rust/src/liballoc/boxed.rs

838 lines
24 KiB
Rust
Raw Normal View History

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2015-01-22 17:07:23 +00:00
//! A pointer type for heap allocation.
//!
//! `Box<T>`, casually referred to as a 'box', provides the simplest form of
//! heap allocation in Rust. Boxes provide ownership for this allocation, and
//! drop their contents when they go out of scope.
2015-01-22 17:07:23 +00:00
//!
//! # Examples
//!
//! Move a value from the stack to the heap by creating a [`Box`]:
2015-01-22 17:07:23 +00:00
//!
//! ```
//! let val: u8 = 5;
//! let boxed: Box<u8> = Box::new(val);
//! ```
//!
//! Move a value from a [`Box`] back to the stack by [dereferencing]:
//!
//! ```
//! let boxed: Box<u8> = Box::new(5);
//! let val: u8 = *boxed;
2015-01-22 17:07:23 +00:00
//! ```
//!
//! Creating a recursive data structure:
//!
//! ```
2015-01-28 13:34:18 +00:00
//! #[derive(Debug)]
2015-01-22 17:07:23 +00:00
//! enum List<T> {
//! Cons(T, Box<List<T>>),
//! Nil,
//! }
//!
//! fn main() {
//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
//! println!("{:?}", list);
//! }
//! ```
//!
2015-05-05 21:19:23 +00:00
//! This will print `Cons(1, Cons(2, Nil))`.
//!
//! Recursive structures must be boxed, because if the definition of `Cons`
//! looked like this:
//!
//! ```compile_fail,E0072
//! # enum List<T> {
//! Cons(T, List<T>),
//! # }
//! ```
//!
//! It wouldn't work. This is because the size of a `List` depends on how many
//! elements are in the list, and so we don't know how much memory to allocate
//! for a `Cons`. By introducing a `Box`, which has a defined size, we know how
//! big `Cons` needs to be.
//!
//! [dereferencing]: ../../std/ops/trait.Deref.html
//! [`Box`]: struct.Box.html
2015-01-24 05:48:20 +00:00
#![stable(feature = "rust1", since = "1.0.0")]
use core::any::Any;
use core::borrow;
use core::cmp::Ordering;
2018-07-01 07:28:16 +00:00
use core::convert::From;
use core::fmt;
2018-09-19 00:50:32 +00:00
use core::future::Future;
use core::hash::{Hash, Hasher};
2018-11-10 10:43:39 +00:00
use core::iter::{Iterator, FromIterator, FusedIterator};
use core::marker::{Unpin, Unsize};
use core::mem;
2018-09-01 04:12:10 +00:00
use core::pin::Pin;
use core::ops::{
CoerceUnsized, DispatchFromDyn, Deref, DerefMut, Receiver, Generator, GeneratorState
};
use core::ptr::{self, NonNull, Unique};
2018-09-19 00:50:32 +00:00
use core::task::{LocalWaker, Poll};
2018-11-10 10:43:39 +00:00
use vec::Vec;
use raw_vec::RawVec;
2017-04-11 20:02:43 +00:00
use str::from_boxed_utf8_unchecked;
2015-01-22 17:07:23 +00:00
/// A pointer type for heap allocation.
///
/// See the [module-level documentation](../../std/boxed/index.html) for more.
#[lang = "owned_box"]
2017-01-21 14:40:31 +00:00
#[fundamental]
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Box<T: ?Sized>(Unique<T>);
impl<T> Box<T> {
/// Allocates memory on the heap and then places `x` into it.
2015-01-22 17:07:23 +00:00
///
/// This doesn't actually allocate if `T` is zero-sized.
///
2015-01-22 17:07:23 +00:00
/// # Examples
///
/// ```
/// let five = Box::new(5);
2015-01-22 17:07:23 +00:00
/// ```
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
#[inline(always)]
pub fn new(x: T) -> Box<T> {
box x
}
2018-09-01 04:12:10 +00:00
2018-12-18 02:14:07 +00:00
#[stable(feature = "pin", since = "1.33.0")]
#[inline(always)]
2018-09-01 04:12:10 +00:00
pub fn pinned(x: T) -> Pin<Box<T>> {
(box x).into()
2018-09-01 04:12:10 +00:00
}
}
impl<T: ?Sized> Box<T> {
/// Constructs a box from a raw pointer.
///
/// After calling this function, the raw pointer is owned by the
/// resulting `Box`. Specifically, the `Box` destructor will call
/// the destructor of `T` and free the allocated memory. Since the
/// way `Box` allocates and releases memory is unspecified, the
/// only valid pointer to pass to this function is the one taken
2016-09-19 11:01:59 +00:00
/// from another `Box` via the [`Box::into_raw`] function.
///
/// This function is unsafe because improper use may lead to
/// memory problems. For example, a double-free may occur if the
/// function is called twice on the same raw pointer.
2016-07-09 17:57:08 +00:00
///
2016-09-19 11:01:59 +00:00
/// [`Box::into_raw`]: struct.Box.html#method.into_raw
///
2016-07-09 17:57:08 +00:00
/// # Examples
///
/// ```
/// let x = Box::new(5);
/// let ptr = Box::into_raw(x);
/// let x = unsafe { Box::from_raw(ptr) };
/// ```
std: Stabilize/deprecate features for 1.4 The FCP is coming to a close and 1.4 is coming out soon, so this brings in the libs team decision for all library features this cycle. Stabilized APIs: * `<Box<str>>::into_string` * `Arc::downgrade` * `Arc::get_mut` * `Arc::make_mut` * `Arc::try_unwrap` * `Box::from_raw` * `Box::into_raw` * `CStr::to_str` * `CStr::to_string_lossy` * `CString::from_raw` * `CString::into_raw` * `IntoRawFd::into_raw_fd` * `IntoRawFd` * `IntoRawHandle::into_raw_handle` * `IntoRawHandle` * `IntoRawSocket::into_raw_socket` * `IntoRawSocket` * `Rc::downgrade` * `Rc::get_mut` * `Rc::make_mut` * `Rc::try_unwrap` * `Result::expect` * `String::into_boxed_slice` * `TcpSocket::read_timeout` * `TcpSocket::set_read_timeout` * `TcpSocket::set_write_timeout` * `TcpSocket::write_timeout` * `UdpSocket::read_timeout` * `UdpSocket::set_read_timeout` * `UdpSocket::set_write_timeout` * `UdpSocket::write_timeout` * `Vec::append` * `Vec::split_off` * `VecDeque::append` * `VecDeque::retain` * `VecDeque::split_off` * `rc::Weak::upgrade` * `rc::Weak` * `slice::Iter::as_slice` * `slice::IterMut::into_slice` * `str::CharIndices::as_str` * `str::Chars::as_str` * `str::split_at_mut` * `str::split_at` * `sync::Weak::upgrade` * `sync::Weak` * `thread::park_timeout` * `thread::sleep` Deprecated APIs * `BTreeMap::with_b` * `BTreeSet::with_b` * `Option::as_mut_slice` * `Option::as_slice` * `Result::as_mut_slice` * `Result::as_slice` * `f32::from_str_radix` * `f64::from_str_radix` Closes #27277 Closes #27718 Closes #27736 Closes #27764 Closes #27765 Closes #27766 Closes #27767 Closes #27768 Closes #27769 Closes #27771 Closes #27773 Closes #27775 Closes #27776 Closes #27785 Closes #27792 Closes #27795 Closes #27797
2015-09-10 20:26:44 +00:00
#[stable(feature = "box_raw", since = "1.4.0")]
#[inline]
pub unsafe fn from_raw(raw: *mut T) -> Self {
Box(Unique::new_unchecked(raw))
}
/// Consumes the `Box`, returning a wrapped raw pointer.
///
/// The pointer will be properly aligned and non-null.
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `Box`. In particular, the
/// caller should properly destroy `T` and release the memory. The
/// proper way to do so is to convert the raw pointer back into a
2016-09-19 11:01:59 +00:00
/// `Box` with the [`Box::from_raw`] function.
///
/// Note: this is an associated function, which means that you have
/// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
/// is so that there is no conflict with a method on the inner type.
///
2016-09-19 11:01:59 +00:00
/// [`Box::from_raw`]: struct.Box.html#method.from_raw
///
/// # Examples
2015-07-27 14:50:19 +00:00
///
std: Stabilize/deprecate features for 1.4 The FCP is coming to a close and 1.4 is coming out soon, so this brings in the libs team decision for all library features this cycle. Stabilized APIs: * `<Box<str>>::into_string` * `Arc::downgrade` * `Arc::get_mut` * `Arc::make_mut` * `Arc::try_unwrap` * `Box::from_raw` * `Box::into_raw` * `CStr::to_str` * `CStr::to_string_lossy` * `CString::from_raw` * `CString::into_raw` * `IntoRawFd::into_raw_fd` * `IntoRawFd` * `IntoRawHandle::into_raw_handle` * `IntoRawHandle` * `IntoRawSocket::into_raw_socket` * `IntoRawSocket` * `Rc::downgrade` * `Rc::get_mut` * `Rc::make_mut` * `Rc::try_unwrap` * `Result::expect` * `String::into_boxed_slice` * `TcpSocket::read_timeout` * `TcpSocket::set_read_timeout` * `TcpSocket::set_write_timeout` * `TcpSocket::write_timeout` * `UdpSocket::read_timeout` * `UdpSocket::set_read_timeout` * `UdpSocket::set_write_timeout` * `UdpSocket::write_timeout` * `Vec::append` * `Vec::split_off` * `VecDeque::append` * `VecDeque::retain` * `VecDeque::split_off` * `rc::Weak::upgrade` * `rc::Weak` * `slice::Iter::as_slice` * `slice::IterMut::into_slice` * `str::CharIndices::as_str` * `str::Chars::as_str` * `str::split_at_mut` * `str::split_at` * `sync::Weak::upgrade` * `sync::Weak` * `thread::park_timeout` * `thread::sleep` Deprecated APIs * `BTreeMap::with_b` * `BTreeSet::with_b` * `Option::as_mut_slice` * `Option::as_slice` * `Result::as_mut_slice` * `Result::as_slice` * `f32::from_str_radix` * `f64::from_str_radix` Closes #27277 Closes #27718 Closes #27736 Closes #27764 Closes #27765 Closes #27766 Closes #27767 Closes #27768 Closes #27769 Closes #27771 Closes #27773 Closes #27775 Closes #27776 Closes #27785 Closes #27792 Closes #27795 Closes #27797
2015-09-10 20:26:44 +00:00
/// ```
2016-07-09 17:57:08 +00:00
/// let x = Box::new(5);
/// let ptr = Box::into_raw(x);
/// ```
std: Stabilize/deprecate features for 1.4 The FCP is coming to a close and 1.4 is coming out soon, so this brings in the libs team decision for all library features this cycle. Stabilized APIs: * `<Box<str>>::into_string` * `Arc::downgrade` * `Arc::get_mut` * `Arc::make_mut` * `Arc::try_unwrap` * `Box::from_raw` * `Box::into_raw` * `CStr::to_str` * `CStr::to_string_lossy` * `CString::from_raw` * `CString::into_raw` * `IntoRawFd::into_raw_fd` * `IntoRawFd` * `IntoRawHandle::into_raw_handle` * `IntoRawHandle` * `IntoRawSocket::into_raw_socket` * `IntoRawSocket` * `Rc::downgrade` * `Rc::get_mut` * `Rc::make_mut` * `Rc::try_unwrap` * `Result::expect` * `String::into_boxed_slice` * `TcpSocket::read_timeout` * `TcpSocket::set_read_timeout` * `TcpSocket::set_write_timeout` * `TcpSocket::write_timeout` * `UdpSocket::read_timeout` * `UdpSocket::set_read_timeout` * `UdpSocket::set_write_timeout` * `UdpSocket::write_timeout` * `Vec::append` * `Vec::split_off` * `VecDeque::append` * `VecDeque::retain` * `VecDeque::split_off` * `rc::Weak::upgrade` * `rc::Weak` * `slice::Iter::as_slice` * `slice::IterMut::into_slice` * `str::CharIndices::as_str` * `str::Chars::as_str` * `str::split_at_mut` * `str::split_at` * `sync::Weak::upgrade` * `sync::Weak` * `thread::park_timeout` * `thread::sleep` Deprecated APIs * `BTreeMap::with_b` * `BTreeSet::with_b` * `Option::as_mut_slice` * `Option::as_slice` * `Result::as_mut_slice` * `Result::as_slice` * `f32::from_str_radix` * `f64::from_str_radix` Closes #27277 Closes #27718 Closes #27736 Closes #27764 Closes #27765 Closes #27766 Closes #27767 Closes #27768 Closes #27769 Closes #27771 Closes #27773 Closes #27775 Closes #27776 Closes #27785 Closes #27792 Closes #27795 Closes #27797
2015-09-10 20:26:44 +00:00
#[stable(feature = "box_raw", since = "1.4.0")]
#[inline]
pub fn into_raw(b: Box<T>) -> *mut T {
Box::into_raw_non_null(b).as_ptr()
}
2017-07-14 10:47:06 +00:00
/// Consumes the `Box`, returning the wrapped pointer as `NonNull<T>`.
2017-07-14 10:47:06 +00:00
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `Box`. In particular, the
/// caller should properly destroy `T` and release the memory. The
/// proper way to do so is to convert the `NonNull<T>` pointer
/// into a raw pointer and back into a `Box` with the [`Box::from_raw`]
/// function.
2017-07-14 10:47:06 +00:00
///
/// Note: this is an associated function, which means that you have
/// to call it as `Box::into_raw_non_null(b)`
/// instead of `b.into_raw_non_null()`. This
2017-07-14 10:47:06 +00:00
/// is so that there is no conflict with a method on the inner type.
///
/// [`Box::from_raw`]: struct.Box.html#method.from_raw
///
/// # Examples
///
/// ```
/// #![feature(box_into_raw_non_null)]
///
2017-07-14 10:47:06 +00:00
/// fn main() {
/// let x = Box::new(5);
/// let ptr = Box::into_raw_non_null(x);
2017-07-14 10:47:06 +00:00
/// }
/// ```
#[unstable(feature = "box_into_raw_non_null", issue = "47336")]
2017-07-14 10:47:06 +00:00
#[inline]
pub fn into_raw_non_null(b: Box<T>) -> NonNull<T> {
Box::into_unique(b).into()
}
#[unstable(feature = "ptr_internals", issue = "0", reason = "use into_raw_non_null instead")]
#[inline]
#[doc(hidden)]
2017-07-14 10:47:06 +00:00
pub fn into_unique(b: Box<T>) -> Unique<T> {
let unique = b.0;
mem::forget(b);
unique
2017-07-14 10:47:06 +00:00
}
2017-11-08 22:10:33 +00:00
2017-11-09 22:27:58 +00:00
/// Consumes and leaks the `Box`, returning a mutable reference,
/// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
/// `'a`. If the type has only static references, or none at all, then this
/// may be chosen to be `'static`.
2017-11-08 22:10:33 +00:00
///
/// This function is mainly useful for data that lives for the remainder of
2017-11-08 22:59:35 +00:00
/// the program's life. Dropping the returned reference will cause a memory
2017-11-08 22:10:33 +00:00
/// leak. If this is not acceptable, the reference should first be wrapped
2017-11-08 22:59:35 +00:00
/// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
/// then be dropped which will properly destroy `T` and release the
/// allocated memory.
2017-11-08 22:10:33 +00:00
///
/// Note: this is an associated function, which means that you have
/// to call it as `Box::leak(b)` instead of `b.leak()`. This
/// is so that there is no conflict with a method on the inner type.
///
/// [`Box::from_raw`]: struct.Box.html#method.from_raw
///
/// # Examples
///
/// Simple usage:
///
/// ```
2017-11-08 23:15:07 +00:00
/// fn main() {
/// let x = Box::new(41);
/// let static_ref: &'static mut usize = Box::leak(x);
2017-11-08 23:15:07 +00:00
/// *static_ref += 1;
/// assert_eq!(*static_ref, 42);
/// }
2017-11-08 22:10:33 +00:00
/// ```
///
/// Unsized data:
///
/// ```
2017-11-08 23:15:07 +00:00
/// fn main() {
/// let x = vec![1, 2, 3].into_boxed_slice();
/// let static_ref = Box::leak(x);
/// static_ref[0] = 4;
/// assert_eq!(*static_ref, [4, 2, 3]);
/// }
2017-11-08 22:10:33 +00:00
/// ```
#[stable(feature = "box_leak", since = "1.26.0")]
2017-11-08 22:10:33 +00:00
#[inline]
2017-11-09 22:39:18 +00:00
pub fn leak<'a>(b: Box<T>) -> &'a mut T
where
T: 'a // Technically not needed, but kept to be explicit.
{
2017-11-08 22:10:33 +00:00
unsafe { &mut *Box::into_raw(b) }
}
}
2017-01-21 19:44:44 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T: ?Sized> Drop for Box<T> {
fn drop(&mut self) {
// FIXME: Do nothing, drop is currently performed by compiler.
}
}
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Box<T> {
/// Creates a `Box<T>`, with the `Default` value for T.
2015-09-23 22:00:54 +00:00
fn default() -> Box<T> {
box Default::default()
}
}
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-11-06 17:52:45 +00:00
impl<T> Default for Box<[T]> {
2015-09-23 22:00:54 +00:00
fn default() -> Box<[T]> {
Box::<[T; 0]>::new([])
}
2014-11-06 17:52:45 +00:00
}
#[stable(feature = "default_box_extra", since = "1.17.0")]
impl Default for Box<str> {
fn default() -> Box<str> {
2017-04-11 20:02:43 +00:00
unsafe { from_boxed_utf8_unchecked(Default::default()) }
}
}
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for Box<T> {
2015-01-22 17:07:23 +00:00
/// Returns a new box with a `clone()` of this box's contents.
///
/// # Examples
///
/// ```
/// let x = Box::new(5);
/// let y = x.clone();
/// ```
2015-09-23 22:03:05 +00:00
#[rustfmt_skip]
#[inline]
2015-09-23 22:00:54 +00:00
fn clone(&self) -> Box<T> {
2015-09-23 22:03:05 +00:00
box { (**self).clone() }
2015-09-23 22:00:54 +00:00
}
2015-01-22 17:07:23 +00:00
/// Copies `source`'s contents into `self` without creating a new allocation.
///
/// # Examples
///
/// ```
/// let x = Box::new(5);
/// let mut y = Box::new(10);
///
/// y.clone_from(&x);
///
/// assert_eq!(*y, 5);
/// ```
#[inline]
fn clone_from(&mut self, source: &Box<T>) {
(**self).clone_from(&(**source));
}
}
#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl Clone for Box<str> {
fn clone(&self) -> Self {
let len = self.len();
let buf = RawVec::with_capacity(len);
unsafe {
ptr::copy_nonoverlapping(self.as_ptr(), buf.ptr(), len);
2017-04-11 20:02:43 +00:00
from_boxed_utf8_unchecked(buf.into_box())
}
}
}
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-05 21:16:49 +00:00
impl<T: ?Sized + PartialEq> PartialEq for Box<T> {
#[inline]
2015-09-23 22:00:54 +00:00
fn eq(&self, other: &Box<T>) -> bool {
PartialEq::eq(&**self, &**other)
}
#[inline]
2015-09-23 22:00:54 +00:00
fn ne(&self, other: &Box<T>) -> bool {
PartialEq::ne(&**self, &**other)
}
}
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-05 21:16:49 +00:00
impl<T: ?Sized + PartialOrd> PartialOrd for Box<T> {
#[inline]
fn partial_cmp(&self, other: &Box<T>) -> Option<Ordering> {
PartialOrd::partial_cmp(&**self, &**other)
}
#[inline]
2015-09-23 22:00:54 +00:00
fn lt(&self, other: &Box<T>) -> bool {
PartialOrd::lt(&**self, &**other)
}
#[inline]
2015-09-23 22:00:54 +00:00
fn le(&self, other: &Box<T>) -> bool {
PartialOrd::le(&**self, &**other)
}
#[inline]
2015-09-23 22:00:54 +00:00
fn ge(&self, other: &Box<T>) -> bool {
PartialOrd::ge(&**self, &**other)
}
#[inline]
2015-09-23 22:00:54 +00:00
fn gt(&self, other: &Box<T>) -> bool {
PartialOrd::gt(&**self, &**other)
}
}
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-05 21:16:49 +00:00
impl<T: ?Sized + Ord> Ord for Box<T> {
#[inline]
fn cmp(&self, other: &Box<T>) -> Ordering {
Ord::cmp(&**self, &**other)
}
}
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-05 21:16:49 +00:00
impl<T: ?Sized + Eq> Eq for Box<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for Box<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state);
}
}
#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
impl<T: ?Sized + Hasher> Hasher for Box<T> {
fn finish(&self) -> u64 {
(**self).finish()
}
fn write(&mut self, bytes: &[u8]) {
(**self).write(bytes)
}
fn write_u8(&mut self, i: u8) {
(**self).write_u8(i)
}
fn write_u16(&mut self, i: u16) {
(**self).write_u16(i)
}
fn write_u32(&mut self, i: u32) {
(**self).write_u32(i)
}
fn write_u64(&mut self, i: u64) {
(**self).write_u64(i)
}
fn write_u128(&mut self, i: u128) {
(**self).write_u128(i)
}
fn write_usize(&mut self, i: usize) {
(**self).write_usize(i)
}
fn write_i8(&mut self, i: i8) {
(**self).write_i8(i)
}
fn write_i16(&mut self, i: i16) {
(**self).write_i16(i)
}
fn write_i32(&mut self, i: i32) {
(**self).write_i32(i)
}
fn write_i64(&mut self, i: i64) {
(**self).write_i64(i)
}
fn write_i128(&mut self, i: i128) {
(**self).write_i128(i)
}
fn write_isize(&mut self, i: isize) {
(**self).write_isize(i)
}
}
2015-11-16 08:04:17 +00:00
#[stable(feature = "from_for_ptrs", since = "1.6.0")]
impl<T> From<T> for Box<T> {
fn from(t: T) -> Self {
Box::new(t)
}
}
2018-12-18 02:14:07 +00:00
#[stable(feature = "pin", since = "1.33.0")]
2018-09-01 04:12:10 +00:00
impl<T> From<Box<T>> for Pin<Box<T>> {
fn from(boxed: Box<T>) -> Self {
// It's not possible to move or replace the insides of a `Pin<Box<T>>`
// when `T: !Unpin`, so it's safe to pin it directly without any
// additional requirements.
2018-09-01 04:12:10 +00:00
unsafe { Pin::new_unchecked(boxed) }
}
}
#[stable(feature = "box_from_slice", since = "1.17.0")]
impl<'a, T: Copy> From<&'a [T]> for Box<[T]> {
fn from(slice: &'a [T]) -> Box<[T]> {
let mut boxed = unsafe { RawVec::with_capacity(slice.len()).into_box() };
boxed.copy_from_slice(slice);
boxed
}
}
#[stable(feature = "box_from_slice", since = "1.17.0")]
impl<'a> From<&'a str> for Box<str> {
#[inline]
fn from(s: &'a str) -> Box<str> {
2017-04-11 20:02:43 +00:00
unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
}
}
#[stable(feature = "boxed_str_conv", since = "1.19.0")]
2017-04-11 20:02:43 +00:00
impl From<Box<str>> for Box<[u8]> {
#[inline]
2017-04-11 20:02:43 +00:00
fn from(s: Box<str>) -> Self {
unsafe { Box::from_raw(Box::into_raw(s) as *mut [u8]) }
}
}
2018-07-11 08:19:54 +00:00
impl Box<dyn Any> {
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
/// Attempt to downcast the box to a concrete type.
2016-07-09 17:57:08 +00:00
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn print_if_string(value: Box<dyn Any>) {
2016-07-09 17:57:08 +00:00
/// if let Ok(string) = value.downcast::<String>() {
/// println!("String ({}): {}", string.len(), string);
/// }
/// }
///
/// fn main() {
/// let my_string = "Hello World".to_string();
/// print_if_string(Box::new(my_string));
/// print_if_string(Box::new(0i8));
/// }
/// ```
2018-07-11 08:19:54 +00:00
pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<dyn Any>> {
if self.is::<T>() {
unsafe {
2018-07-11 08:19:54 +00:00
let raw: *mut dyn Any = Box::into_raw(self);
Ok(Box::from_raw(raw as *mut T))
}
} else {
Err(self)
}
}
}
2018-07-11 08:19:54 +00:00
impl Box<dyn Any + Send> {
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
/// Attempt to downcast the box to a concrete type.
2016-07-09 17:57:08 +00:00
///
/// # Examples
///
/// ```
/// use std::any::Any;
///
/// fn print_if_string(value: Box<dyn Any + Send>) {
2016-07-09 17:57:08 +00:00
/// if let Ok(string) = value.downcast::<String>() {
/// println!("String ({}): {}", string.len(), string);
/// }
/// }
///
/// fn main() {
/// let my_string = "Hello World".to_string();
/// print_if_string(Box::new(my_string));
/// print_if_string(Box::new(0i8));
/// }
/// ```
2018-07-11 08:19:54 +00:00
pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<dyn Any + Send>> {
<Box<dyn Any>>::downcast(self).map_err(|s| unsafe {
// reapply the Send marker
2018-07-11 08:19:54 +00:00
Box::from_raw(Box::into_raw(s) as *mut (dyn Any + Send))
})
}
}
#[stable(feature = "rust1", since = "1.0.0")]
std: Rename Show/String to Debug/Display This commit is an implementation of [RFC 565][rfc] which is a stabilization of the `std::fmt` module and the implementations of various formatting traits. Specifically, the following changes were performed: [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md * The `Show` trait is now deprecated, it was renamed to `Debug` * The `String` trait is now deprecated, it was renamed to `Display` * Many `Debug` and `Display` implementations were audited in accordance with the RFC and audited implementations now have the `#[stable]` attribute * Integers and floats no longer print a suffix * Smart pointers no longer print details that they are a smart pointer * Paths with `Debug` are now quoted and escape characters * The `unwrap` methods on `Result` now require `Display` instead of `Debug` * The `Error` trait no longer has a `detail` method and now requires that `Display` must be implemented. With the loss of `String`, this has moved into libcore. * `impl<E: Error> FromError<E> for Box<Error>` now exists * `derive(Show)` has been renamed to `derive(Debug)`. This is not currently warned about due to warnings being emitted on stage1+ While backwards compatibility is attempted to be maintained with a blanket implementation of `Display` for the old `String` trait (and the same for `Show`/`Debug`) this is still a breaking change due to primitives no longer implementing `String` as well as modifications such as `unwrap` and the `Error` trait. Most code is fairly straightforward to update with a rename or tweaks of method calls. [breaking-change] Closes #21436
2015-01-20 23:45:07 +00:00
impl<T: fmt::Display + ?Sized> fmt::Display for Box<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
std: Rename Show/String to Debug/Display This commit is an implementation of [RFC 565][rfc] which is a stabilization of the `std::fmt` module and the implementations of various formatting traits. Specifically, the following changes were performed: [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md * The `Show` trait is now deprecated, it was renamed to `Debug` * The `String` trait is now deprecated, it was renamed to `Display` * Many `Debug` and `Display` implementations were audited in accordance with the RFC and audited implementations now have the `#[stable]` attribute * Integers and floats no longer print a suffix * Smart pointers no longer print details that they are a smart pointer * Paths with `Debug` are now quoted and escape characters * The `unwrap` methods on `Result` now require `Display` instead of `Debug` * The `Error` trait no longer has a `detail` method and now requires that `Display` must be implemented. With the loss of `String`, this has moved into libcore. * `impl<E: Error> FromError<E> for Box<Error>` now exists * `derive(Show)` has been renamed to `derive(Debug)`. This is not currently warned about due to warnings being emitted on stage1+ While backwards compatibility is attempted to be maintained with a blanket implementation of `Display` for the old `String` trait (and the same for `Show`/`Debug`) this is still a breaking change due to primitives no longer implementing `String` as well as modifications such as `unwrap` and the `Error` trait. Most code is fairly straightforward to update with a rename or tweaks of method calls. [breaking-change] Closes #21436
2015-01-20 23:45:07 +00:00
fmt::Display::fmt(&**self, f)
}
}
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
std: Rename Show/String to Debug/Display This commit is an implementation of [RFC 565][rfc] which is a stabilization of the `std::fmt` module and the implementations of various formatting traits. Specifically, the following changes were performed: [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md * The `Show` trait is now deprecated, it was renamed to `Debug` * The `String` trait is now deprecated, it was renamed to `Display` * Many `Debug` and `Display` implementations were audited in accordance with the RFC and audited implementations now have the `#[stable]` attribute * Integers and floats no longer print a suffix * Smart pointers no longer print details that they are a smart pointer * Paths with `Debug` are now quoted and escape characters * The `unwrap` methods on `Result` now require `Display` instead of `Debug` * The `Error` trait no longer has a `detail` method and now requires that `Display` must be implemented. With the loss of `String`, this has moved into libcore. * `impl<E: Error> FromError<E> for Box<Error>` now exists * `derive(Show)` has been renamed to `derive(Debug)`. This is not currently warned about due to warnings being emitted on stage1+ While backwards compatibility is attempted to be maintained with a blanket implementation of `Display` for the old `String` trait (and the same for `Show`/`Debug`) this is still a breaking change due to primitives no longer implementing `String` as well as modifications such as `unwrap` and the `Error` trait. Most code is fairly straightforward to update with a rename or tweaks of method calls. [breaking-change] Closes #21436
2015-01-20 23:45:07 +00:00
impl<T: fmt::Debug + ?Sized> fmt::Debug for Box<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
std: Rename Show/String to Debug/Display This commit is an implementation of [RFC 565][rfc] which is a stabilization of the `std::fmt` module and the implementations of various formatting traits. Specifically, the following changes were performed: [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md * The `Show` trait is now deprecated, it was renamed to `Debug` * The `String` trait is now deprecated, it was renamed to `Display` * Many `Debug` and `Display` implementations were audited in accordance with the RFC and audited implementations now have the `#[stable]` attribute * Integers and floats no longer print a suffix * Smart pointers no longer print details that they are a smart pointer * Paths with `Debug` are now quoted and escape characters * The `unwrap` methods on `Result` now require `Display` instead of `Debug` * The `Error` trait no longer has a `detail` method and now requires that `Display` must be implemented. With the loss of `String`, this has moved into libcore. * `impl<E: Error> FromError<E> for Box<Error>` now exists * `derive(Show)` has been renamed to `derive(Debug)`. This is not currently warned about due to warnings being emitted on stage1+ While backwards compatibility is attempted to be maintained with a blanket implementation of `Display` for the old `String` trait (and the same for `Show`/`Debug`) this is still a breaking change due to primitives no longer implementing `String` as well as modifications such as `unwrap` and the `Error` trait. Most code is fairly straightforward to update with a rename or tweaks of method calls. [breaking-change] Closes #21436
2015-01-20 23:45:07 +00:00
fmt::Debug::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> fmt::Pointer for Box<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// It's not possible to extract the inner Uniq directly from the Box,
// instead we cast it to a *const which aliases the Unique
let ptr: *const T = &**self;
fmt::Pointer::fmt(&ptr, f)
}
}
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-05 21:16:49 +00:00
impl<T: ?Sized> Deref for Box<T> {
2015-01-01 19:53:20 +00:00
type Target = T;
2015-09-23 22:00:54 +00:00
fn deref(&self) -> &T {
&**self
}
2014-12-19 22:44:21 +00:00
}
2015-01-24 05:48:20 +00:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-05 21:16:49 +00:00
impl<T: ?Sized> DerefMut for Box<T> {
2015-09-23 22:00:54 +00:00
fn deref_mut(&mut self) -> &mut T {
&mut **self
}
2014-12-19 22:44:21 +00:00
}
#[unstable(feature = "receiver_trait", issue = "0")]
impl<T: ?Sized> Receiver for Box<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator + ?Sized> Iterator for Box<I> {
type Item = I::Item;
2015-09-23 22:00:54 +00:00
fn next(&mut self) -> Option<I::Item> {
(**self).next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
(**self).size_hint()
}
fn nth(&mut self, n: usize) -> Option<I::Item> {
(**self).nth(n)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<I> {
2015-09-23 22:00:54 +00:00
fn next_back(&mut self) -> Option<I::Item> {
(**self).next_back()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<I> {
fn len(&self) -> usize {
(**self).len()
}
fn is_empty(&self) -> bool {
(**self).is_empty()
}
}
2014-12-19 22:44:21 +00:00
#[stable(feature = "fused", since = "1.26.0")]
impl<I: FusedIterator + ?Sized> FusedIterator for Box<I> {}
/// `FnBox` is a version of the `FnOnce` intended for use with boxed
/// closure objects. The idea is that where one would normally store a
/// `Box<dyn FnOnce()>` in a data structure, you should use
/// `Box<dyn FnBox()>`. The two traits behave essentially the same, except
/// that a `FnBox` closure can only be called if it is boxed. (Note
/// that `FnBox` may be deprecated in the future if `Box<dyn FnOnce()>`
/// closures become directly usable.)
///
/// # Examples
///
/// Here is a snippet of code which creates a hashmap full of boxed
/// once closures and then removes them one by one, calling each
/// closure as it is removed. Note that the type of the closures
/// stored in the map is `Box<dyn FnBox() -> i32>` and not `Box<dyn FnOnce()
/// -> i32>`.
///
/// ```
/// #![feature(fnbox)]
///
/// use std::boxed::FnBox;
/// use std::collections::HashMap;
///
/// fn make_map() -> HashMap<i32, Box<dyn FnBox() -> i32>> {
/// let mut map: HashMap<i32, Box<dyn FnBox() -> i32>> = HashMap::new();
/// map.insert(1, Box::new(|| 22));
/// map.insert(2, Box::new(|| 44));
/// map
/// }
///
/// fn main() {
/// let mut map = make_map();
/// for i in &[1, 2] {
/// let f = map.remove(&i).unwrap();
/// assert_eq!(f(), i * 22);
/// }
/// }
/// ```
#[rustc_paren_sugar]
2016-05-12 14:59:37 +00:00
#[unstable(feature = "fnbox",
reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
pub trait FnBox<A> {
type Output;
fn call_box(self: Box<Self>, args: A) -> Self::Output;
}
2016-05-12 14:59:37 +00:00
#[unstable(feature = "fnbox",
reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
2016-05-27 20:55:16 +00:00
impl<A, F> FnBox<A> for F
where F: FnOnce<A>
{
type Output = F::Output;
fn call_box(self: Box<F>, args: A) -> F::Output {
self.call_once(args)
}
}
2016-05-12 14:59:37 +00:00
#[unstable(feature = "fnbox",
reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
2018-07-11 08:19:54 +00:00
impl<'a, A, R> FnOnce<A> for Box<dyn FnBox<A, Output = R> + 'a> {
type Output = R;
extern "rust-call" fn call_once(self, args: A) -> R {
self.call_box(args)
}
}
2016-05-12 14:59:37 +00:00
#[unstable(feature = "fnbox",
reason = "will be deprecated if and when `Box<FnOnce>` becomes usable", issue = "28796")]
2018-07-11 08:19:54 +00:00
impl<'a, A, R> FnOnce<A> for Box<dyn FnBox<A, Output = R> + Send + 'a> {
type Output = R;
extern "rust-call" fn call_once(self, args: A) -> R {
self.call_box(args)
}
}
2015-11-16 16:54:28 +00:00
#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Box<U>> for Box<T> {}
#[unstable(feature = "dispatch_from_dyn", issue = "0")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T> {}
2018-11-11 09:45:16 +00:00
#[stable(feature = "boxed_slice_from_iter", since = "1.32.0")]
2018-11-10 10:43:39 +00:00
impl<A> FromIterator<A> for Box<[A]> {
fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
}
}
#[stable(feature = "box_slice_clone", since = "1.3.0")]
impl<T: Clone> Clone for Box<[T]> {
fn clone(&self) -> Self {
2015-10-12 05:11:59 +00:00
let mut new = BoxBuilder {
data: RawVec::with_capacity(self.len()),
len: 0,
};
let mut target = new.data.ptr();
for item in self.iter() {
unsafe {
ptr::write(target, item.clone());
target = target.offset(1);
};
new.len += 1;
}
return unsafe { new.into_box() };
// Helper type for responding to panics correctly.
struct BoxBuilder<T> {
data: RawVec<T>,
len: usize,
}
impl<T> BoxBuilder<T> {
unsafe fn into_box(self) -> Box<[T]> {
let raw = ptr::read(&self.data);
mem::forget(self);
raw.into_box()
}
}
impl<T> Drop for BoxBuilder<T> {
fn drop(&mut self) {
let mut data = self.data.ptr();
let max = unsafe { data.add(self.len) };
while data != max {
unsafe {
ptr::read(data);
data = data.offset(1);
}
}
}
}
}
}
#[stable(feature = "box_borrow", since = "1.1.0")]
impl<T: ?Sized> borrow::Borrow<T> for Box<T> {
2015-09-23 22:00:54 +00:00
fn borrow(&self) -> &T {
&**self
}
}
#[stable(feature = "box_borrow", since = "1.1.0")]
impl<T: ?Sized> borrow::BorrowMut<T> for Box<T> {
2015-09-23 22:00:54 +00:00
fn borrow_mut(&mut self) -> &mut T {
&mut **self
}
}
#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsRef<T> for Box<T> {
2015-10-12 05:11:59 +00:00
fn as_ref(&self) -> &T {
&**self
}
}
#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsMut<T> for Box<T> {
2015-10-12 05:11:59 +00:00
fn as_mut(&mut self) -> &mut T {
&mut **self
}
}
2018-09-05 21:47:10 +00:00
/* Nota bene
*
2018-09-06 19:31:06 +00:00
* We could have chosen not to add this impl, and instead have written a
2018-09-05 21:47:10 +00:00
* function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
* because Box<T> implements Unpin even when T does not, as a result of
* this impl.
*
* We chose this API instead of the alternative for a few reasons:
* - Logically, it is helpful to understand pinning in regard to the
* memory region being pointed to. For this reason none of the
* standard library pointer types support projecting through a pin
* (Box<T> is the only pointer type in std for which this would be
* safe.)
2018-09-06 19:31:06 +00:00
* - It is in practice very useful to have Box<T> be unconditionally
2018-09-05 21:47:10 +00:00
* Unpin because of trait objects, for which the structural auto
* trait functionality does not apply (e.g., Box<dyn Foo> would
2018-09-05 21:47:10 +00:00
* otherwise not be Unpin).
*
* Another type with the same semantics as Box but only a conditional
* implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
* could have a method to project a Pin<T> from it.
*/
2018-12-18 02:14:07 +00:00
#[stable(feature = "pin", since = "1.33.0")]
2018-08-31 23:54:59 +00:00
impl<T: ?Sized> Unpin for Box<T> { }
#[unstable(feature = "generator_trait", issue = "43122")]
2017-07-11 19:57:05 +00:00
impl<T> Generator for Box<T>
where T: Generator + ?Sized
{
type Yield = T::Yield;
type Return = T::Return;
unsafe fn resume(&mut self) -> GeneratorState<Self::Yield, Self::Return> {
2017-07-11 19:57:05 +00:00
(**self).resume()
}
}
2018-03-15 19:55:37 +00:00
2018-06-08 20:45:27 +00:00
#[unstable(feature = "futures_api", issue = "50547")]
2018-06-30 19:16:44 +00:00
impl<F: ?Sized + Future + Unpin> Future for Box<F> {
2018-06-08 20:45:27 +00:00
type Output = F::Output;
2018-09-19 00:50:32 +00:00
fn poll(mut self: Pin<&mut Self>, lw: &LocalWaker) -> Poll<Self::Output> {
F::poll(Pin::new(&mut *self), lw)
}
}