mirror of
https://github.com/rust-lang/rust.git
synced 2025-05-02 21:17:39 +00:00
187 lines
7.2 KiB
Rust
187 lines
7.2 KiB
Rust
![]() |
//! Check whether a type is representable.
|
||
|
use rustc_data_structures::stable_map::FxHashMap;
|
||
|
use rustc_hir as hir;
|
||
|
use rustc_middle::ty::{self, Ty, TyCtxt};
|
||
|
use rustc_span::Span;
|
||
|
use std::cmp;
|
||
|
|
||
|
/// Describes whether a type is representable. For types that are not
|
||
|
/// representable, 'SelfRecursive' and 'ContainsRecursive' are used to
|
||
|
/// distinguish between types that are recursive with themselves and types that
|
||
|
/// contain a different recursive type. These cases can therefore be treated
|
||
|
/// differently when reporting errors.
|
||
|
///
|
||
|
/// The ordering of the cases is significant. They are sorted so that cmp::max
|
||
|
/// will keep the "more erroneous" of two values.
|
||
|
#[derive(Clone, PartialOrd, Ord, Eq, PartialEq, Debug)]
|
||
|
pub enum Representability {
|
||
|
Representable,
|
||
|
ContainsRecursive,
|
||
|
SelfRecursive(Vec<Span>),
|
||
|
}
|
||
|
|
||
|
/// Check whether a type is representable. This means it cannot contain unboxed
|
||
|
/// structural recursion. This check is needed for structs and enums.
|
||
|
pub fn ty_is_representable<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, sp: Span) -> Representability {
|
||
|
debug!("is_type_representable: {:?}", ty);
|
||
|
// To avoid a stack overflow when checking an enum variant or struct that
|
||
|
// contains a different, structurally recursive type, maintain a stack
|
||
|
// of seen types and check recursion for each of them (issues #3008, #3779).
|
||
|
let mut seen: Vec<Ty<'_>> = Vec::new();
|
||
|
let mut representable_cache = FxHashMap::default();
|
||
|
let r = is_type_structurally_recursive(tcx, sp, &mut seen, &mut representable_cache, ty);
|
||
|
debug!("is_type_representable: {:?} is {:?}", ty, r);
|
||
|
r
|
||
|
}
|
||
|
|
||
|
// Iterate until something non-representable is found
|
||
|
fn fold_repr<It: Iterator<Item = Representability>>(iter: It) -> Representability {
|
||
|
iter.fold(Representability::Representable, |r1, r2| match (r1, r2) {
|
||
|
(Representability::SelfRecursive(v1), Representability::SelfRecursive(v2)) => {
|
||
|
Representability::SelfRecursive(v1.into_iter().chain(v2).collect())
|
||
|
}
|
||
|
(r1, r2) => cmp::max(r1, r2),
|
||
|
})
|
||
|
}
|
||
|
|
||
|
fn are_inner_types_recursive<'tcx>(
|
||
|
tcx: TyCtxt<'tcx>,
|
||
|
sp: Span,
|
||
|
seen: &mut Vec<Ty<'tcx>>,
|
||
|
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
|
||
|
ty: Ty<'tcx>,
|
||
|
) -> Representability {
|
||
|
match ty.kind() {
|
||
|
ty::Tuple(..) => {
|
||
|
// Find non representable
|
||
|
fold_repr(
|
||
|
ty.tuple_fields().map(|ty| {
|
||
|
is_type_structurally_recursive(tcx, sp, seen, representable_cache, ty)
|
||
|
}),
|
||
|
)
|
||
|
}
|
||
|
// Fixed-length vectors.
|
||
|
// FIXME(#11924) Behavior undecided for zero-length vectors.
|
||
|
ty::Array(ty, _) => is_type_structurally_recursive(tcx, sp, seen, representable_cache, ty),
|
||
|
ty::Adt(def, substs) => {
|
||
|
// Find non representable fields with their spans
|
||
|
fold_repr(def.all_fields().map(|field| {
|
||
|
let ty = field.ty(tcx, substs);
|
||
|
let span = match field
|
||
|
.did
|
||
|
.as_local()
|
||
|
.map(|id| tcx.hir().local_def_id_to_hir_id(id))
|
||
|
.and_then(|id| tcx.hir().find(id))
|
||
|
{
|
||
|
Some(hir::Node::Field(field)) => field.ty.span,
|
||
|
_ => sp,
|
||
|
};
|
||
|
match is_type_structurally_recursive(tcx, span, seen, representable_cache, ty) {
|
||
|
Representability::SelfRecursive(_) => {
|
||
|
Representability::SelfRecursive(vec![span])
|
||
|
}
|
||
|
x => x,
|
||
|
}
|
||
|
}))
|
||
|
}
|
||
|
ty::Closure(..) => {
|
||
|
// this check is run on type definitions, so we don't expect
|
||
|
// to see closure types
|
||
|
bug!("requires check invoked on inapplicable type: {:?}", ty)
|
||
|
}
|
||
|
_ => Representability::Representable,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fn same_adt<'tcx>(ty: Ty<'tcx>, def: &'tcx ty::AdtDef) -> bool {
|
||
|
match *ty.kind() {
|
||
|
ty::Adt(ty_def, _) => ty_def == def,
|
||
|
_ => false,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Does the type `ty` directly (without indirection through a pointer)
|
||
|
// contain any types on stack `seen`?
|
||
|
fn is_type_structurally_recursive<'tcx>(
|
||
|
tcx: TyCtxt<'tcx>,
|
||
|
sp: Span,
|
||
|
seen: &mut Vec<Ty<'tcx>>,
|
||
|
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
|
||
|
ty: Ty<'tcx>,
|
||
|
) -> Representability {
|
||
|
debug!("is_type_structurally_recursive: {:?} {:?}", ty, sp);
|
||
|
if let Some(representability) = representable_cache.get(ty) {
|
||
|
debug!(
|
||
|
"is_type_structurally_recursive: {:?} {:?} - (cached) {:?}",
|
||
|
ty, sp, representability
|
||
|
);
|
||
|
return representability.clone();
|
||
|
}
|
||
|
|
||
|
let representability =
|
||
|
is_type_structurally_recursive_inner(tcx, sp, seen, representable_cache, ty);
|
||
|
|
||
|
representable_cache.insert(ty, representability.clone());
|
||
|
representability
|
||
|
}
|
||
|
|
||
|
fn is_type_structurally_recursive_inner<'tcx>(
|
||
|
tcx: TyCtxt<'tcx>,
|
||
|
sp: Span,
|
||
|
seen: &mut Vec<Ty<'tcx>>,
|
||
|
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
|
||
|
ty: Ty<'tcx>,
|
||
|
) -> Representability {
|
||
|
match ty.kind() {
|
||
|
ty::Adt(def, _) => {
|
||
|
{
|
||
|
// Iterate through stack of previously seen types.
|
||
|
let mut iter = seen.iter();
|
||
|
|
||
|
// The first item in `seen` is the type we are actually curious about.
|
||
|
// We want to return SelfRecursive if this type contains itself.
|
||
|
// It is important that we DON'T take generic parameters into account
|
||
|
// for this check, so that Bar<T> in this example counts as SelfRecursive:
|
||
|
//
|
||
|
// struct Foo;
|
||
|
// struct Bar<T> { x: Bar<Foo> }
|
||
|
|
||
|
if let Some(&seen_adt) = iter.next() {
|
||
|
if same_adt(seen_adt, *def) {
|
||
|
debug!("SelfRecursive: {:?} contains {:?}", seen_adt, ty);
|
||
|
return Representability::SelfRecursive(vec![sp]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// We also need to know whether the first item contains other types
|
||
|
// that are structurally recursive. If we don't catch this case, we
|
||
|
// will recurse infinitely for some inputs.
|
||
|
//
|
||
|
// It is important that we DO take generic parameters into account
|
||
|
// here, so that code like this is considered SelfRecursive, not
|
||
|
// ContainsRecursive:
|
||
|
//
|
||
|
// struct Foo { Option<Option<Foo>> }
|
||
|
|
||
|
for &seen_adt in iter {
|
||
|
if ty::TyS::same_type(ty, seen_adt) {
|
||
|
debug!("ContainsRecursive: {:?} contains {:?}", seen_adt, ty);
|
||
|
return Representability::ContainsRecursive;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// For structs and enums, track all previously seen types by pushing them
|
||
|
// onto the 'seen' stack.
|
||
|
seen.push(ty);
|
||
|
let out = are_inner_types_recursive(tcx, sp, seen, representable_cache, ty);
|
||
|
seen.pop();
|
||
|
out
|
||
|
}
|
||
|
_ => {
|
||
|
// No need to push in other cases.
|
||
|
are_inner_types_recursive(tcx, sp, seen, representable_cache, ty)
|
||
|
}
|
||
|
}
|
||
|
}
|