: *mut c_void, len: c_int, flags: c_int) -> c_int;
pub fn send(socket: SOCKET, buf: *const c_void, len: c_int, flags: c_int) -> c_int;
pub fn recvfrom(
socket: SOCKET,
buf: *mut c_void,
len: c_int,
flags: c_int,
addr: *mut SOCKADDR,
addrlen: *mut c_int,
) -> c_int;
pub fn sendto(
socket: SOCKET,
buf: *const c_void,
len: c_int,
flags: c_int,
addr: *const SOCKADDR,
addrlen: c_int,
) -> c_int;
pub fn shutdown(socket: SOCKET, how: c_int) -> c_int;
2019-12-22 22:42:04 +00:00
pub fn accept(socket: SOCKET, address: *mut SOCKADDR, address_len: *mut c_int) -> SOCKET;
pub fn DuplicateHandle(
hSourceProcessHandle: HANDLE,
hSourceHandle: HANDLE,
hTargetProcessHandle: HANDLE,
lpTargetHandle: LPHANDLE,
dwDesiredAccess: DWORD,
bInheritHandle: BOOL,
dwOptions: DWORD,
) -> BOOL;
pub fn ReadFile(
hFile: HANDLE,
lpBuffer: LPVOID,
nNumberOfBytesToRead: DWORD,
lpNumberOfBytesRead: LPDWORD,
lpOverlapped: LPOVERLAPPED,
) -> BOOL;
pub fn WriteFile(
hFile: HANDLE,
lpBuffer: LPVOID,
nNumberOfBytesToWrite: DWORD,
lpNumberOfBytesWritten: LPDWORD,
lpOverlapped: LPOVERLAPPED,
) -> BOOL;
pub fn CloseHandle(hObject: HANDLE) -> BOOL;
2019-12-22 22:42:04 +00:00
pub fn MoveFileExW(lpExistingFileName: LPCWSTR, lpNewFileName: LPCWSTR, dwFlags: DWORD)
-> BOOL;
pub fn SetFilePointerEx(
hFile: HANDLE,
liDistanceToMove: LARGE_INTEGER,
lpNewFilePointer: PLARGE_INTEGER,
dwMoveMethod: DWORD,
) -> BOOL;
pub fn FlushFileBuffers(hFile: HANDLE) -> BOOL;
2019-12-22 22:42:04 +00:00
pub fn CreateFileW(
lpFileName: LPCWSTR,
dwDesiredAccess: DWORD,
dwShareMode: DWORD,
lpSecurityAttributes: LPSECURITY_ATTRIBUTES,
dwCreationDisposition: DWORD,
dwFlagsAndAttributes: DWORD,
hTemplateFile: HANDLE,
) -> HANDLE;
pub fn FindFirstFileW(fileName: LPCWSTR, findFileData: LPWIN32_FIND_DATAW) -> HANDLE;
pub fn FindNextFileW(findFile: HANDLE, findFileData: LPWIN32_FIND_DATAW) -> BOOL;
pub fn FindClose(findFile: HANDLE) -> BOOL;
2019-12-22 22:42:04 +00:00
pub fn getsockopt(
s: SOCKET,
level: c_int,
optname: c_int,
optval: *mut c_char,
optlen: *mut c_int,
) -> c_int;
pub fn setsockopt(
s: SOCKET,
level: c_int,
optname: c_int,
optval: *const c_void,
optlen: c_int,
) -> c_int;
pub fn getsockname(socket: SOCKET, address: *mut SOCKADDR, address_len: *mut c_int) -> c_int;
pub fn getpeername(socket: SOCKET, address: *mut SOCKADDR, address_len: *mut c_int) -> c_int;
pub fn bind(socket: SOCKET, address: *const SOCKADDR, address_len: socklen_t) -> c_int;
pub fn listen(socket: SOCKET, backlog: c_int) -> c_int;
2019-12-22 22:42:04 +00:00
pub fn connect(socket: SOCKET, address: *const SOCKADDR, len: c_int) -> c_int;
pub fn getaddrinfo(
node: *const c_char,
service: *const c_char,
hints: *const ADDRINFOA,
res: *mut *mut ADDRINFOA,
) -> c_int;
pub fn freeaddrinfo(res: *mut ADDRINFOA);
2019-12-22 22:42:04 +00:00
pub fn GetProcAddress(handle: HMODULE, name: LPCSTR) -> *mut c_void;
pub fn GetModuleHandleA(lpModuleName: LPCSTR) -> HMODULE;
pub fn GetModuleHandleW(lpModuleName: LPCWSTR) -> HMODULE;
pub fn GetSystemTimeAsFileTime(lpSystemTimeAsFileTime: LPFILETIME);
2019-12-22 22:42:04 +00:00
pub fn CreateEventW(
lpEventAttributes: LPSECURITY_ATTRIBUTES,
bManualReset: BOOL,
bInitialState: BOOL,
lpName: LPCWSTR,
) -> HANDLE;
pub fn WaitForMultipleObjects(
nCount: DWORD,
lpHandles: *const HANDLE,
bWaitAll: BOOL,
dwMilliseconds: DWORD,
) -> DWORD;
pub fn CreateNamedPipeW(
lpName: LPCWSTR,
dwOpenMode: DWORD,
dwPipeMode: DWORD,
nMaxInstances: DWORD,
nOutBufferSize: DWORD,
nInBufferSize: DWORD,
nDefaultTimeOut: DWORD,
lpSecurityAttributes: LPSECURITY_ATTRIBUTES,
) -> HANDLE;
pub fn CancelIo(handle: HANDLE) -> BOOL;
2019-12-22 22:42:04 +00:00
pub fn GetOverlappedResult(
hFile: HANDLE,
lpOverlapped: LPOVERLAPPED,
lpNumberOfBytesTransferred: LPDWORD,
bWait: BOOL,
) -> BOOL;
pub fn select(
nfds: c_int,
readfds: *mut fd_set,
writefds: *mut fd_set,
exceptfds: *mut fd_set,
timeout: *const timeval,
) -> c_int;
pub fn GetProcessHeap() -> HANDLE;
pub fn HeapAlloc(hHeap: HANDLE, dwFlags: DWORD, dwBytes: SIZE_T) -> LPVOID;
pub fn HeapReAlloc(hHeap: HANDLE, dwFlags: DWORD, lpMem: LPVOID, dwBytes: SIZE_T) -> LPVOID;
pub fn HeapFree(hHeap: HANDLE, dwFlags: DWORD, lpMem: LPVOID) -> BOOL;
// >= Vista / Server 2008
// https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsymboliclinkw
pub fn CreateSymbolicLinkW(
lpSymlinkFileName: LPCWSTR,
lpTargetFileName: LPCWSTR,
dwFlags: DWORD,
) -> BOOLEAN;
// >= Vista / Server 2008
// https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfinalpathnamebyhandlew
pub fn GetFinalPathNameByHandleW(
hFile: HANDLE,
lpszFilePath: LPCWSTR,
cchFilePath: DWORD,
dwFlags: DWORD,
) -> DWORD;
// >= Vista / Server 2003
// https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadstackguarantee
#[cfg(not(target_vendor = "uwp"))]
pub fn SetThreadStackGuarantee(_size: *mut c_ulong) -> BOOL;
// >= Vista / Server 2008
// https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfileinformationbyhandle
pub fn SetFileInformationByHandle(
hFile: HANDLE,
FileInformationClass: FILE_INFO_BY_HANDLE_CLASS,
lpFileInformation: LPVOID,
dwBufferSize: DWORD,
) -> BOOL;
// >= Vista / Server 2008
// https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleepconditionvariablesrw
pub fn SleepConditionVariableSRW(
ConditionVariable: PCONDITION_VARIABLE,
SRWLock: PSRWLOCK,
dwMilliseconds: DWORD,
Flags: ULONG,
) -> BOOL;
// >= Vista / Server 2008
// https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-wakeconditionvariable
pub fn WakeConditionVariable(ConditionVariable: PCONDITION_VARIABLE);
pub fn WakeAllConditionVariable(ConditionVariable: PCONDITION_VARIABLE);
// >= Vista / Server 2008
// https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-acquiresrwlockexclusive
pub fn AcquireSRWLockExclusive(SRWLock: PSRWLOCK);
pub fn AcquireSRWLockShared(SRWLock: PSRWLOCK);
pub fn ReleaseSRWLockExclusive(SRWLock: PSRWLOCK);
pub fn ReleaseSRWLockShared(SRWLock: PSRWLOCK);
pub fn TryAcquireSRWLockExclusive(SRWLock: PSRWLOCK) -> BOOLEAN;
pub fn TryAcquireSRWLockShared(SRWLock: PSRWLOCK) -> BOOLEAN;
}
std: Fix Windows XP compatibility This commit enables executables linked against the standard library to run on Windows XP. There are two main components of this commit: * APIs not available on XP are shimmed to have a fallback implementation and use runtime detection to determine if they are available. * Mutexes on Windows were reimplemented to use critical sections on XP where rwlocks are not available. The APIs which are not available on XP are: * SetFileInformationByHandle - this is just used by `File::truncate` and that function just returns an error now. * SetThreadStackGuarantee - this is used by the stack overflow support on windows, but if this isn't available then it's just ignored (it seems non-critical). * All condition variable APIs are missing - the shims added for these apis simply always panic for now. We may eventually provide a fallback implementation, but for now the standard library does not rely on condition variables for normal use. * RWLocks, like condition variables, are missing entirely. The same story for condition variables is taken here. These APIs are all now panicking stubs as the standard library doesn't rely on RWLocks for normal use. Currently, as an optimization, we use SRWLOCKs for the standard `sync::Mutex` implementation on Windows, which is indeed required for normal operation of the standard library. To allow the standard library to run on XP, this commit reimplements mutexes on Windows to use SRWLOCK instances *if available* and otherwise a CriticalSection is used (with some checking for recursive locking). With all these changes put together, a 32-bit MSVC-built executable can run on Windows XP and print "hello world" Closes #12842 Closes #19992 Closes #24776
2015-06-26 16:30:35 +00:00
2017-09-06 19:40:34 +00:00
// Functions that aren't available on every version of Windows that we support,
// but we still use them and just provide some form of a fallback implementation.
std: Fix Windows XP compatibility This commit enables executables linked against the standard library to run on Windows XP. There are two main components of this commit: * APIs not available on XP are shimmed to have a fallback implementation and use runtime detection to determine if they are available. * Mutexes on Windows were reimplemented to use critical sections on XP where rwlocks are not available. The APIs which are not available on XP are: * SetFileInformationByHandle - this is just used by `File::truncate` and that function just returns an error now. * SetThreadStackGuarantee - this is used by the stack overflow support on windows, but if this isn't available then it's just ignored (it seems non-critical). * All condition variable APIs are missing - the shims added for these apis simply always panic for now. We may eventually provide a fallback implementation, but for now the standard library does not rely on condition variables for normal use. * RWLocks, like condition variables, are missing entirely. The same story for condition variables is taken here. These APIs are all now panicking stubs as the standard library doesn't rely on RWLocks for normal use. Currently, as an optimization, we use SRWLOCKs for the standard `sync::Mutex` implementation on Windows, which is indeed required for normal operation of the standard library. To allow the standard library to run on XP, this commit reimplements mutexes on Windows to use SRWLOCK instances *if available* and otherwise a CriticalSection is used (with some checking for recursive locking). With all these changes put together, a 32-bit MSVC-built executable can run on Windows XP and print "hello world" Closes #12842 Closes #19992 Closes #24776
2015-06-26 16:30:35 +00:00
compat_fn! {
"kernel32":
std: Fix Windows XP compatibility This commit enables executables linked against the standard library to run on Windows XP. There are two main components of this commit: * APIs not available on XP are shimmed to have a fallback implementation and use runtime detection to determine if they are available. * Mutexes on Windows were reimplemented to use critical sections on XP where rwlocks are not available. The APIs which are not available on XP are: * SetFileInformationByHandle - this is just used by `File::truncate` and that function just returns an error now. * SetThreadStackGuarantee - this is used by the stack overflow support on windows, but if this isn't available then it's just ignored (it seems non-critical). * All condition variable APIs are missing - the shims added for these apis simply always panic for now. We may eventually provide a fallback implementation, but for now the standard library does not rely on condition variables for normal use. * RWLocks, like condition variables, are missing entirely. The same story for condition variables is taken here. These APIs are all now panicking stubs as the standard library doesn't rely on RWLocks for normal use. Currently, as an optimization, we use SRWLOCKs for the standard `sync::Mutex` implementation on Windows, which is indeed required for normal operation of the standard library. To allow the standard library to run on XP, this commit reimplements mutexes on Windows to use SRWLOCK instances *if available* and otherwise a CriticalSection is used (with some checking for recursive locking). With all these changes put together, a 32-bit MSVC-built executable can run on Windows XP and print "hello world" Closes #12842 Closes #19992 Closes #24776
2015-06-26 16:30:35 +00:00
// >= Win10 1607
// https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreaddescription
2017-09-06 19:40:34 +00:00
pub fn SetThreadDescription(hThread: HANDLE,
lpThreadDescription: LPCWSTR) -> HRESULT {
SetLastError(ERROR_CALL_NOT_IMPLEMENTED as DWORD); E_NOTIMPL
}
// >= Win8 / Server 2012
// https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getsystemtimepreciseasfiletime
pub fn GetSystemTimePreciseAsFileTime(lpSystemTimeAsFileTime: LPFILETIME)
-> () {
GetSystemTimeAsFileTime(lpSystemTimeAsFileTime)
}
std: Fix Windows XP compatibility This commit enables executables linked against the standard library to run on Windows XP. There are two main components of this commit: * APIs not available on XP are shimmed to have a fallback implementation and use runtime detection to determine if they are available. * Mutexes on Windows were reimplemented to use critical sections on XP where rwlocks are not available. The APIs which are not available on XP are: * SetFileInformationByHandle - this is just used by `File::truncate` and that function just returns an error now. * SetThreadStackGuarantee - this is used by the stack overflow support on windows, but if this isn't available then it's just ignored (it seems non-critical). * All condition variable APIs are missing - the shims added for these apis simply always panic for now. We may eventually provide a fallback implementation, but for now the standard library does not rely on condition variables for normal use. * RWLocks, like condition variables, are missing entirely. The same story for condition variables is taken here. These APIs are all now panicking stubs as the standard library doesn't rely on RWLocks for normal use. Currently, as an optimization, we use SRWLOCKs for the standard `sync::Mutex` implementation on Windows, which is indeed required for normal operation of the standard library. To allow the standard library to run on XP, this commit reimplements mutexes on Windows to use SRWLOCK instances *if available* and otherwise a CriticalSection is used (with some checking for recursive locking). With all these changes put together, a 32-bit MSVC-built executable can run on Windows XP and print "hello world" Closes #12842 Closes #19992 Closes #24776
2015-06-26 16:30:35 +00:00
}
compat_fn! {
"api-ms-win-core-synch-l1-2-0":
// >= Windows 8 / Server 2012
// https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitonaddress
pub fn WaitOnAddress(
Address: LPVOID,
CompareAddress: LPVOID,
AddressSize: SIZE_T,
dwMilliseconds: DWORD
) -> BOOL {
panic!("WaitOnAddress not available")
}
pub fn WakeByAddressSingle(Address: LPVOID) -> () {
// If this api is unavailable, there cannot be anything waiting, because
// WaitOnAddress would've panicked. So it's fine to do nothing here.
}
}
compat_fn! {
"ntdll":
pub fn NtCreateKeyedEvent(
KeyedEventHandle: LPHANDLE,
DesiredAccess: ACCESS_MASK,
ObjectAttributes: LPVOID,
Flags: ULONG
) -> NTSTATUS {
panic!("keyed events not available")
}
pub fn NtReleaseKeyedEvent(
EventHandle: HANDLE,
Key: LPVOID,
Alertable: BOOLEAN,
Timeout: PLARGE_INTEGER
) -> NTSTATUS {
panic!("keyed events not available")
}
pub fn NtWaitForKeyedEvent(
EventHandle: HANDLE,
Key: LPVOID,
Alertable: BOOLEAN,
Timeout: PLARGE_INTEGER
) -> NTSTATUS {
panic!("keyed events not available")
}
}