rust/src/back/lto.rs

751 lines
32 KiB
Rust
Raw Normal View History

/// GCC requires to use the same toolchain for the whole compilation when doing LTO.
/// So, we need the same version/commit of the linker (gcc) and lto front-end binaries (lto1,
/// lto-wrapper, liblto_plugin.so).
// FIXME(antoyo): the executables compiled with LTO are bigger than those compiled without LTO.
// Since it is the opposite for cg_llvm, check if this is normal.
//
// Maybe we embed the bitcode in the final binary?
// It doesn't look like we try to generate fat objects for the final binary.
// Check if the way we combine the object files make it keep the LTO sections on the final link.
// Maybe that's because the combined object files contain the IR (true) and the final link
// does not remove it?
//
// TODO(antoyo): for performance, check which optimizations the C++ frontend enables.
//
// Fix these warnings:
// /usr/bin/ld: warning: type of symbol `_RNvNvNvNtCs5JWOrf9uCus_5rayon11thread_pool19WORKER_THREAD_STATE7___getit5___KEY' changed from 1 to 6 in /tmp/ccKeUSiR.ltrans0.ltrans.o
// /usr/bin/ld: warning: type of symbol `_RNvNvNvNvNtNtNtCsAj5i4SGTR7_3std4sync4mpmc5waker17current_thread_id5DUMMY7___getit5___KEY' changed from 1 to 6 in /tmp/ccKeUSiR.ltrans0.ltrans.o
// /usr/bin/ld: warning: incremental linking of LTO and non-LTO objects; using -flinker-output=nolto-rel which will bypass whole program optimization
use std::ffi::{CStr, CString};
use std::fs::{self, File};
use std::path::{Path, PathBuf};
use std::sync::Arc;
use gccjit::{Context, OutputKind};
use object::read::archive::ArchiveFile;
use rustc_codegen_ssa::back::lto::{LtoModuleCodegen, SerializedModule, ThinModule, ThinShared};
use rustc_codegen_ssa::back::symbol_export;
use rustc_codegen_ssa::back::write::{CodegenContext, FatLtoInput};
use rustc_codegen_ssa::traits::*;
use rustc_codegen_ssa::{looks_like_rust_object_file, ModuleCodegen, ModuleKind};
use rustc_data_structures::memmap::Mmap;
use rustc_errors::{DiagCtxtHandle, FatalError};
use rustc_hir::def_id::LOCAL_CRATE;
use rustc_middle::bug;
use rustc_middle::dep_graph::WorkProduct;
use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
use rustc_session::config::{CrateType, Lto};
use tempfile::{tempdir, TempDir};
use crate::back::write::save_temp_bitcode;
use crate::errors::{DynamicLinkingWithLTO, LtoBitcodeFromRlib, LtoDisallowed, LtoDylib};
2024-06-28 18:00:45 +00:00
use crate::{to_gcc_opt_level, GccCodegenBackend, GccContext, SyncContext};
/// We keep track of the computed LTO cache keys from the previous
/// session to determine which CGUs we can reuse.
//pub const THIN_LTO_KEYS_INCR_COMP_FILE_NAME: &str = "thin-lto-past-keys.bin";
pub fn crate_type_allows_lto(crate_type: CrateType) -> bool {
match crate_type {
CrateType::Executable | CrateType::Dylib | CrateType::Staticlib | CrateType::Cdylib => true,
CrateType::Rlib | CrateType::ProcMacro => false,
}
}
struct LtoData {
// TODO(antoyo): use symbols_below_threshold.
//symbols_below_threshold: Vec<CString>,
upstream_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>,
tmp_path: TempDir,
}
fn prepare_lto(
cgcx: &CodegenContext<GccCodegenBackend>,
dcx: DiagCtxtHandle<'_>,
) -> Result<LtoData, FatalError> {
let export_threshold = match cgcx.lto {
// We're just doing LTO for our one crate
Lto::ThinLocal => SymbolExportLevel::Rust,
// We're doing LTO for the entire crate graph
Lto::Fat | Lto::Thin => symbol_export::crates_export_threshold(&cgcx.crate_types),
Lto::No => panic!("didn't request LTO but we're doing LTO"),
};
let tmp_path = match tempdir() {
Ok(tmp_path) => tmp_path,
Err(error) => {
eprintln!("Cannot create temporary directory: {}", error);
return Err(FatalError);
}
};
let symbol_filter = &|&(ref name, info): &(String, SymbolExportInfo)| {
if info.level.is_below_threshold(export_threshold) || info.used {
Some(CString::new(name.as_str()).unwrap())
} else {
None
}
};
let exported_symbols = cgcx.exported_symbols.as_ref().expect("needs exported symbols for LTO");
let mut symbols_below_threshold = {
let _timer = cgcx.prof.generic_activity("GCC_lto_generate_symbols_below_threshold");
exported_symbols[&LOCAL_CRATE].iter().filter_map(symbol_filter).collect::<Vec<CString>>()
};
info!("{} symbols to preserve in this crate", symbols_below_threshold.len());
// If we're performing LTO for the entire crate graph, then for each of our
// upstream dependencies, find the corresponding rlib and load the bitcode
// from the archive.
//
// We save off all the bytecode and GCC module file path for later processing
// with either fat or thin LTO
let mut upstream_modules = Vec::new();
if cgcx.lto != Lto::ThinLocal {
// Make sure we actually can run LTO
for crate_type in cgcx.crate_types.iter() {
if !crate_type_allows_lto(*crate_type) {
2023-12-17 23:15:45 +00:00
dcx.emit_err(LtoDisallowed);
return Err(FatalError);
}
if *crate_type == CrateType::Dylib && !cgcx.opts.unstable_opts.dylib_lto {
dcx.emit_err(LtoDylib);
return Err(FatalError);
}
}
if cgcx.opts.cg.prefer_dynamic && !cgcx.opts.unstable_opts.dylib_lto {
2023-12-17 23:15:45 +00:00
dcx.emit_err(DynamicLinkingWithLTO);
return Err(FatalError);
}
for &(cnum, ref path) in cgcx.each_linked_rlib_for_lto.iter() {
let exported_symbols =
cgcx.exported_symbols.as_ref().expect("needs exported symbols for LTO");
{
let _timer = cgcx.prof.generic_activity("GCC_lto_generate_symbols_below_threshold");
symbols_below_threshold
.extend(exported_symbols[&cnum].iter().filter_map(symbol_filter));
}
let archive_data = unsafe {
Mmap::map(File::open(path).expect("couldn't open rlib")).expect("couldn't map rlib")
};
let archive = ArchiveFile::parse(&*archive_data).expect("wanted an rlib");
let obj_files = archive
.members()
.filter_map(|child| {
child.ok().and_then(|c| {
std::str::from_utf8(c.name()).ok().map(|name| (name.trim(), c))
})
})
.filter(|&(name, _)| looks_like_rust_object_file(name));
for (name, child) in obj_files {
info!("adding bitcode from {}", name);
let path = tmp_path.path().join(name);
match save_as_file(child.data(&*archive_data).expect("corrupt rlib"), &path) {
Ok(()) => {
let buffer = ModuleBuffer::new(path);
let module = SerializedModule::Local(buffer);
upstream_modules.push((module, CString::new(name).unwrap()));
}
Err(e) => {
2023-12-17 23:15:45 +00:00
dcx.emit_err(e);
return Err(FatalError);
}
}
}
}
}
Ok(LtoData {
//symbols_below_threshold,
upstream_modules,
tmp_path,
})
}
fn save_as_file(obj: &[u8], path: &Path) -> Result<(), LtoBitcodeFromRlib> {
fs::write(path, obj).map_err(|error| LtoBitcodeFromRlib {
gcc_err: format!("write object file to temp dir: {}", error),
})
}
/// Performs fat LTO by merging all modules into a single one and returning it
/// for further optimization.
pub(crate) fn run_fat(
cgcx: &CodegenContext<GccCodegenBackend>,
modules: Vec<FatLtoInput<GccCodegenBackend>>,
cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>,
) -> Result<LtoModuleCodegen<GccCodegenBackend>, FatalError> {
2023-12-17 23:15:45 +00:00
let dcx = cgcx.create_dcx();
let dcx = dcx.handle();
let lto_data = prepare_lto(cgcx, dcx)?;
/*let symbols_below_threshold =
lto_data.symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::<Vec<_>>();*/
fat_lto(
cgcx,
dcx,
modules,
cached_modules,
lto_data.upstream_modules,
lto_data.tmp_path,
//&symbols_below_threshold,
)
}
fn fat_lto(
cgcx: &CodegenContext<GccCodegenBackend>,
_dcx: DiagCtxtHandle<'_>,
modules: Vec<FatLtoInput<GccCodegenBackend>>,
cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>,
mut serialized_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>,
tmp_path: TempDir,
//symbols_below_threshold: &[*const libc::c_char],
) -> Result<LtoModuleCodegen<GccCodegenBackend>, FatalError> {
let _timer = cgcx.prof.generic_activity("GCC_fat_lto_build_monolithic_module");
info!("going for a fat lto");
// Sort out all our lists of incoming modules into two lists.
//
// * `serialized_modules` (also and argument to this function) contains all
// modules that are serialized in-memory.
// * `in_memory` contains modules which are already parsed and in-memory,
// such as from multi-CGU builds.
//
// All of `cached_modules` (cached from previous incremental builds) can
// immediately go onto the `serialized_modules` modules list and then we can
// split the `modules` array into these two lists.
let mut in_memory = Vec::new();
serialized_modules.extend(cached_modules.into_iter().map(|(buffer, wp)| {
info!("pushing cached module {:?}", wp.cgu_name);
(buffer, CString::new(wp.cgu_name).unwrap())
}));
for module in modules {
match module {
FatLtoInput::InMemory(m) => in_memory.push(m),
FatLtoInput::Serialized { name, buffer } => {
info!("pushing serialized module {:?}", name);
let buffer = SerializedModule::Local(buffer);
serialized_modules.push((buffer, CString::new(name).unwrap()));
}
}
}
// Find the "costliest" module and merge everything into that codegen unit.
// All the other modules will be serialized and reparsed into the new
// context, so this hopefully avoids serializing and parsing the largest
// codegen unit.
//
// Additionally use a regular module as the base here to ensure that various
// file copy operations in the backend work correctly. The only other kind
// of module here should be an allocator one, and if your crate is smaller
// than the allocator module then the size doesn't really matter anyway.
let costliest_module = in_memory
.iter()
.enumerate()
.filter(|&(_, module)| module.kind == ModuleKind::Regular)
.map(|(i, _module)| {
//let cost = unsafe { llvm::LLVMRustModuleCost(module.module_llvm.llmod()) };
// TODO(antoyo): compute the cost of a module if GCC allows this.
(0, i)
})
.max();
// If we found a costliest module, we're good to go. Otherwise all our
// inputs were serialized which could happen in the case, for example, that
// all our inputs were incrementally reread from the cache and we're just
// re-executing the LTO passes. If that's the case deserialize the first
// module and create a linker with it.
let mut module: ModuleCodegen<GccContext> = match costliest_module {
Some((_cost, i)) => in_memory.remove(i),
None => {
unimplemented!("Incremental");
/*assert!(!serialized_modules.is_empty(), "must have at least one serialized module");
let (buffer, name) = serialized_modules.remove(0);
info!("no in-memory regular modules to choose from, parsing {:?}", name);
ModuleCodegen {
2023-12-17 23:15:45 +00:00
module_llvm: GccContext::parse(cgcx, &name, buffer.data(), dcx)?,
name: name.into_string().unwrap(),
kind: ModuleKind::Regular,
}*/
}
};
let mut serialized_bitcode = Vec::new();
{
info!("using {:?} as a base module", module.name);
// We cannot load and merge GCC contexts in memory like cg_llvm is doing.
// Instead, we combine the object files into a single object file.
for module in in_memory {
let path = tmp_path.path().to_path_buf().join(&module.name);
let path = path.to_str().expect("path");
let context = &module.module_llvm.context;
let config = cgcx.config(module.kind);
// NOTE: we need to set the optimization level here in order for LTO to do its job.
context.set_optimization_level(to_gcc_opt_level(config.opt_level));
context.add_command_line_option("-flto=auto");
context.add_command_line_option("-flto-partition=one");
context.compile_to_file(OutputKind::ObjectFile, path);
let buffer = ModuleBuffer::new(PathBuf::from(path));
let llmod_id = CString::new(&module.name[..]).unwrap();
serialized_modules.push((SerializedModule::Local(buffer), llmod_id));
}
// Sort the modules to ensure we produce deterministic results.
serialized_modules.sort_by(|module1, module2| module1.1.cmp(&module2.1));
// We add the object files and save in should_combine_object_files that we should combine
// them into a single object file when compiling later.
for (bc_decoded, name) in serialized_modules {
let _timer = cgcx
.prof
.generic_activity_with_arg_recorder("GCC_fat_lto_link_module", |recorder| {
recorder.record_arg(format!("{:?}", name))
});
info!("linking {:?}", name);
match bc_decoded {
SerializedModule::Local(ref module_buffer) => {
module.module_llvm.should_combine_object_files = true;
module.module_llvm.fat_lto = true;
module
.module_llvm
.context
.add_driver_option(module_buffer.0.to_str().expect("path"));
}
SerializedModule::FromRlib(_) => unimplemented!("from rlib"),
SerializedModule::FromUncompressedFile(_) => {
unimplemented!("from uncompressed file")
}
}
serialized_bitcode.push(bc_decoded);
}
save_temp_bitcode(cgcx, &module, "lto.input");
// Internalize everything below threshold to help strip out more modules and such.
/*unsafe {
let ptr = symbols_below_threshold.as_ptr();
llvm::LLVMRustRunRestrictionPass(
llmod,
ptr as *const *const libc::c_char,
symbols_below_threshold.len() as libc::size_t,
);*/
save_temp_bitcode(cgcx, &module, "lto.after-restriction");
//}
}
// NOTE: save the temporary directory used by LTO so that it gets deleted after linking instead
// of now.
module.module_llvm.temp_dir = Some(tmp_path);
Ok(LtoModuleCodegen::Fat { module, _serialized_bitcode: serialized_bitcode })
}
pub struct ModuleBuffer(PathBuf);
impl ModuleBuffer {
pub fn new(path: PathBuf) -> ModuleBuffer {
ModuleBuffer(path)
}
}
impl ModuleBufferMethods for ModuleBuffer {
fn data(&self) -> &[u8] {
&[]
}
}
/// Performs thin LTO by performing necessary global analysis and returning two
/// lists, one of the modules that need optimization and another for modules that
/// can simply be copied over from the incr. comp. cache.
pub(crate) fn run_thin(
cgcx: &CodegenContext<GccCodegenBackend>,
modules: Vec<(String, ThinBuffer)>,
cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>,
) -> Result<(Vec<LtoModuleCodegen<GccCodegenBackend>>, Vec<WorkProduct>), FatalError> {
let dcx = cgcx.create_dcx();
2024-07-02 16:33:09 +00:00
let dcx = dcx.handle();
let lto_data = prepare_lto(cgcx, dcx)?;
/*let symbols_below_threshold =
symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::<Vec<_>>();*/
if cgcx.opts.cg.linker_plugin_lto.enabled() {
unreachable!(
"We should never reach this case if the LTO step \
is deferred to the linker"
);
}
thin_lto(
cgcx,
2024-07-02 16:33:09 +00:00
dcx,
modules,
lto_data.upstream_modules,
lto_data.tmp_path,
cached_modules, /*, &symbols_below_threshold*/
)
}
pub(crate) fn prepare_thin(
module: ModuleCodegen<GccContext>,
_emit_summary: bool,
) -> (String, ThinBuffer) {
let name = module.name;
//let buffer = ThinBuffer::new(module.module_llvm.context, true, emit_summary);
let buffer = ThinBuffer::new(&module.module_llvm.context);
(name, buffer)
}
/// Prepare "thin" LTO to get run on these modules.
///
/// The general structure of ThinLTO is quite different from the structure of
/// "fat" LTO above. With "fat" LTO all LLVM modules in question are merged into
/// one giant LLVM module, and then we run more optimization passes over this
/// big module after internalizing most symbols. Thin LTO, on the other hand,
/// avoid this large bottleneck through more targeted optimization.
///
/// At a high level Thin LTO looks like:
///
/// 1. Prepare a "summary" of each LLVM module in question which describes
/// the values inside, cost of the values, etc.
/// 2. Merge the summaries of all modules in question into one "index"
/// 3. Perform some global analysis on this index
/// 4. For each module, use the index and analysis calculated previously to
/// perform local transformations on the module, for example inlining
/// small functions from other modules.
/// 5. Run thin-specific optimization passes over each module, and then code
/// generate everything at the end.
///
/// The summary for each module is intended to be quite cheap, and the global
/// index is relatively quite cheap to create as well. As a result, the goal of
/// ThinLTO is to reduce the bottleneck on LTO and enable LTO to be used in more
/// situations. For example one cheap optimization is that we can parallelize
/// all codegen modules, easily making use of all the cores on a machine.
///
/// With all that in mind, the function here is designed at specifically just
/// calculating the *index* for ThinLTO. This index will then be shared amongst
/// all of the `LtoModuleCodegen` units returned below and destroyed once
/// they all go out of scope.
fn thin_lto(
cgcx: &CodegenContext<GccCodegenBackend>,
2024-07-02 16:33:09 +00:00
_dcx: DiagCtxtHandle<'_>,
modules: Vec<(String, ThinBuffer)>,
serialized_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>,
tmp_path: TempDir,
cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>,
//symbols_below_threshold: &[*const libc::c_char],
) -> Result<(Vec<LtoModuleCodegen<GccCodegenBackend>>, Vec<WorkProduct>), FatalError> {
let _timer = cgcx.prof.generic_activity("LLVM_thin_lto_global_analysis");
info!("going for that thin, thin LTO");
/*let green_modules: FxHashMap<_, _> =
cached_modules.iter().map(|(_, wp)| (wp.cgu_name.clone(), wp.clone())).collect();*/
let full_scope_len = modules.len() + serialized_modules.len() + cached_modules.len();
let mut thin_buffers = Vec::with_capacity(modules.len());
let mut module_names = Vec::with_capacity(full_scope_len);
//let mut thin_modules = Vec::with_capacity(full_scope_len);
for (i, (name, buffer)) in modules.into_iter().enumerate() {
info!("local module: {} - {}", i, name);
let cname = CString::new(name.as_bytes()).unwrap();
/*thin_modules.push(llvm::ThinLTOModule {
identifier: cname.as_ptr(),
data: buffer.data().as_ptr(),
len: buffer.data().len(),
});*/
thin_buffers.push(buffer);
module_names.push(cname);
}
// FIXME: All upstream crates are deserialized internally in the
// function below to extract their summary and modules. Note that
// unlike the loop above we *must* decode and/or read something
// here as these are all just serialized files on disk. An
// improvement, however, to make here would be to store the
// module summary separately from the actual module itself. Right
// now this is store in one large bitcode file, and the entire
// file is deflate-compressed. We could try to bypass some of the
// decompression by storing the index uncompressed and only
// lazily decompressing the bytecode if necessary.
//
// Note that truly taking advantage of this optimization will
// likely be further down the road. We'd have to implement
// incremental ThinLTO first where we could actually avoid
// looking at upstream modules entirely sometimes (the contents,
// we must always unconditionally look at the index).
let mut serialized = Vec::with_capacity(serialized_modules.len() + cached_modules.len());
let cached_modules =
cached_modules.into_iter().map(|(sm, wp)| (sm, CString::new(wp.cgu_name).unwrap()));
for (module, name) in serialized_modules.into_iter().chain(cached_modules) {
info!("upstream or cached module {:?}", name);
/*thin_modules.push(llvm::ThinLTOModule {
identifier: name.as_ptr(),
data: module.data().as_ptr(),
len: module.data().len(),
});*/
match module {
2024-06-28 18:00:45 +00:00
SerializedModule::Local(_) => {
//let path = module_buffer.0.to_str().expect("path");
//let my_path = PathBuf::from(path);
//let exists = my_path.exists();
/*module.module_llvm.should_combine_object_files = true;
module
.module_llvm
.context
.add_driver_option(module_buffer.0.to_str().expect("path"));*/
}
SerializedModule::FromRlib(_) => unimplemented!("from rlib"),
SerializedModule::FromUncompressedFile(_) => {
unimplemented!("from uncompressed file")
}
}
serialized.push(module);
module_names.push(name);
}
// Sanity check
//assert_eq!(thin_modules.len(), module_names.len());
// Delegate to the C++ bindings to create some data here. Once this is a
// tried-and-true interface we may wish to try to upstream some of this
// to LLVM itself, right now we reimplement a lot of what they do
// upstream...
/*let data = llvm::LLVMRustCreateThinLTOData(
thin_modules.as_ptr(),
thin_modules.len() as u32,
symbols_below_threshold.as_ptr(),
symbols_below_threshold.len() as u32,
)
.ok_or_else(|| write::llvm_err(dcx, LlvmError::PrepareThinLtoContext))?;
*/
let data = ThinData; //(Arc::new(tmp_path))/*(data)*/;
info!("thin LTO data created");
/*let (key_map_path, prev_key_map, curr_key_map) =
if let Some(ref incr_comp_session_dir) = cgcx.incr_comp_session_dir {
let path = incr_comp_session_dir.join(THIN_LTO_KEYS_INCR_COMP_FILE_NAME);
// If the previous file was deleted, or we get an IO error
// reading the file, then we'll just use `None` as the
// prev_key_map, which will force the code to be recompiled.
let prev =
if path.exists() { ThinLTOKeysMap::load_from_file(&path).ok() } else { None };
let curr = ThinLTOKeysMap::from_thin_lto_modules(&data, &thin_modules, &module_names);
(Some(path), prev, curr)
}
else {
// If we don't compile incrementally, we don't need to load the
// import data from LLVM.
assert!(green_modules.is_empty());
let curr = ThinLTOKeysMap::default();
(None, None, curr)
};
info!("thin LTO cache key map loaded");
info!("prev_key_map: {:#?}", prev_key_map);
info!("curr_key_map: {:#?}", curr_key_map);*/
// Throw our data in an `Arc` as we'll be sharing it across threads. We
// also put all memory referenced by the C++ data (buffers, ids, etc)
// into the arc as well. After this we'll create a thin module
// codegen per module in this data.
let shared =
Arc::new(ThinShared { data, thin_buffers, serialized_modules: serialized, module_names });
let copy_jobs = vec![];
let mut opt_jobs = vec![];
info!("checking which modules can be-reused and which have to be re-optimized.");
for (module_index, module_name) in shared.module_names.iter().enumerate() {
let module_name = module_name_to_str(module_name);
/*if let (Some(prev_key_map), true) =
(prev_key_map.as_ref(), green_modules.contains_key(module_name))
{
assert!(cgcx.incr_comp_session_dir.is_some());
// If a module exists in both the current and the previous session,
// and has the same LTO cache key in both sessions, then we can re-use it
if prev_key_map.keys.get(module_name) == curr_key_map.keys.get(module_name) {
let work_product = green_modules[module_name].clone();
copy_jobs.push(work_product);
info!(" - {}: re-used", module_name);
assert!(cgcx.incr_comp_session_dir.is_some());
continue;
}
}*/
info!(" - {}: re-compiled", module_name);
opt_jobs
.push(LtoModuleCodegen::Thin(ThinModule { shared: shared.clone(), idx: module_index }));
}
// Save the current ThinLTO import information for the next compilation
// session, overwriting the previous serialized data (if any).
/*if let Some(path) = key_map_path {
if let Err(err) = curr_key_map.save_to_file(&path) {
return Err(write::llvm_err(dcx, LlvmError::WriteThinLtoKey { err }));
}
}*/
// NOTE: save the temporary directory used by LTO so that it gets deleted after linking instead
// of now.
//module.module_llvm.temp_dir = Some(tmp_path);
// TODO: save the directory so that it gets deleted later.
std::mem::forget(tmp_path);
Ok((opt_jobs, copy_jobs))
}
pub unsafe fn optimize_thin_module(
thin_module: ThinModule<GccCodegenBackend>,
_cgcx: &CodegenContext<GccCodegenBackend>,
) -> Result<ModuleCodegen<GccContext>, FatalError> {
//let dcx = cgcx.create_dcx();
//let module_name = &thin_module.shared.module_names[thin_module.idx];
/*let tm_factory_config = TargetMachineFactoryConfig::new(cgcx, module_name.to_str().unwrap());
let tm = (cgcx.tm_factory)(tm_factory_config).map_err(|e| write::llvm_err(&dcx, e))?;*/
// Right now the implementation we've got only works over serialized
// modules, so we create a fresh new LLVM context and parse the module
// into that context. One day, however, we may do this for upstream
// crates but for locally codegened modules we may be able to reuse
// that LLVM Context and Module.
//let llcx = llvm::LLVMRustContextCreate(cgcx.fewer_names);
//let llmod_raw = parse_module(llcx, module_name, thin_module.data(), &dcx)? as *const _;
let mut should_combine_object_files = false;
let context = match thin_module.shared.thin_buffers.get(thin_module.idx) {
Some(thin_buffer) => Arc::clone(&thin_buffer.context),
None => {
let context = Context::default();
let len = thin_module.shared.thin_buffers.len();
let module = &thin_module.shared.serialized_modules[thin_module.idx - len];
match *module {
SerializedModule::Local(ref module_buffer) => {
let path = module_buffer.0.to_str().expect("path");
context.add_driver_option(path);
should_combine_object_files = true;
/*module.module_llvm.should_combine_object_files = true;
module
.module_llvm
.context
.add_driver_option(module_buffer.0.to_str().expect("path"));*/
}
SerializedModule::FromRlib(_) => unimplemented!("from rlib"),
SerializedModule::FromUncompressedFile(_) => {
unimplemented!("from uncompressed file")
}
}
2024-06-28 18:00:45 +00:00
Arc::new(SyncContext::new(context))
}
};
let module = ModuleCodegen {
module_llvm: GccContext {
context,
should_combine_object_files,
fat_lto: false,
temp_dir: None,
},
name: thin_module.name().to_string(),
kind: ModuleKind::Regular,
};
/*{
let target = &*module.module_llvm.tm;
let llmod = module.module_llvm.llmod();
save_temp_bitcode(cgcx, &module, "thin-lto-input");
// Up next comes the per-module local analyses that we do for Thin LTO.
// Each of these functions is basically copied from the LLVM
// implementation and then tailored to suit this implementation. Ideally
// each of these would be supported by upstream LLVM but that's perhaps
// a patch for another day!
//
// You can find some more comments about these functions in the LLVM
// bindings we've got (currently `PassWrapper.cpp`)
{
let _timer =
cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_rename", thin_module.name());
if !llvm::LLVMRustPrepareThinLTORename(thin_module.shared.data.0, llmod, target) {
return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule));
}
save_temp_bitcode(cgcx, &module, "thin-lto-after-rename");
}
{
let _timer = cgcx
.prof
.generic_activity_with_arg("LLVM_thin_lto_resolve_weak", thin_module.name());
if !llvm::LLVMRustPrepareThinLTOResolveWeak(thin_module.shared.data.0, llmod) {
return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule));
}
save_temp_bitcode(cgcx, &module, "thin-lto-after-resolve");
}
{
let _timer = cgcx
.prof
.generic_activity_with_arg("LLVM_thin_lto_internalize", thin_module.name());
if !llvm::LLVMRustPrepareThinLTOInternalize(thin_module.shared.data.0, llmod) {
return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule));
}
save_temp_bitcode(cgcx, &module, "thin-lto-after-internalize");
}
{
let _timer =
cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_import", thin_module.name());
if !llvm::LLVMRustPrepareThinLTOImport(thin_module.shared.data.0, llmod, target) {
return Err(write::llvm_err(&dcx, LlvmError::PrepareThinLtoModule));
}
save_temp_bitcode(cgcx, &module, "thin-lto-after-import");
}
// Alright now that we've done everything related to the ThinLTO
// analysis it's time to run some optimizations! Here we use the same
// `run_pass_manager` as the "fat" LTO above except that we tell it to
// populate a thin-specific pass manager, which presumably LLVM treats a
// little differently.
{
info!("running thin lto passes over {}", module.name);
run_pass_manager(cgcx, &dcx, &mut module, true)?;
save_temp_bitcode(cgcx, &module, "thin-lto-after-pm");
}
}*/
Ok(module)
}
pub struct ThinBuffer {
2024-06-28 18:00:45 +00:00
context: Arc<SyncContext>,
}
// TODO: check if this makes sense to make ThinBuffer Send and Sync.
unsafe impl Send for ThinBuffer {}
unsafe impl Sync for ThinBuffer {}
impl ThinBuffer {
2024-06-28 18:00:45 +00:00
pub(crate) fn new(context: &Arc<SyncContext>) -> Self {
Self { context: Arc::clone(context) }
}
}
impl ThinBufferMethods for ThinBuffer {
fn data(&self) -> &[u8] {
&[]
}
fn thin_link_data(&self) -> &[u8] {
unimplemented!();
}
}
pub struct ThinData; //(Arc<TempDir>);
fn module_name_to_str(c_str: &CStr) -> &str {
c_str.to_str().unwrap_or_else(|e| {
bug!("Encountered non-utf8 GCC module name `{}`: {}", c_str.to_string_lossy(), e)
})
}