rust/src/librustc/ty/util.rs

1208 lines
47 KiB
Rust
Raw Normal View History

2019-02-08 13:53:55 +00:00
//! Miscellaneous type-system utilities that are too small to deserve their own modules.
2015-09-14 11:55:56 +00:00
2019-04-19 20:32:26 +00:00
use crate::hir;
use crate::hir::def::DefKind;
2019-02-05 17:20:45 +00:00
use crate::hir::def_id::DefId;
use crate::hir::map::DefPathData;
use crate::mir::interpret::{sign_extend, truncate};
2019-02-05 17:20:45 +00:00
use crate::ich::NodeIdHashingMode;
use crate::traits::{self, ObligationCause};
use crate::ty::{self, DefIdTree, Ty, TyCtxt, GenericParamDefKind, TypeFoldable};
use crate::ty::subst::{Subst, InternalSubsts, SubstsRef, GenericArgKind};
2019-02-05 17:20:45 +00:00
use crate::ty::query::TyCtxtAt;
use crate::ty::TyKind::*;
use crate::ty::layout::{Integer, IntegerExt};
use crate::util::common::ErrorReported;
use crate::middle::lang_items;
2015-12-16 17:44:15 +00:00
2018-05-08 14:58:32 +00:00
use rustc_data_structures::stable_hasher::{StableHasher, HashStable};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
2018-12-03 00:14:35 +00:00
use rustc_macros::HashStable;
2018-01-25 15:44:45 +00:00
use std::{cmp, fmt};
use syntax::ast;
2016-04-12 13:58:55 +00:00
use syntax::attr::{self, SignedInt, UnsignedInt};
use syntax_pos::{Span, DUMMY_SP};
2015-09-14 11:55:56 +00:00
2018-01-25 15:44:45 +00:00
#[derive(Copy, Clone, Debug)]
pub struct Discr<'tcx> {
2019-02-08 13:53:55 +00:00
/// Bit representation of the discriminant (e.g., `-128i8` is `0xFF_u128`).
2018-01-25 15:44:45 +00:00
pub val: u128,
pub ty: Ty<'tcx>
2017-03-13 00:12:13 +00:00
}
2018-01-25 15:44:45 +00:00
impl<'tcx> fmt::Display for Discr<'tcx> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2019-09-16 18:08:35 +00:00
match self.ty.kind {
ty::Int(ity) => {
let size = ty::tls::with(|tcx| {
Integer::from_attr(&tcx, SignedInt(ity)).size()
});
let x = self.val;
// sign extend the raw representation to be an i128
let x = sign_extend(x, size) as i128;
write!(fmt, "{}", x)
},
_ => write!(fmt, "{}", self.val),
2018-01-25 15:44:45 +00:00
}
}
}
2015-09-14 11:55:56 +00:00
2018-01-25 15:44:45 +00:00
impl<'tcx> Discr<'tcx> {
2019-02-08 13:53:55 +00:00
/// Adds `1` to the value and wraps around if the maximum for the type is reached.
2019-06-13 21:48:52 +00:00
pub fn wrap_incr(self, tcx: TyCtxt<'tcx>) -> Self {
2018-01-25 15:44:45 +00:00
self.checked_add(tcx, 1).0
}
2019-06-13 21:48:52 +00:00
pub fn checked_add(self, tcx: TyCtxt<'tcx>, n: u128) -> (Self, bool) {
2019-09-16 18:08:35 +00:00
let (int, signed) = match self.ty.kind {
Int(ity) => (Integer::from_attr(&tcx, SignedInt(ity)), true),
Uint(uty) => (Integer::from_attr(&tcx, UnsignedInt(uty)), false),
_ => bug!("non integer discriminant"),
2018-01-25 15:44:45 +00:00
};
let size = int.size();
let bit_size = int.size().bits();
2018-05-24 12:20:45 +00:00
let shift = 128 - bit_size;
if signed {
let sext = |u| {
sign_extend(u, size) as i128
};
let min = sext(1_u128 << (bit_size - 1));
2018-05-24 12:20:45 +00:00
let max = i128::max_value() >> shift;
let val = sext(self.val);
assert!(n < (i128::max_value() as u128));
2018-01-25 15:44:45 +00:00
let n = n as i128;
let oflo = val > max - n;
let val = if oflo {
2018-01-26 14:19:01 +00:00
min + (n - (max - val) - 1)
2018-01-25 15:44:45 +00:00
} else {
val + n
};
// zero the upper bits
let val = val as u128;
let val = truncate(val, size);
2018-01-25 15:44:45 +00:00
(Self {
val: val as u128,
ty: self.ty,
}, oflo)
} else {
2018-05-24 12:20:45 +00:00
let max = u128::max_value() >> shift;
let val = self.val;
let oflo = val > max - n;
2018-01-25 15:44:45 +00:00
let val = if oflo {
n - (max - val) - 1
2018-01-25 15:44:45 +00:00
} else {
val + n
2018-01-25 15:44:45 +00:00
};
(Self {
val: val,
2018-01-25 15:44:45 +00:00
ty: self.ty,
}, oflo)
}
}
}
2018-01-25 15:44:45 +00:00
pub trait IntTypeExt {
2019-06-13 21:48:52 +00:00
fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>>;
2019-06-13 21:48:52 +00:00
fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx>;
2018-01-25 15:44:45 +00:00
}
2015-09-14 11:55:56 +00:00
impl IntTypeExt for attr::IntType {
2019-06-13 21:48:52 +00:00
fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match *self {
2018-10-02 08:52:43 +00:00
SignedInt(ast::IntTy::I8) => tcx.types.i8,
SignedInt(ast::IntTy::I16) => tcx.types.i16,
SignedInt(ast::IntTy::I32) => tcx.types.i32,
SignedInt(ast::IntTy::I64) => tcx.types.i64,
SignedInt(ast::IntTy::I128) => tcx.types.i128,
2018-10-02 08:52:43 +00:00
SignedInt(ast::IntTy::Isize) => tcx.types.isize,
UnsignedInt(ast::UintTy::U8) => tcx.types.u8,
UnsignedInt(ast::UintTy::U16) => tcx.types.u16,
UnsignedInt(ast::UintTy::U32) => tcx.types.u32,
UnsignedInt(ast::UintTy::U64) => tcx.types.u64,
2018-10-02 08:52:43 +00:00
UnsignedInt(ast::UintTy::U128) => tcx.types.u128,
UnsignedInt(ast::UintTy::Usize) => tcx.types.usize,
}
}
2019-06-13 21:48:52 +00:00
fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx> {
2018-01-25 15:44:45 +00:00
Discr {
val: 0,
ty: self.to_ty(tcx)
}
}
fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>> {
if let Some(val) = val {
2018-01-25 15:44:45 +00:00
assert_eq!(self.to_ty(tcx), val.ty);
let (new, oflo) = val.checked_add(tcx, 1);
if oflo {
None
} else {
Some(new)
}
} else {
Some(self.initial_discriminant(tcx))
}
2015-09-14 11:55:56 +00:00
}
}
#[derive(Clone)]
pub enum CopyImplementationError<'tcx> {
InfrigingFields(Vec<&'tcx ty::FieldDef>),
2015-09-14 11:55:56 +00:00
NotAnAdt,
2017-03-13 00:12:13 +00:00
HasDestructor,
2015-09-14 11:55:56 +00:00
}
/// Describes whether a type is representable. For types that are not
/// representable, 'SelfRecursive' and 'ContainsRecursive' are used to
/// distinguish between types that are recursive with themselves and types that
/// contain a different recursive type. These cases can therefore be treated
/// differently when reporting errors.
///
/// The ordering of the cases is significant. They are sorted so that cmp::max
/// will keep the "more erroneous" of two values.
#[derive(Clone, PartialOrd, Ord, Eq, PartialEq, Debug)]
2015-09-14 11:55:56 +00:00
pub enum Representability {
Representable,
ContainsRecursive,
SelfRecursive(Vec<Span>),
2015-09-14 11:55:56 +00:00
}
2017-05-15 23:36:45 +00:00
impl<'tcx> ty::ParamEnv<'tcx> {
pub fn can_type_implement_copy(
self,
2019-06-13 21:48:52 +00:00
tcx: TyCtxt<'tcx>,
self_type: Ty<'tcx>,
) -> Result<(), CopyImplementationError<'tcx>> {
2015-09-14 11:55:56 +00:00
// FIXME: (@jroesch) float this code up
tcx.infer_ctxt().enter(|infcx| {
2019-09-16 18:08:35 +00:00
let (adt, substs) = match self_type.kind {
Move some implementations of Clone and Copy to libcore Add implementations of `Clone` and `Copy` for some primitive types to libcore so that they show up in the documentation. The concerned types are the following: * All primitive signed and unsigned integer types (`usize`, `u8`, `u16`, `u32`, `u64`, `u128`, `isize`, `i8`, `i16`, `i32`, `i64`, `i128`); * All primitive floating point types (`f32`, `f64`) * `bool` * `char` * `!` * Raw pointers (`*const T` and `*mut T`) * Shared references (`&'a T`) These types already implemented `Clone` and `Copy`, but the implementation was provided by the compiler. The compiler no longer provides these implementations and instead tries to look them up as normal trait implementations. The goal of this change is to make the implementations appear in the generated documentation. For `Copy` specifically, the compiler would reject an attempt to write an `impl` for the primitive types listed above with error `E0206`; this error no longer occurs for these types, but it will still occur for the other types that used to raise that error. The trait implementations are guarded with `#[cfg(not(stage0))]` because they are invalid according to the stage0 compiler. When the stage0 compiler is updated to a revision that includes this change, the attribute will have to be removed, otherwise the stage0 build will fail because the types mentioned above no longer implement `Clone` or `Copy`. For type variants that are variadic, such as tuples and function pointers, and for array types, the `Clone` and `Copy` implementations are still provided by the compiler, because the language is not expressive enough yet to be able to write the appropriate implementations in Rust. The initial plan was to add `impl` blocks guarded by `#[cfg(dox)]` to make them apply only when generating documentation, without having to touch the compiler. However, rustdoc's usage of the compiler still rejected those `impl` blocks. This is a [breaking-change] for users of `#![no_core]`, because they will now have to supply their own implementations of `Clone` and `Copy` for the primitive types listed above. The easiest way to do that is to simply copy the implementations from `src/libcore/clone.rs` and `src/libcore/marker.rs`. Fixes #25893
2018-02-12 06:17:32 +00:00
// These types used to have a builtin impl.
// Now libcore provides that impl.
ty::Uint(_) | ty::Int(_) | ty::Bool | ty::Float(_) |
ty::Char | ty::RawPtr(..) | ty::Never |
ty::Ref(_, _, hir::Mutability::Immutable) => return Ok(()),
Move some implementations of Clone and Copy to libcore Add implementations of `Clone` and `Copy` for some primitive types to libcore so that they show up in the documentation. The concerned types are the following: * All primitive signed and unsigned integer types (`usize`, `u8`, `u16`, `u32`, `u64`, `u128`, `isize`, `i8`, `i16`, `i32`, `i64`, `i128`); * All primitive floating point types (`f32`, `f64`) * `bool` * `char` * `!` * Raw pointers (`*const T` and `*mut T`) * Shared references (`&'a T`) These types already implemented `Clone` and `Copy`, but the implementation was provided by the compiler. The compiler no longer provides these implementations and instead tries to look them up as normal trait implementations. The goal of this change is to make the implementations appear in the generated documentation. For `Copy` specifically, the compiler would reject an attempt to write an `impl` for the primitive types listed above with error `E0206`; this error no longer occurs for these types, but it will still occur for the other types that used to raise that error. The trait implementations are guarded with `#[cfg(not(stage0))]` because they are invalid according to the stage0 compiler. When the stage0 compiler is updated to a revision that includes this change, the attribute will have to be removed, otherwise the stage0 build will fail because the types mentioned above no longer implement `Clone` or `Copy`. For type variants that are variadic, such as tuples and function pointers, and for array types, the `Clone` and `Copy` implementations are still provided by the compiler, because the language is not expressive enough yet to be able to write the appropriate implementations in Rust. The initial plan was to add `impl` blocks guarded by `#[cfg(dox)]` to make them apply only when generating documentation, without having to touch the compiler. However, rustdoc's usage of the compiler still rejected those `impl` blocks. This is a [breaking-change] for users of `#![no_core]`, because they will now have to supply their own implementations of `Clone` and `Copy` for the primitive types listed above. The easiest way to do that is to simply copy the implementations from `src/libcore/clone.rs` and `src/libcore/marker.rs`. Fixes #25893
2018-02-12 06:17:32 +00:00
ty::Adt(adt, substs) => (adt, substs),
Move some implementations of Clone and Copy to libcore Add implementations of `Clone` and `Copy` for some primitive types to libcore so that they show up in the documentation. The concerned types are the following: * All primitive signed and unsigned integer types (`usize`, `u8`, `u16`, `u32`, `u64`, `u128`, `isize`, `i8`, `i16`, `i32`, `i64`, `i128`); * All primitive floating point types (`f32`, `f64`) * `bool` * `char` * `!` * Raw pointers (`*const T` and `*mut T`) * Shared references (`&'a T`) These types already implemented `Clone` and `Copy`, but the implementation was provided by the compiler. The compiler no longer provides these implementations and instead tries to look them up as normal trait implementations. The goal of this change is to make the implementations appear in the generated documentation. For `Copy` specifically, the compiler would reject an attempt to write an `impl` for the primitive types listed above with error `E0206`; this error no longer occurs for these types, but it will still occur for the other types that used to raise that error. The trait implementations are guarded with `#[cfg(not(stage0))]` because they are invalid according to the stage0 compiler. When the stage0 compiler is updated to a revision that includes this change, the attribute will have to be removed, otherwise the stage0 build will fail because the types mentioned above no longer implement `Clone` or `Copy`. For type variants that are variadic, such as tuples and function pointers, and for array types, the `Clone` and `Copy` implementations are still provided by the compiler, because the language is not expressive enough yet to be able to write the appropriate implementations in Rust. The initial plan was to add `impl` blocks guarded by `#[cfg(dox)]` to make them apply only when generating documentation, without having to touch the compiler. However, rustdoc's usage of the compiler still rejected those `impl` blocks. This is a [breaking-change] for users of `#![no_core]`, because they will now have to supply their own implementations of `Clone` and `Copy` for the primitive types listed above. The easiest way to do that is to simply copy the implementations from `src/libcore/clone.rs` and `src/libcore/marker.rs`. Fixes #25893
2018-02-12 06:17:32 +00:00
2017-03-13 00:12:13 +00:00
_ => return Err(CopyImplementationError::NotAnAdt),
};
let mut infringing = Vec::new();
for variant in &adt.variants {
for field in &variant.fields {
let ty = field.ty(tcx, substs);
if ty.references_error() {
continue;
}
let span = tcx.def_span(field.did);
let cause = ObligationCause { span, ..ObligationCause::dummy() };
let ctx = traits::FulfillmentContext::new();
match traits::fully_normalize(&infcx, ctx, cause, self, &ty) {
Ok(ty) => if !infcx.type_is_copy_modulo_regions(self, ty, span) {
infringing.push(field);
}
Err(errors) => {
infcx.report_fulfillment_errors(&errors, None, false);
}
};
}
}
if !infringing.is_empty() {
return Err(CopyImplementationError::InfrigingFields(infringing));
}
if adt.has_dtor(tcx) {
return Err(CopyImplementationError::HasDestructor);
}
2015-09-14 11:55:56 +00:00
Ok(())
})
2015-09-14 11:55:56 +00:00
}
}
2019-06-13 21:48:52 +00:00
impl<'tcx> TyCtxt<'tcx> {
/// Creates a hash of the type `Ty` which will be the same no matter what crate
/// context it's calculated within. This is used by the `type_id` intrinsic.
pub fn type_id_hash(self, ty: Ty<'tcx>) -> u64 {
let mut hasher = StableHasher::new();
let mut hcx = self.create_stable_hashing_context();
// We want the type_id be independent of the types free regions, so we
// erase them. The erase_regions() call will also anonymize bound
// regions, which is desirable too.
let ty = self.erase_regions(&ty);
hcx.while_hashing_spans(false, |hcx| {
hcx.with_node_id_hashing_mode(NodeIdHashingMode::HashDefPath, |hcx| {
ty.hash_stable(hcx, &mut hasher);
});
});
hasher.finish()
}
}
2019-06-13 21:48:52 +00:00
impl<'tcx> TyCtxt<'tcx> {
pub fn has_error_field(self, ty: Ty<'tcx>) -> bool {
2019-09-16 18:08:35 +00:00
if let ty::Adt(def, substs) = ty.kind {
2018-10-02 08:56:36 +00:00
for field in def.all_fields() {
let field_ty = field.ty(self, substs);
2019-09-16 18:08:35 +00:00
if let Error = field_ty.kind {
2018-10-02 08:56:36 +00:00
return true;
}
}
}
false
}
/// Attempts to returns the deeply last field of nested structures, but
/// does not apply any normalization in its search. Returns the same type
/// if input `ty` is not a structure at all.
pub fn struct_tail_without_normalization(self, ty: Ty<'tcx>) -> Ty<'tcx>
{
let tcx = self;
tcx.struct_tail_with_normalize(ty, |ty| ty)
}
/// Returns the deeply last field of nested structures, or the same type if
/// not a structure at all. Corresponds to the only possible unsized field,
/// and its type can be used to determine unsizing strategy.
///
/// Should only be called if `ty` has no inference variables and does not
/// need its lifetimes preserved (e.g. as part of codegen); otherwise
/// normalization attempt may cause compiler bugs.
pub fn struct_tail_erasing_lifetimes(self,
ty: Ty<'tcx>,
param_env: ty::ParamEnv<'tcx>)
-> Ty<'tcx>
{
let tcx = self;
tcx.struct_tail_with_normalize(ty, |ty| tcx.normalize_erasing_regions(param_env, ty))
}
/// Returns the deeply last field of nested structures, or the same type if
/// not a structure at all. Corresponds to the only possible unsized field,
/// and its type can be used to determine unsizing strategy.
///
/// This is parameterized over the normalization strategy (i.e. how to
/// handle `<T as Trait>::Assoc` and `impl Trait`); pass the identity
/// function to indicate no normalization should take place.
///
/// See also `struct_tail_erasing_lifetimes`, which is suitable for use
/// during codegen.
pub fn struct_tail_with_normalize(self,
mut ty: Ty<'tcx>,
normalize: impl Fn(Ty<'tcx>) -> Ty<'tcx>)
-> Ty<'tcx>
{
loop {
2019-09-16 18:08:35 +00:00
match ty.kind {
ty::Adt(def, substs) => {
if !def.is_struct() {
break;
}
match def.non_enum_variant().fields.last() {
Some(f) => ty = f.ty(self, substs),
None => break,
}
}
ty::Tuple(tys) => {
if let Some((&last_ty, _)) = tys.split_last() {
2019-04-25 23:27:33 +00:00
ty = last_ty.expect_ty();
} else {
break;
}
}
ty::Projection(_) | ty::Opaque(..) => {
let normalized = normalize(ty);
if ty == normalized {
return ty;
} else {
ty = normalized;
}
}
_ => {
break;
}
2015-09-14 11:55:56 +00:00
}
}
ty
}
/// Same as applying struct_tail on `source` and `target`, but only
/// keeps going as long as the two types are instances of the same
/// structure definitions.
/// For `(Foo<Foo<T>>, Foo<dyn Trait>)`, the result will be `(Foo<T>, Trait)`,
2015-09-14 11:55:56 +00:00
/// whereas struct_tail produces `T`, and `Trait`, respectively.
///
/// Should only be called if the types have no inference variables and do
/// not need their lifetimes preserved (e.g. as part of codegen); otherwise
/// normalization attempt may cause compiler bugs.
pub fn struct_lockstep_tails_erasing_lifetimes(self,
source: Ty<'tcx>,
target: Ty<'tcx>,
param_env: ty::ParamEnv<'tcx>)
-> (Ty<'tcx>, Ty<'tcx>)
{
let tcx = self;
tcx.struct_lockstep_tails_with_normalize(
source, target, |ty| tcx.normalize_erasing_regions(param_env, ty))
}
/// Same as applying struct_tail on `source` and `target`, but only
/// keeps going as long as the two types are instances of the same
/// structure definitions.
/// For `(Foo<Foo<T>>, Foo<dyn Trait>)`, the result will be `(Foo<T>, Trait)`,
/// whereas struct_tail produces `T`, and `Trait`, respectively.
///
/// See also `struct_lockstep_tails_erasing_lifetimes`, which is suitable for use
/// during codegen.
pub fn struct_lockstep_tails_with_normalize(self,
source: Ty<'tcx>,
target: Ty<'tcx>,
normalize: impl Fn(Ty<'tcx>) -> Ty<'tcx>)
-> (Ty<'tcx>, Ty<'tcx>)
{
2015-09-14 11:55:56 +00:00
let (mut a, mut b) = (source, target);
2017-06-08 05:49:54 +00:00
loop {
2019-09-16 18:08:35 +00:00
match (&a.kind, &b.kind) {
(&Adt(a_def, a_substs), &Adt(b_def, b_substs))
2017-06-08 05:49:54 +00:00
if a_def == b_def && a_def.is_struct() => {
if let Some(f) = a_def.non_enum_variant().fields.last() {
2017-06-08 05:49:54 +00:00
a = f.ty(self, a_substs);
b = f.ty(self, b_substs);
} else {
break;
}
},
(&Tuple(a_tys), &Tuple(b_tys))
2017-06-08 05:49:54 +00:00
if a_tys.len() == b_tys.len() => {
if let Some(a_last) = a_tys.last() {
2019-04-25 23:27:33 +00:00
a = a_last.expect_ty();
b = b_tys.last().unwrap().expect_ty();
2017-06-08 05:49:54 +00:00
} else {
break;
}
},
(ty::Projection(_), _) | (ty::Opaque(..), _) |
(_, ty::Projection(_)) | (_, ty::Opaque(..)) => {
// If either side is a projection, attempt to
// progress via normalization. (Should be safe to
// apply to both sides as normalization is
// idempotent.)
let a_norm = normalize(a);
let b_norm = normalize(b);
if a == a_norm && b == b_norm {
break;
} else {
a = a_norm;
b = b_norm;
}
}
2017-03-13 00:12:13 +00:00
_ => break,
2015-09-14 11:55:56 +00:00
}
}
(a, b)
}
/// Given a set of predicates that apply to an object type, returns
/// the region bounds that the (erased) `Self` type must
/// outlive. Precisely *because* the `Self` type is erased, the
/// parameter `erased_self_ty` must be supplied to indicate what type
/// has been used to represent `Self` in the predicates
/// themselves. This should really be a unique type; `FreshTy(0)` is a
/// popular choice.
///
/// N.B., in some cases, particularly around higher-ranked bounds,
2015-09-14 11:55:56 +00:00
/// this function returns a kind of conservative approximation.
/// That is, all regions returned by this function are definitely
/// required, but there may be other region bounds that are not
/// returned, as well as requirements like `for<'a> T: 'a`.
///
/// Requires that trait definitions have been processed so that we can
/// elaborate predicates and walk supertraits.
2019-02-08 13:53:55 +00:00
//
// FIXME: callers may only have a `&[Predicate]`, not a `Vec`, so that's
// what this code should accept.
pub fn required_region_bounds(self,
2015-09-14 11:55:56 +00:00
erased_self_ty: Ty<'tcx>,
predicates: Vec<ty::Predicate<'tcx>>)
-> Vec<ty::Region<'tcx>> {
2015-09-14 11:55:56 +00:00
debug!("required_region_bounds(erased_self_ty={:?}, predicates={:?})",
erased_self_ty,
predicates);
assert!(!erased_self_ty.has_escaping_bound_vars());
2015-09-14 11:55:56 +00:00
traits::elaborate_predicates(self, predicates)
.filter_map(|predicate| {
match predicate {
ty::Predicate::Projection(..) |
ty::Predicate::Trait(..) |
2017-03-10 02:47:09 +00:00
ty::Predicate::Subtype(..) |
2015-09-14 11:55:56 +00:00
ty::Predicate::WellFormed(..) |
ty::Predicate::ObjectSafe(..) |
ty::Predicate::ClosureKind(..) |
ty::Predicate::RegionOutlives(..) |
ty::Predicate::ConstEvaluatable(..) => {
2015-09-14 11:55:56 +00:00
None
}
ty::Predicate::TypeOutlives(predicate) => {
2015-09-14 11:55:56 +00:00
// Search for a bound of the form `erased_self_ty
// : 'a`, but be wary of something like `for<'a>
// erased_self_ty : 'a` (we interpret a
// higher-ranked bound like that as 'static,
// though at present the code in `fulfill.rs`
// considers such bounds to be unsatisfiable, so
// it's kind of a moot point since you could never
// construct such an object, but this seems
// correct even if that code changes).
let ty::OutlivesPredicate(ref t, ref r) = predicate.skip_binder();
if t == &erased_self_ty && !r.has_escaping_bound_vars() {
Some(*r)
2015-09-14 11:55:56 +00:00
} else {
None
}
}
}
})
.collect()
}
/// Calculate the destructor of a given type.
pub fn calculate_dtor(
self,
adt_did: DefId,
2018-02-23 17:53:00 +00:00
validate: &mut dyn FnMut(Self, DefId) -> Result<(), ErrorReported>
) -> Option<ty::Destructor> {
let drop_trait = if let Some(def_id) = self.lang_items().drop_trait() {
def_id
} else {
return None;
};
self.ensure().coherent_trait(drop_trait);
let mut dtor_did = None;
let ty = self.type_of(adt_did);
self.for_each_relevant_impl(drop_trait, ty, |impl_did| {
if let Some(item) = self.associated_items(impl_did).next() {
2018-10-02 08:56:36 +00:00
if validate(self, impl_did).is_ok() {
dtor_did = Some(item.def_id);
}
}
});
Some(ty::Destructor { did: dtor_did? })
}
2019-02-08 13:53:55 +00:00
/// Returns the set of types that are required to be alive in
/// order to run the destructor of `def` (see RFCs 769 and
/// 1238).
///
/// Note that this returns only the constraints for the
/// destructor of `def` itself. For the destructors of the
/// contents, you need `adt_dtorck_constraint`.
pub fn destructor_constraints(self, def: &'tcx ty::AdtDef)
-> Vec<ty::subst::GenericArg<'tcx>>
{
let dtor = match def.destructor(self) {
None => {
debug!("destructor_constraints({:?}) - no dtor", def.did);
return vec![]
}
Some(dtor) => dtor.did
};
let impl_def_id = self.associated_item(dtor).container.id();
let impl_generics = self.generics_of(impl_def_id);
// We have a destructor - all the parameters that are not
// pure_wrt_drop (i.e, don't have a #[may_dangle] attribute)
// must be live.
// We need to return the list of parameters from the ADTs
// generics/substs that correspond to impure parameters on the
// impl's generics. This is a bit ugly, but conceptually simple:
//
// Suppose our ADT looks like the following
//
// struct S<X, Y, Z>(X, Y, Z);
//
// and the impl is
//
// impl<#[may_dangle] P0, P1, P2> Drop for S<P1, P2, P0>
//
// We want to return the parameters (X, Y). For that, we match
// up the item-substs <X, Y, Z> with the substs on the impl ADT,
// <P1, P2, P0>, and then look up which of the impl substs refer to
// parameters marked as pure.
2019-09-16 18:08:35 +00:00
let impl_substs = match self.type_of(impl_def_id).kind {
ty::Adt(def_, substs) if def_ == def => substs,
_ => bug!()
};
2019-09-16 18:08:35 +00:00
let item_substs = match self.type_of(def.did).kind {
ty::Adt(def_, substs) if def_ == def => substs,
_ => bug!()
};
let result = item_substs.iter().zip(impl_substs.iter())
.filter(|&(_, &k)| {
match k.unpack() {
GenericArgKind::Lifetime(&ty::RegionKind::ReEarlyBound(ref ebr)) => {
2018-05-10 22:46:57 +00:00
!impl_generics.region_param(ebr, self).pure_wrt_drop
}
GenericArgKind::Type(&ty::TyS {
2019-09-16 18:08:35 +00:00
kind: ty::Param(ref pt), ..
}) => {
2018-05-10 22:46:57 +00:00
!impl_generics.type_param(pt, self).pure_wrt_drop
}
GenericArgKind::Const(&ty::Const {
val: ty::ConstKind::Param(ref pc),
..
2019-03-14 09:19:31 +00:00
}) => {
!impl_generics.const_param(pc, self).pure_wrt_drop
}
GenericArgKind::Lifetime(_) |
GenericArgKind::Type(_) |
GenericArgKind::Const(_) => {
// Not a type, const or region param: this should be reported
// as an error.
false
}
}
2018-10-02 08:52:43 +00:00
})
.map(|(&item_param, _)| item_param)
.collect();
debug!("destructor_constraint({:?}) = {:?}", def.did, result);
result
}
2019-02-08 13:53:55 +00:00
/// Returns `true` if `def_id` refers to a closure (e.g., `|x| x * 2`). Note
/// that closures have a `DefId`, but the closure *expression* also
/// has a `HirId` that is located within the context where the
/// closure appears (and, sadly, a corresponding `NodeId`, since
/// those are not yet phased out). The parent of the closure's
2019-02-08 13:53:55 +00:00
/// `DefId` will also be the context where it appears.
2017-11-10 17:20:53 +00:00
pub fn is_closure(self, def_id: DefId) -> bool {
self.def_key(def_id).disambiguated_data.data == DefPathData::ClosureExpr
}
2019-02-08 13:53:55 +00:00
/// Returns `true` if `def_id` refers to a trait (i.e., `trait Foo { ... }`).
pub fn is_trait(self, def_id: DefId) -> bool {
self.def_kind(def_id) == Some(DefKind::Trait)
}
2019-02-08 13:53:55 +00:00
/// Returns `true` if `def_id` refers to a trait alias (i.e., `trait Foo = ...;`),
/// and `false` otherwise.
pub fn is_trait_alias(self, def_id: DefId) -> bool {
self.def_kind(def_id) == Some(DefKind::TraitAlias)
}
2019-02-08 13:53:55 +00:00
/// Returns `true` if this `DefId` refers to the implicit constructor for
/// a tuple struct like `struct Foo(u32)`, and `false` otherwise.
pub fn is_constructor(self, def_id: DefId) -> bool {
self.def_key(def_id).disambiguated_data.data == DefPathData::Ctor
}
/// Given the def-ID of a fn or closure, returns the def-ID of
2017-11-22 21:53:17 +00:00
/// the innermost fn item that the closure is contained within.
2019-02-08 13:53:55 +00:00
/// This is a significant `DefId` because, when we do
2017-11-22 21:53:17 +00:00
/// type-checking, we type-check this fn item and all of its
2019-02-08 13:53:55 +00:00
/// (transitive) closures together. Therefore, when we fetch the
2017-11-22 21:53:17 +00:00
/// `typeck_tables_of` the closure, for example, we really wind up
/// fetching the `typeck_tables_of` the enclosing fn item.
pub fn closure_base_def_id(self, def_id: DefId) -> DefId {
let mut def_id = def_id;
2017-11-10 17:20:53 +00:00
while self.is_closure(def_id) {
def_id = self.parent(def_id).unwrap_or_else(|| {
bug!("closure {:?} has no parent", def_id);
});
}
def_id
}
2019-02-08 13:53:55 +00:00
/// Given the `DefId` and substs a closure, creates the type of
/// `self` argument that the closure expects. For example, for a
/// `Fn` closure, this would return a reference type `&T` where
2019-02-08 13:53:55 +00:00
/// `T = closure_ty`.
///
/// Returns `None` if this closure's kind has not yet been inferred.
/// This should only be possible during type checking.
///
/// Note that the return value is a late-bound region and hence
/// wrapped in a binder.
pub fn closure_env_ty(self,
closure_def_id: DefId,
2019-09-26 16:09:51 +00:00
closure_substs: SubstsRef<'tcx>)
-> Option<ty::Binder<Ty<'tcx>>>
{
let closure_ty = self.mk_closure(closure_def_id, closure_substs);
let env_region = ty::ReLateBound(ty::INNERMOST, ty::BrEnv);
2019-09-26 17:30:44 +00:00
let closure_kind_ty = closure_substs.as_closure().kind_ty(closure_def_id, self);
let closure_kind = closure_kind_ty.to_opt_closure_kind()?;
let env_ty = match closure_kind {
ty::ClosureKind::Fn => self.mk_imm_ref(self.mk_region(env_region), closure_ty),
ty::ClosureKind::FnMut => self.mk_mut_ref(self.mk_region(env_region), closure_ty),
ty::ClosureKind::FnOnce => closure_ty,
};
Some(ty::Binder::bind(env_ty))
}
/// Given the `DefId` of some item that has no type or const parameters, make
/// a suitable "empty substs" for it.
2019-02-09 14:11:53 +00:00
pub fn empty_substs_for_def_id(self, item_def_id: DefId) -> SubstsRef<'tcx> {
InternalSubsts::for_item(self, item_def_id, |param, _| {
match param.kind {
2019-04-25 21:05:04 +00:00
GenericParamDefKind::Lifetime => self.lifetimes.re_erased.into(),
GenericParamDefKind::Type { .. } => {
bug!("empty_substs_for_def_id: {:?} has type parameters", item_def_id)
}
GenericParamDefKind::Const { .. } => {
bug!("empty_substs_for_def_id: {:?} has const parameters", item_def_id)
}
}
})
}
/// Returns `true` if the node pointed to by `def_id` is a `static` item.
pub fn is_static(&self, def_id: DefId) -> bool {
self.static_mutability(def_id).is_some()
}
/// Returns `true` if the node pointed to by `def_id` is a mutable `static` item.
pub fn is_mutable_static(&self, def_id: DefId) -> bool {
self.static_mutability(def_id) == Some(hir::Mutability::Mutable)
}
/// Expands the given impl trait type, stopping if the type is recursive.
pub fn try_expand_impl_trait_type(
self,
def_id: DefId,
2019-02-09 14:11:53 +00:00
substs: SubstsRef<'tcx>,
) -> Result<Ty<'tcx>, Ty<'tcx>> {
use crate::ty::fold::TypeFolder;
2019-06-13 21:48:52 +00:00
struct OpaqueTypeExpander<'tcx> {
// Contains the DefIds of the opaque types that are currently being
// expanded. When we expand an opaque type we insert the DefId of
// that type, and when we finish expanding that type we remove the
// its DefId.
seen_opaque_tys: FxHashSet<DefId>,
// Cache of all expansions we've seen so far. This is a critical
// optimization for some large types produced by async fn trees.
expanded_cache: FxHashMap<(DefId, SubstsRef<'tcx>), Ty<'tcx>>,
primary_def_id: DefId,
found_recursion: bool,
2019-06-13 21:48:52 +00:00
tcx: TyCtxt<'tcx>,
}
2019-06-13 21:48:52 +00:00
impl<'tcx> OpaqueTypeExpander<'tcx> {
fn expand_opaque_ty(
&mut self,
def_id: DefId,
2019-02-09 14:11:53 +00:00
substs: SubstsRef<'tcx>,
) -> Option<Ty<'tcx>> {
if self.found_recursion {
return None;
}
let substs = substs.fold_with(self);
if self.seen_opaque_tys.insert(def_id) {
let expanded_ty = match self.expanded_cache.get(&(def_id, substs)) {
Some(expanded_ty) => expanded_ty,
None => {
let generic_ty = self.tcx.type_of(def_id);
let concrete_ty = generic_ty.subst(self.tcx, substs);
let expanded_ty = self.fold_ty(concrete_ty);
self.expanded_cache.insert((def_id, substs), expanded_ty);
expanded_ty
}
};
self.seen_opaque_tys.remove(&def_id);
Some(expanded_ty)
} else {
// If another opaque type that we contain is recursive, then it
// will report the error, so we don't have to.
self.found_recursion = def_id == self.primary_def_id;
None
}
}
}
2019-06-13 21:48:52 +00:00
impl<'tcx> TypeFolder<'tcx> for OpaqueTypeExpander<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
2019-09-16 18:08:35 +00:00
if let ty::Opaque(def_id, substs) = t.kind {
self.expand_opaque_ty(def_id, substs).unwrap_or(t)
} else if t.has_projections() {
t.super_fold_with(self)
} else {
t
}
}
}
let mut visitor = OpaqueTypeExpander {
seen_opaque_tys: FxHashSet::default(),
expanded_cache: FxHashMap::default(),
primary_def_id: def_id,
found_recursion: false,
tcx: self,
};
let expanded_type = visitor.expand_opaque_ty(def_id, substs).unwrap();
if visitor.found_recursion {
Err(expanded_type)
} else {
Ok(expanded_type)
}
}
2015-09-14 11:55:56 +00:00
}
impl<'tcx> ty::TyS<'tcx> {
2018-11-19 15:56:24 +00:00
/// Checks whether values of this type `T` are *moved* or *copied*
/// when referenced -- this amounts to a check for whether `T:
/// Copy`, but note that we **don't** consider lifetimes when
/// doing this check. This means that we may generate MIR which
/// does copies even when the type actually doesn't satisfy the
/// full requirements for the `Copy` trait (cc #29149) -- this
/// winds up being reported as an error during NLL borrow check.
pub fn is_copy_modulo_regions(
&'tcx self,
2019-06-13 21:48:52 +00:00
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
span: Span,
) -> bool {
tcx.at(span).is_copy_raw(param_env.and(self))
2015-09-14 11:55:56 +00:00
}
2018-11-19 15:56:24 +00:00
/// Checks whether values of this type `T` have a size known at
/// compile time (i.e., whether `T: Sized`). Lifetimes are ignored
/// for the purposes of this check, so it can be an
/// over-approximation in generic contexts, where one can have
/// strange rules like `<T as Foo<'static>>::Bar: Sized` that
/// actually carry lifetime requirements.
pub fn is_sized(&'tcx self, tcx_at: TyCtxtAt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
2018-02-27 19:55:38 +00:00
tcx_at.is_sized_raw(param_env.and(self))
2015-09-14 11:55:56 +00:00
}
2018-11-19 15:56:24 +00:00
/// Checks whether values of this type `T` implement the `Freeze`
/// trait -- frozen types are those that do not contain a
2019-02-08 13:53:55 +00:00
/// `UnsafeCell` anywhere. This is a language concept used to
2018-11-19 16:57:22 +00:00
/// distinguish "true immutability", which is relevant to
/// optimization as well as the rules around static values. Note
/// that the `Freeze` trait is not exposed to end users and is
/// effectively an implementation detail.
pub fn is_freeze(
&'tcx self,
2019-06-13 21:48:52 +00:00
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
span: Span,
) -> bool {
tcx.at(span).is_freeze_raw(param_env.and(self))
}
/// If `ty.needs_drop(...)` returns `true`, then `ty` is definitely
/// non-copy and *might* have a destructor attached; if it returns
/// `false`, then `ty` definitely has no destructor (i.e., no drop glue).
///
/// (Note that this implies that if `ty` has a destructor attached,
/// then `needs_drop` will definitely return `true` for `ty`.)
///
/// Note that this method is used to check eligible types in unions.
#[inline]
2019-06-13 21:48:52 +00:00
pub fn needs_drop(&'tcx self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
2019-01-24 19:05:19 +00:00
tcx.needs_drop_raw(param_env.and(self)).0
}
pub fn same_type(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
2019-09-16 18:08:35 +00:00
match (&a.kind, &b.kind) {
(&Adt(did_a, substs_a), &Adt(did_b, substs_b)) => {
if did_a != did_b {
return false;
}
substs_a.types().zip(substs_b.types()).all(|(a, b)| Self::same_type(a, b))
}
_ => a == b,
}
}
2015-09-14 11:55:56 +00:00
/// Check whether a type is representable. This means it cannot contain unboxed
/// structural recursion. This check is needed for structs and enums.
2019-06-13 21:48:52 +00:00
pub fn is_representable(&'tcx self, tcx: TyCtxt<'tcx>, sp: Span) -> Representability {
2015-09-14 11:55:56 +00:00
// Iterate until something non-representable is found
fn fold_repr<It: Iterator<Item=Representability>>(iter: It) -> Representability {
iter.fold(Representability::Representable, |r1, r2| {
match (r1, r2) {
(Representability::SelfRecursive(v1),
Representability::SelfRecursive(v2)) => {
2018-10-14 12:30:27 +00:00
Representability::SelfRecursive(v1.into_iter().chain(v2).collect())
}
(r1, r2) => cmp::max(r1, r2)
}
})
2015-09-14 11:55:56 +00:00
}
fn are_inner_types_recursive<'tcx>(
2019-06-13 21:48:52 +00:00
tcx: TyCtxt<'tcx>,
sp: Span,
seen: &mut Vec<Ty<'tcx>>,
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
ty: Ty<'tcx>,
) -> Representability {
2019-09-16 18:08:35 +00:00
match ty.kind {
Tuple(..) => {
// Find non representable
fold_repr(ty.tuple_fields().map(|ty| {
2019-04-25 23:27:33 +00:00
is_type_structurally_recursive(
tcx,
sp,
seen,
representable_cache,
ty,
2019-04-25 23:27:33 +00:00
)
}))
2015-09-14 11:55:56 +00:00
}
// Fixed-length vectors.
// FIXME(#11924) Behavior undecided for zero-length vectors.
Array(ty, _) => {
is_type_structurally_recursive(tcx, sp, seen, representable_cache, ty)
2015-09-14 11:55:56 +00:00
}
Adt(def, substs) => {
// Find non representable fields with their spans
fold_repr(def.all_fields().map(|field| {
let ty = field.ty(tcx, substs);
let span = tcx.hir().span_if_local(field.did).unwrap_or(sp);
match is_type_structurally_recursive(tcx, span, seen,
representable_cache, ty)
{
Representability::SelfRecursive(_) => {
Representability::SelfRecursive(vec![span])
}
x => x,
}
}))
2015-09-14 11:55:56 +00:00
}
Closure(..) => {
2015-09-14 11:55:56 +00:00
// this check is run on type definitions, so we don't expect
// to see closure types
bug!("requires check invoked on inapplicable type: {:?}", ty)
2015-09-14 11:55:56 +00:00
}
_ => Representability::Representable,
}
}
fn same_struct_or_enum<'tcx>(ty: Ty<'tcx>, def: &'tcx ty::AdtDef) -> bool {
2019-09-16 18:08:35 +00:00
match ty.kind {
Adt(ty_def, _) => {
2015-09-14 11:55:56 +00:00
ty_def == def
}
_ => false
}
}
// Does the type `ty` directly (without indirection through a pointer)
// contain any types on stack `seen`?
fn is_type_structurally_recursive<'tcx>(
2019-06-13 21:48:52 +00:00
tcx: TyCtxt<'tcx>,
sp: Span,
seen: &mut Vec<Ty<'tcx>>,
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
ty: Ty<'tcx>,
) -> Representability {
debug!("is_type_structurally_recursive: {:?} {:?}", ty, sp);
if let Some(representability) = representable_cache.get(ty) {
debug!("is_type_structurally_recursive: {:?} {:?} - (cached) {:?}",
ty, sp, representability);
return representability.clone();
}
let representability = is_type_structurally_recursive_inner(
tcx, sp, seen, representable_cache, ty);
representable_cache.insert(ty, representability.clone());
representability
}
2015-09-14 11:55:56 +00:00
fn is_type_structurally_recursive_inner<'tcx>(
2019-06-13 21:48:52 +00:00
tcx: TyCtxt<'tcx>,
sp: Span,
seen: &mut Vec<Ty<'tcx>>,
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
ty: Ty<'tcx>,
) -> Representability {
2019-09-16 18:08:35 +00:00
match ty.kind {
Adt(def, _) => {
2015-09-14 11:55:56 +00:00
{
// Iterate through stack of previously seen types.
let mut iter = seen.iter();
// The first item in `seen` is the type we are actually curious about.
// We want to return SelfRecursive if this type contains itself.
// It is important that we DON'T take generic parameters into account
// for this check, so that Bar<T> in this example counts as SelfRecursive:
//
// struct Foo;
// struct Bar<T> { x: Bar<Foo> }
if let Some(&seen_type) = iter.next() {
if same_struct_or_enum(seen_type, def) {
debug!("SelfRecursive: {:?} contains {:?}",
seen_type,
ty);
return Representability::SelfRecursive(vec![sp]);
2015-09-14 11:55:56 +00:00
}
}
// We also need to know whether the first item contains other types
// that are structurally recursive. If we don't catch this case, we
// will recurse infinitely for some inputs.
//
// It is important that we DO take generic parameters into account
// here, so that code like this is considered SelfRecursive, not
// ContainsRecursive:
//
// struct Foo { Option<Option<Foo>> }
for &seen_type in iter {
if ty::TyS::same_type(ty, seen_type) {
2015-09-14 11:55:56 +00:00
debug!("ContainsRecursive: {:?} contains {:?}",
seen_type,
ty);
return Representability::ContainsRecursive;
}
}
}
// For structs and enums, track all previously seen types by pushing them
// onto the 'seen' stack.
seen.push(ty);
let out = are_inner_types_recursive(tcx, sp, seen, representable_cache, ty);
2015-09-14 11:55:56 +00:00
seen.pop();
out
}
_ => {
// No need to push in other cases.
are_inner_types_recursive(tcx, sp, seen, representable_cache, ty)
2015-09-14 11:55:56 +00:00
}
}
}
debug!("is_type_representable: {:?}", self);
// To avoid a stack overflow when checking an enum variant or struct that
// contains a different, structurally recursive type, maintain a stack
// of seen types and check recursion for each of them (issues #3008, #3779).
let mut seen: Vec<Ty<'_>> = Vec::new();
let mut representable_cache = FxHashMap::default();
let r = is_type_structurally_recursive(
tcx, sp, &mut seen, &mut representable_cache, self);
2015-09-14 11:55:56 +00:00
debug!("is_type_representable: {:?} is {:?}", self, r);
r
}
/// Peel off all reference types in this type until there are none left.
///
/// This method is idempotent, i.e. `ty.peel_refs().peel_refs() == ty.peel_refs()`.
///
/// # Examples
///
/// - `u8` -> `u8`
/// - `&'a mut u8` -> `u8`
/// - `&'a &'b u8` -> `u8`
/// - `&'a *const &'b u8 -> *const &'b u8`
pub fn peel_refs(&'tcx self) -> Ty<'tcx> {
let mut ty = self;
2019-09-16 18:08:35 +00:00
while let Ref(_, inner_ty, _) = ty.kind {
ty = inner_ty;
}
ty
}
2015-09-14 11:55:56 +00:00
}
2019-06-13 21:48:52 +00:00
fn is_copy_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
is_item_raw(tcx, query, lang_items::CopyTraitLangItem)
}
2019-06-13 21:48:52 +00:00
fn is_sized_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
is_item_raw(tcx, query, lang_items::SizedTraitLangItem)
}
2019-06-13 21:48:52 +00:00
fn is_freeze_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
is_item_raw(tcx, query, lang_items::FreezeTraitLangItem)
}
fn is_item_raw<'tcx>(
tcx: TyCtxt<'tcx>,
query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
2019-10-10 06:10:35 +00:00
item: lang_items::LangItem,
) -> bool {
let (param_env, ty) = query.into_parts();
let trait_def_id = tcx.require_lang_item(item, None);
tcx.infer_ctxt()
.enter(|infcx| traits::type_known_to_meet_bound_modulo_regions(
&infcx,
param_env,
ty,
trait_def_id,
DUMMY_SP,
))
}
2018-12-03 00:14:35 +00:00
#[derive(Clone, HashStable)]
2019-01-24 19:05:19 +00:00
pub struct NeedsDrop(pub bool);
fn needs_drop_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> NeedsDrop {
2017-05-12 15:44:31 +00:00
let (param_env, ty) = query.into_parts();
let needs_drop = |ty: Ty<'tcx>| -> bool {
2019-01-24 19:05:19 +00:00
tcx.needs_drop_raw(param_env.and(ty)).0
2017-05-12 15:44:31 +00:00
};
assert!(!ty.needs_infer());
2019-09-16 18:08:35 +00:00
NeedsDrop(match ty.kind {
2017-05-12 15:44:31 +00:00
// Fast-path for primitive types
ty::Infer(ty::FreshIntTy(_)) | ty::Infer(ty::FreshFloatTy(_)) |
ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Never |
ty::FnDef(..) | ty::FnPtr(_) | ty::Char | ty::GeneratorWitness(..) |
ty::RawPtr(_) | ty::Ref(..) | ty::Str => false,
2017-05-12 15:44:31 +00:00
2017-09-03 18:53:58 +00:00
// Foreign types can never have destructors
ty::Foreign(..) => false,
2017-09-03 18:53:58 +00:00
// `ManuallyDrop` doesn't have a destructor regardless of field types.
ty::Adt(def, _) if Some(def.did) == tcx.lang_items().manually_drop() => false,
// Issue #22536: We first query `is_copy_modulo_regions`. It sees a
2017-05-12 15:44:31 +00:00
// normalized version of the type, and therefore will definitely
// know whether the type implements Copy (and thus needs no
// cleanup/drop/zeroing) ...
_ if ty.is_copy_modulo_regions(tcx, param_env, DUMMY_SP) => false,
2017-05-12 15:44:31 +00:00
// ... (issue #22536 continued) but as an optimization, still use
// prior logic of asking for the structural "may drop".
// FIXME(#22815): Note that this is a conservative heuristic;
// it may report that the type "may drop" when actual type does
// not actually have a destructor associated with it. But since
// the type absolutely did not have the `Copy` bound attached
// (see above), it is sound to treat it as having a destructor.
// User destructors are the only way to have concrete drop types.
ty::Adt(def, _) if def.has_dtor(tcx) => true,
2017-05-12 15:44:31 +00:00
// Can refer to a type which may drop.
// FIXME(eddyb) check this against a ParamEnv.
2018-10-22 18:37:56 +00:00
ty::Dynamic(..) | ty::Projection(..) | ty::Param(_) | ty::Bound(..) |
ty::Placeholder(..) | ty::Opaque(..) | ty::Infer(_) | ty::Error => true,
2017-05-12 15:44:31 +00:00
ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
// Zero-length arrays never contain anything to drop.
ty::Array(_, len) if len.try_eval_usize(tcx, param_env) == Some(0) => false,
2017-05-12 15:44:31 +00:00
// Structural recursion.
ty::Array(ty, _) | ty::Slice(ty) => needs_drop(ty),
2017-05-12 15:44:31 +00:00
2019-09-26 17:30:44 +00:00
ty::Closure(def_id, ref substs) => {
substs.as_closure().upvar_tys(def_id, tcx).any(needs_drop)
}
2017-05-12 15:44:31 +00:00
2017-08-25 14:41:30 +00:00
// Pessimistically assume that all generators will require destructors
// as we don't know if a destructor is a noop or not until after the MIR
// state transformation pass
ty::Generator(..) => true,
2016-12-26 13:34:03 +00:00
ty::Tuple(..) => ty.tuple_fields().any(needs_drop),
2017-05-12 15:44:31 +00:00
// unions don't have destructors because of the child types,
// only if they manually implement `Drop` (handled above).
ty::Adt(def, _) if def.is_union() => false,
2017-05-12 15:44:31 +00:00
ty::Adt(def, substs) =>
2017-05-12 15:44:31 +00:00
def.variants.iter().any(
|variant| variant.fields.iter().any(
|field| needs_drop(field.ty(tcx, substs)))),
2019-01-24 19:05:19 +00:00
})
2017-05-12 15:44:31 +00:00
}
pub enum ExplicitSelf<'tcx> {
ByValue,
ByReference(ty::Region<'tcx>, hir::Mutability),
ByRawPointer(hir::Mutability),
ByBox,
Other
}
impl<'tcx> ExplicitSelf<'tcx> {
/// Categorizes an explicit self declaration like `self: SomeType`
/// into either `self`, `&self`, `&mut self`, `Box<self>`, or
/// `Other`.
/// This is mainly used to require the arbitrary_self_types feature
/// in the case of `Other`, to improve error messages in the common cases,
/// and to make `Other` non-object-safe.
///
/// Examples:
///
/// ```
/// impl<'a> Foo for &'a T {
/// // Legal declarations:
/// fn method1(self: &&'a T); // ExplicitSelf::ByReference
/// fn method2(self: &'a T); // ExplicitSelf::ByValue
/// fn method3(self: Box<&'a T>); // ExplicitSelf::ByBox
/// fn method4(self: Rc<&'a T>); // ExplicitSelf::Other
///
/// // Invalid cases will be caught by `check_method_receiver`:
/// fn method_err1(self: &'a mut T); // ExplicitSelf::Other
/// fn method_err2(self: &'static T) // ExplicitSelf::ByValue
/// fn method_err3(self: &&T) // ExplicitSelf::ByReference
/// }
/// ```
///
pub fn determine<P>(
self_arg_ty: Ty<'tcx>,
is_self_ty: P
) -> ExplicitSelf<'tcx>
where
P: Fn(Ty<'tcx>) -> bool
{
use self::ExplicitSelf::*;
2019-09-16 18:08:35 +00:00
match self_arg_ty.kind {
_ if is_self_ty(self_arg_ty) => ByValue,
ty::Ref(region, ty, mutbl) if is_self_ty(ty) => {
2017-11-08 15:57:57 +00:00
ByReference(region, mutbl)
}
ty::RawPtr(ty::TypeAndMut { ty, mutbl }) if is_self_ty(ty) => {
ByRawPointer(mutbl)
}
ty::Adt(def, _) if def.is_box() && is_self_ty(self_arg_ty.boxed_ty()) => {
ByBox
}
_ => Other
}
}
}
pub fn provide(providers: &mut ty::query::Providers<'_>) {
2018-06-13 13:44:43 +00:00
*providers = ty::query::Providers {
is_copy_raw,
is_sized_raw,
is_freeze_raw,
2017-05-12 15:44:31 +00:00
needs_drop_raw,
..*providers
};
}