rust/src/libstd/Cargo.toml

69 lines
2.3 KiB
TOML
Raw Normal View History

[package]
authors = ["The Rust Project Developers"]
name = "std"
version = "0.0.0"
build = "build.rs"
license = "MIT/Apache-2.0"
repository = "https://github.com/rust-lang/rust.git"
description = "The Rust Standard Library"
[lib]
name = "std"
path = "lib.rs"
crate-type = ["dylib", "rlib"]
[dependencies]
alloc = { path = "../liballoc" }
panic_unwind = { path = "../libpanic_unwind", optional = true }
rustc: Implement custom panic runtimes This commit is an implementation of [RFC 1513] which allows applications to alter the behavior of panics at compile time. A new compiler flag, `-C panic`, is added and accepts the values `unwind` or `panic`, with the default being `unwind`. This model affects how code is generated for the local crate, skipping generation of landing pads with `-C panic=abort`. [RFC 1513]: https://github.com/rust-lang/rfcs/blob/master/text/1513-less-unwinding.md Panic implementations are then provided by crates tagged with `#![panic_runtime]` and lazily required by crates with `#![needs_panic_runtime]`. The panic strategy (`-C panic` value) of the panic runtime must match the final product, and if the panic strategy is not `abort` then the entire DAG must have the same panic strategy. With the `-C panic=abort` strategy, users can expect a stable method to disable generation of landing pads, improving optimization in niche scenarios, decreasing compile time, and decreasing output binary size. With the `-C panic=unwind` strategy users can expect the existing ability to isolate failure in Rust code from the outside world. Organizationally, this commit dismantles the `sys_common::unwind` module in favor of some bits moving part of it to `libpanic_unwind` and the rest into the `panicking` module in libstd. The custom panic runtime support is pretty similar to the custom allocator support with the only major difference being how the panic runtime is injected (takes the `-C panic` flag into account).
2016-04-08 23:18:40 +00:00
panic_abort = { path = "../libpanic_abort" }
core = { path = "../libcore" }
std: Depend directly on crates.io crates Ever since we added a Cargo-based build system for the compiler the standard library has always been a little special, it's never been able to depend on crates.io crates for runtime dependencies. This has been a result of various limitations, namely that Cargo doesn't understand that crates from crates.io depend on libcore, so Cargo tries to build crates before libcore is finished. I had an idea this afternoon, however, which lifts the strategy from #52919 to directly depend on crates.io crates from the standard library. After all is said and done this removes a whopping three submodules that we need to manage! The basic idea here is that for any crate `std` depends on it adds an *optional* dependency on an empty crate on crates.io, in this case named `rustc-std-workspace-core`. This crate is overridden via `[patch]` in this repository to point to a local crate we write, and *that* has a `path` dependency on libcore. Note that all `no_std` crates also depend on `compiler_builtins`, but if we're not using submodules we can publish `compiler_builtins` to crates.io and all crates can depend on it anyway! The basic strategy then looks like: * The standard library (or some transitive dep) decides to depend on a crate `foo`. * The standard library adds ```toml [dependencies] foo = { version = "0.1", features = ['rustc-dep-of-std'] } ``` * The crate `foo` has an optional dependency on `rustc-std-workspace-core` * The crate `foo` has an optional dependency on `compiler_builtins` * The crate `foo` has a feature `rustc-dep-of-std` which activates these crates and any other necessary infrastructure in the crate. A sample commit for `dlmalloc` [turns out to be quite simple][commit]. After that all `no_std` crates should largely build "as is" and still be publishable on crates.io! Notably they should be able to continue to use stable Rust if necessary, since the `rename-dependency` feature of Cargo is soon stabilizing. As a proof of concept, this commit removes the `dlmalloc`, `libcompiler_builtins`, and `libc` submodules from this repository. Long thorns in our side these are now gone for good and we can directly depend on crates.io! It's hoped that in the long term we can bring in other crates as necessary, but for now this is largely intended to simply make it easier to manage these crates and remove submodules. This should be a transparent non-breaking change for all users, but one possible stickler is that this almost for sure breaks out-of-tree `std`-building tools like `xargo` and `cargo-xbuild`. I think it should be relatively easy to get them working, however, as all that's needed is an entry in the `[patch]` section used to build the standard library. Hopefully we can work with these tools to solve this problem! [commit]: https://github.com/alexcrichton/dlmalloc-rs/commit/28ee12db813a3b650a7c25d1c36d2c17dcb88ae3
2018-11-20 05:52:50 +00:00
libc = { version = "0.2.44", default-features = false, features = ['rustc-dep-of-std'] }
compiler_builtins = { version = "0.1.1" }
profiler_builtins = { path = "../libprofiler_builtins", optional = true }
rustc: Implement custom panic runtimes This commit is an implementation of [RFC 1513] which allows applications to alter the behavior of panics at compile time. A new compiler flag, `-C panic`, is added and accepts the values `unwind` or `panic`, with the default being `unwind`. This model affects how code is generated for the local crate, skipping generation of landing pads with `-C panic=abort`. [RFC 1513]: https://github.com/rust-lang/rfcs/blob/master/text/1513-less-unwinding.md Panic implementations are then provided by crates tagged with `#![panic_runtime]` and lazily required by crates with `#![needs_panic_runtime]`. The panic strategy (`-C panic` value) of the panic runtime must match the final product, and if the panic strategy is not `abort` then the entire DAG must have the same panic strategy. With the `-C panic=abort` strategy, users can expect a stable method to disable generation of landing pads, improving optimization in niche scenarios, decreasing compile time, and decreasing output binary size. With the `-C panic=unwind` strategy users can expect the existing ability to isolate failure in Rust code from the outside world. Organizationally, this commit dismantles the `sys_common::unwind` module in favor of some bits moving part of it to `libpanic_unwind` and the rest into the `panicking` module in libstd. The custom panic runtime support is pretty similar to the custom allocator support with the only major difference being how the panic runtime is injected (takes the `-C panic` flag into account).
2016-04-08 23:18:40 +00:00
unwind = { path = "../libunwind" }
rustc-demangle = { version = "0.1.10", features = ['rustc-dep-of-std'] }
[dev-dependencies]
std: Depend directly on crates.io crates Ever since we added a Cargo-based build system for the compiler the standard library has always been a little special, it's never been able to depend on crates.io crates for runtime dependencies. This has been a result of various limitations, namely that Cargo doesn't understand that crates from crates.io depend on libcore, so Cargo tries to build crates before libcore is finished. I had an idea this afternoon, however, which lifts the strategy from #52919 to directly depend on crates.io crates from the standard library. After all is said and done this removes a whopping three submodules that we need to manage! The basic idea here is that for any crate `std` depends on it adds an *optional* dependency on an empty crate on crates.io, in this case named `rustc-std-workspace-core`. This crate is overridden via `[patch]` in this repository to point to a local crate we write, and *that* has a `path` dependency on libcore. Note that all `no_std` crates also depend on `compiler_builtins`, but if we're not using submodules we can publish `compiler_builtins` to crates.io and all crates can depend on it anyway! The basic strategy then looks like: * The standard library (or some transitive dep) decides to depend on a crate `foo`. * The standard library adds ```toml [dependencies] foo = { version = "0.1", features = ['rustc-dep-of-std'] } ``` * The crate `foo` has an optional dependency on `rustc-std-workspace-core` * The crate `foo` has an optional dependency on `compiler_builtins` * The crate `foo` has a feature `rustc-dep-of-std` which activates these crates and any other necessary infrastructure in the crate. A sample commit for `dlmalloc` [turns out to be quite simple][commit]. After that all `no_std` crates should largely build "as is" and still be publishable on crates.io! Notably they should be able to continue to use stable Rust if necessary, since the `rename-dependency` feature of Cargo is soon stabilizing. As a proof of concept, this commit removes the `dlmalloc`, `libcompiler_builtins`, and `libc` submodules from this repository. Long thorns in our side these are now gone for good and we can directly depend on crates.io! It's hoped that in the long term we can bring in other crates as necessary, but for now this is largely intended to simply make it easier to manage these crates and remove submodules. This should be a transparent non-breaking change for all users, but one possible stickler is that this almost for sure breaks out-of-tree `std`-building tools like `xargo` and `cargo-xbuild`. I think it should be relatively easy to get them working, however, as all that's needed is an entry in the `[patch]` section used to build the standard library. Hopefully we can work with these tools to solve this problem! [commit]: https://github.com/alexcrichton/dlmalloc-rs/commit/28ee12db813a3b650a7c25d1c36d2c17dcb88ae3
2018-11-20 05:52:50 +00:00
rand = "0.6.1"
[target.x86_64-apple-darwin.dependencies]
rustc_asan = { path = "../librustc_asan" }
rustc_tsan = { path = "../librustc_tsan" }
2016-12-30 04:28:11 +00:00
[target.x86_64-unknown-linux-gnu.dependencies]
rustc_asan = { path = "../librustc_asan" }
rustc_lsan = { path = "../librustc_lsan" }
rustc_msan = { path = "../librustc_msan" }
rustc_tsan = { path = "../librustc_tsan" }
2016-12-30 04:28:11 +00:00
[target.'cfg(any(all(target_arch = "wasm32", not(target_os = "emscripten")), target_env = "sgx"))'.dependencies]
std: Depend directly on crates.io crates Ever since we added a Cargo-based build system for the compiler the standard library has always been a little special, it's never been able to depend on crates.io crates for runtime dependencies. This has been a result of various limitations, namely that Cargo doesn't understand that crates from crates.io depend on libcore, so Cargo tries to build crates before libcore is finished. I had an idea this afternoon, however, which lifts the strategy from #52919 to directly depend on crates.io crates from the standard library. After all is said and done this removes a whopping three submodules that we need to manage! The basic idea here is that for any crate `std` depends on it adds an *optional* dependency on an empty crate on crates.io, in this case named `rustc-std-workspace-core`. This crate is overridden via `[patch]` in this repository to point to a local crate we write, and *that* has a `path` dependency on libcore. Note that all `no_std` crates also depend on `compiler_builtins`, but if we're not using submodules we can publish `compiler_builtins` to crates.io and all crates can depend on it anyway! The basic strategy then looks like: * The standard library (or some transitive dep) decides to depend on a crate `foo`. * The standard library adds ```toml [dependencies] foo = { version = "0.1", features = ['rustc-dep-of-std'] } ``` * The crate `foo` has an optional dependency on `rustc-std-workspace-core` * The crate `foo` has an optional dependency on `compiler_builtins` * The crate `foo` has a feature `rustc-dep-of-std` which activates these crates and any other necessary infrastructure in the crate. A sample commit for `dlmalloc` [turns out to be quite simple][commit]. After that all `no_std` crates should largely build "as is" and still be publishable on crates.io! Notably they should be able to continue to use stable Rust if necessary, since the `rename-dependency` feature of Cargo is soon stabilizing. As a proof of concept, this commit removes the `dlmalloc`, `libcompiler_builtins`, and `libc` submodules from this repository. Long thorns in our side these are now gone for good and we can directly depend on crates.io! It's hoped that in the long term we can bring in other crates as necessary, but for now this is largely intended to simply make it easier to manage these crates and remove submodules. This should be a transparent non-breaking change for all users, but one possible stickler is that this almost for sure breaks out-of-tree `std`-building tools like `xargo` and `cargo-xbuild`. I think it should be relatively easy to get them working, however, as all that's needed is an entry in the `[patch]` section used to build the standard library. Hopefully we can work with these tools to solve this problem! [commit]: https://github.com/alexcrichton/dlmalloc-rs/commit/28ee12db813a3b650a7c25d1c36d2c17dcb88ae3
2018-11-20 05:52:50 +00:00
dlmalloc = { version = "0.1", features = ['rustc-dep-of-std'] }
[target.x86_64-fortanix-unknown-sgx.dependencies]
std: Depend directly on crates.io crates Ever since we added a Cargo-based build system for the compiler the standard library has always been a little special, it's never been able to depend on crates.io crates for runtime dependencies. This has been a result of various limitations, namely that Cargo doesn't understand that crates from crates.io depend on libcore, so Cargo tries to build crates before libcore is finished. I had an idea this afternoon, however, which lifts the strategy from #52919 to directly depend on crates.io crates from the standard library. After all is said and done this removes a whopping three submodules that we need to manage! The basic idea here is that for any crate `std` depends on it adds an *optional* dependency on an empty crate on crates.io, in this case named `rustc-std-workspace-core`. This crate is overridden via `[patch]` in this repository to point to a local crate we write, and *that* has a `path` dependency on libcore. Note that all `no_std` crates also depend on `compiler_builtins`, but if we're not using submodules we can publish `compiler_builtins` to crates.io and all crates can depend on it anyway! The basic strategy then looks like: * The standard library (or some transitive dep) decides to depend on a crate `foo`. * The standard library adds ```toml [dependencies] foo = { version = "0.1", features = ['rustc-dep-of-std'] } ``` * The crate `foo` has an optional dependency on `rustc-std-workspace-core` * The crate `foo` has an optional dependency on `compiler_builtins` * The crate `foo` has a feature `rustc-dep-of-std` which activates these crates and any other necessary infrastructure in the crate. A sample commit for `dlmalloc` [turns out to be quite simple][commit]. After that all `no_std` crates should largely build "as is" and still be publishable on crates.io! Notably they should be able to continue to use stable Rust if necessary, since the `rename-dependency` feature of Cargo is soon stabilizing. As a proof of concept, this commit removes the `dlmalloc`, `libcompiler_builtins`, and `libc` submodules from this repository. Long thorns in our side these are now gone for good and we can directly depend on crates.io! It's hoped that in the long term we can bring in other crates as necessary, but for now this is largely intended to simply make it easier to manage these crates and remove submodules. This should be a transparent non-breaking change for all users, but one possible stickler is that this almost for sure breaks out-of-tree `std`-building tools like `xargo` and `cargo-xbuild`. I think it should be relatively easy to get them working, however, as all that's needed is an entry in the `[patch]` section used to build the standard library. Hopefully we can work with these tools to solve this problem! [commit]: https://github.com/alexcrichton/dlmalloc-rs/commit/28ee12db813a3b650a7c25d1c36d2c17dcb88ae3
2018-11-20 05:52:50 +00:00
fortanix-sgx-abi = { version = "0.3.1", features = ['rustc-dep-of-std'] }
[build-dependencies]
cc = "1.0"
build_helper = { path = "../build_helper" }
[features]
default = ["compiler_builtins_c"]
backtrace = []
panic-unwind = ["panic_unwind"]
profiler = ["profiler_builtins"]
compiler_builtins_c = ["compiler_builtins/c"]
std: Implement TLS for wasm32-unknown-unknown This adds an implementation of thread local storage for the `wasm32-unknown-unknown` target when the `atomics` feature is implemented. This, however, comes with a notable caveat of that it requires a new feature of the standard library, `wasm-bindgen-threads`, to be enabled. Thread local storage for wasm (when `atomics` are enabled and there's actually more than one thread) is powered by the assumption that an external entity can fill in some information for us. It's not currently clear who will fill in this information nor whose responsibility it should be long-term. In the meantime there's a strategy being gamed out in the `wasm-bindgen` project specifically, and the hope is that we can continue to test and iterate on the standard library without committing to a particular strategy yet. As to the details of `wasm-bindgen`'s strategy, LLVM doesn't currently have the ability to emit custom `global` values (thread locals in a `WebAssembly.Module`) so we leverage the `wasm-bindgen` CLI tool to do it for us. To that end we have a few intrinsics, assuming two global values: * `__wbindgen_current_id` - gets the current thread id as a 32-bit integer. It's `wasm-bindgen`'s responsibility to initialize this per-thread and then inform libstd of the id. Currently `wasm-bindgen` performs this initialization as part of the `start` function. * `__wbindgen_tcb_{get,set}` - in addition to a thread id it's assumed that there's a global available for simply storing a pointer's worth of information (a thread control block, which currently only contains thread local storage). This would ideally be a native `global` injected by LLVM, but we don't have a great way to support that right now. To reiterate, this is all intended to be unstable and purely intended for testing out Rust on the web with threads. The story is very likely to change in the future and we want to make sure that we're able to do that!
2018-10-10 06:10:25 +00:00
# Make panics and failed asserts immediately abort without formatting any message
panic_immediate_abort = ["core/panic_immediate_abort"]
std: Implement TLS for wasm32-unknown-unknown This adds an implementation of thread local storage for the `wasm32-unknown-unknown` target when the `atomics` feature is implemented. This, however, comes with a notable caveat of that it requires a new feature of the standard library, `wasm-bindgen-threads`, to be enabled. Thread local storage for wasm (when `atomics` are enabled and there's actually more than one thread) is powered by the assumption that an external entity can fill in some information for us. It's not currently clear who will fill in this information nor whose responsibility it should be long-term. In the meantime there's a strategy being gamed out in the `wasm-bindgen` project specifically, and the hope is that we can continue to test and iterate on the standard library without committing to a particular strategy yet. As to the details of `wasm-bindgen`'s strategy, LLVM doesn't currently have the ability to emit custom `global` values (thread locals in a `WebAssembly.Module`) so we leverage the `wasm-bindgen` CLI tool to do it for us. To that end we have a few intrinsics, assuming two global values: * `__wbindgen_current_id` - gets the current thread id as a 32-bit integer. It's `wasm-bindgen`'s responsibility to initialize this per-thread and then inform libstd of the id. Currently `wasm-bindgen` performs this initialization as part of the `start` function. * `__wbindgen_tcb_{get,set}` - in addition to a thread id it's assumed that there's a global available for simply storing a pointer's worth of information (a thread control block, which currently only contains thread local storage). This would ideally be a native `global` injected by LLVM, but we don't have a great way to support that right now. To reiterate, this is all intended to be unstable and purely intended for testing out Rust on the web with threads. The story is very likely to change in the future and we want to make sure that we're able to do that!
2018-10-10 06:10:25 +00:00
# An off-by-default feature which enables a linux-syscall-like ABI for libstd to
# interoperate with the host environment. Currently not well documented and
# requires rebuilding the standard library to use it.
wasm_syscall = []
std: Implement TLS for wasm32-unknown-unknown This adds an implementation of thread local storage for the `wasm32-unknown-unknown` target when the `atomics` feature is implemented. This, however, comes with a notable caveat of that it requires a new feature of the standard library, `wasm-bindgen-threads`, to be enabled. Thread local storage for wasm (when `atomics` are enabled and there's actually more than one thread) is powered by the assumption that an external entity can fill in some information for us. It's not currently clear who will fill in this information nor whose responsibility it should be long-term. In the meantime there's a strategy being gamed out in the `wasm-bindgen` project specifically, and the hope is that we can continue to test and iterate on the standard library without committing to a particular strategy yet. As to the details of `wasm-bindgen`'s strategy, LLVM doesn't currently have the ability to emit custom `global` values (thread locals in a `WebAssembly.Module`) so we leverage the `wasm-bindgen` CLI tool to do it for us. To that end we have a few intrinsics, assuming two global values: * `__wbindgen_current_id` - gets the current thread id as a 32-bit integer. It's `wasm-bindgen`'s responsibility to initialize this per-thread and then inform libstd of the id. Currently `wasm-bindgen` performs this initialization as part of the `start` function. * `__wbindgen_tcb_{get,set}` - in addition to a thread id it's assumed that there's a global available for simply storing a pointer's worth of information (a thread control block, which currently only contains thread local storage). This would ideally be a native `global` injected by LLVM, but we don't have a great way to support that right now. To reiterate, this is all intended to be unstable and purely intended for testing out Rust on the web with threads. The story is very likely to change in the future and we want to make sure that we're able to do that!
2018-10-10 06:10:25 +00:00
# An off-by-default features to enable libstd to assume that wasm-bindgen is in
# the environment for hooking up some thread-related information like the
# current thread id and accessing/getting the current thread's TCB
wasm-bindgen-threads = []