rust/src/librustc_trans/abi.rs

750 lines
27 KiB
Rust
Raw Normal View History

// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm::{self, ValueRef, Integer, Pointer, Float, Double, Struct, Array, Vector, AttributePlace};
use base;
use common::{type_is_fat_ptr, BlockAndBuilder, C_uint};
use context::CrateContext;
use cabi_x86;
use cabi_x86_64;
use cabi_x86_win64;
use cabi_arm;
use cabi_aarch64;
use cabi_powerpc;
use cabi_powerpc64;
Add s390x support This adds support for building the Rust compiler and standard library for s390x-linux, allowing a full cross-bootstrap sequence to complete. This includes: - Makefile/configure changes to allow native s390x builds - Full Rust compiler support for the s390x C ABI (only the non-vector ABI is supported at this point) - Port of the standard library to s390x - Update the liblibc submodule to a version including s390x support - Testsuite fixes to allow clean "make check" on s390x Caveats: - Resets base cpu to "z10" to bring support in sync with the default behaviour of other compilers on the platforms. (Usually, upstream supports all older processors; a distribution build may then chose to require a more recent base version.) (Also, using zEC12 causes failures in the valgrind tests since valgrind doesn't fully support this CPU yet.) - z13 vector ABI is not yet supported. To ensure compatible code generation, the -vector feature is passed to LLVM. Note that this means that even when compiling for z13, no vector instructions will be used. In the future, support for the vector ABI should be added (this will require common code support for different ABIs that need different data_layout strings on the same platform). - Two test cases are (temporarily) ignored on s390x to allow passing the test suite. The underlying issues still need to be fixed: * debuginfo/simd.rs fails because of incorrect debug information. This seems to be a LLVM bug (also seen with C code). * run-pass/union/union-basic.rs simply seems to be incorrect for all big-endian platforms. Signed-off-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
2016-09-09 21:00:23 +00:00
use cabi_s390x;
use cabi_mips;
use cabi_mips64;
use cabi_asmjs;
2016-11-13 16:03:44 +00:00
use cabi_msp430;
use machine::{llalign_of_min, llsize_of, llsize_of_alloc};
use type_::Type;
use type_of;
2016-03-29 05:50:44 +00:00
use rustc::hir;
use rustc::ty::{self, Ty};
use libc::c_uint;
use std::cmp;
pub use syntax::abi::Abi;
pub use rustc::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
2016-09-07 19:03:21 +00:00
use rustc::ty::layout::Layout;
#[derive(Clone, Copy, PartialEq, Debug)]
enum ArgKind {
/// Pass the argument directly using the normal converted
/// LLVM type or by coercing to another specified type
Direct,
/// Pass the argument indirectly via a hidden pointer
Indirect,
/// Ignore the argument (useful for empty struct)
Ignore,
}
// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
// of this module
pub use self::attr_impl::ArgAttribute;
#[allow(non_upper_case_globals)]
mod attr_impl {
// The subset of llvm::Attribute needed for arguments, packed into a bitfield.
bitflags! {
#[derive(Default, Debug)]
flags ArgAttribute : u8 {
const ByVal = 1 << 0,
const NoAlias = 1 << 1,
const NoCapture = 1 << 2,
const NonNull = 1 << 3,
const ReadOnly = 1 << 4,
const SExt = 1 << 5,
const StructRet = 1 << 6,
const ZExt = 1 << 7,
}
}
}
macro_rules! for_each_kind {
($flags: ident, $f: ident, $($kind: ident),+) => ({
$(if $flags.contains(ArgAttribute::$kind) { $f(llvm::Attribute::$kind) })+
})
}
impl ArgAttribute {
fn for_each_kind<F>(&self, mut f: F) where F: FnMut(llvm::Attribute) {
for_each_kind!(self, f,
ByVal, NoAlias, NoCapture, NonNull, ReadOnly, SExt, StructRet, ZExt)
}
}
/// A compact representation of LLVM attributes (at least those relevant for this module)
/// that can be manipulated without interacting with LLVM's Attribute machinery.
#[derive(Copy, Clone, Debug, Default)]
pub struct ArgAttributes {
regular: ArgAttribute,
dereferenceable_bytes: u64,
}
impl ArgAttributes {
pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
self.regular = self.regular | attr;
self
}
pub fn set_dereferenceable(&mut self, bytes: u64) -> &mut Self {
self.dereferenceable_bytes = bytes;
self
}
pub fn apply_llfn(&self, idx: AttributePlace, llfn: ValueRef) {
unsafe {
self.regular.for_each_kind(|attr| attr.apply_llfn(idx, llfn));
if self.dereferenceable_bytes != 0 {
llvm::LLVMRustAddDereferenceableAttr(llfn,
idx.as_uint(),
self.dereferenceable_bytes);
}
}
}
pub fn apply_callsite(&self, idx: AttributePlace, callsite: ValueRef) {
unsafe {
self.regular.for_each_kind(|attr| attr.apply_callsite(idx, callsite));
if self.dereferenceable_bytes != 0 {
llvm::LLVMRustAddDereferenceableCallSiteAttr(callsite,
idx.as_uint(),
self.dereferenceable_bytes);
}
}
}
}
/// Information about how a specific C type
/// should be passed to or returned from a function
///
/// This is borrowed from clang's ABIInfo.h
#[derive(Clone, Copy, Debug)]
pub struct ArgType {
kind: ArgKind,
/// Original LLVM type
pub original_ty: Type,
/// Sizing LLVM type (pointers are opaque).
/// Unlike original_ty, this is guaranteed to be complete.
///
/// For example, while we're computing the function pointer type in
/// `struct Foo(fn(Foo));`, `original_ty` is still LLVM's `%Foo = {}`.
/// The field type will likely end up being `void(%Foo)*`, but we cannot
/// use `%Foo` to compute properties (e.g. size and alignment) of `Foo`,
/// until `%Foo` is completed by having all of its field types inserted,
/// so `ty` holds the "sizing type" of `Foo`, which replaces all pointers
/// with opaque ones, resulting in `{i8*}` for `Foo`.
/// ABI-specific logic can then look at the size, alignment and fields of
/// `{i8*}` in order to determine how the argument will be passed.
/// Only later will `original_ty` aka `%Foo` be used in the LLVM function
/// pointer type, without ever having introspected it.
pub ty: Type,
/// Signedness for integer types, None for other types
pub signedness: Option<bool>,
/// Coerced LLVM Type
pub cast: Option<Type>,
/// Dummy argument, which is emitted before the real argument
pub pad: Option<Type>,
/// LLVM attributes of argument
pub attrs: ArgAttributes
}
impl ArgType {
fn new(original_ty: Type, ty: Type) -> ArgType {
ArgType {
kind: ArgKind::Direct,
original_ty: original_ty,
ty: ty,
signedness: None,
cast: None,
pad: None,
attrs: ArgAttributes::default()
}
}
pub fn make_indirect(&mut self, ccx: &CrateContext) {
assert_eq!(self.kind, ArgKind::Direct);
// Wipe old attributes, likely not valid through indirection.
self.attrs = ArgAttributes::default();
let llarg_sz = llsize_of_alloc(ccx, self.ty);
// For non-immediate arguments the callee gets its own copy of
// the value on the stack, so there are no aliases. It's also
// program-invisible so can't possibly capture
self.attrs.set(ArgAttribute::NoAlias)
.set(ArgAttribute::NoCapture)
.set_dereferenceable(llarg_sz);
self.kind = ArgKind::Indirect;
}
pub fn ignore(&mut self) {
assert_eq!(self.kind, ArgKind::Direct);
self.kind = ArgKind::Ignore;
}
pub fn extend_integer_width_to(&mut self, bits: u64) {
// Only integers have signedness
if let Some(signed) = self.signedness {
if self.ty.int_width() < bits {
self.attrs.set(if signed {
ArgAttribute::SExt
} else {
ArgAttribute::ZExt
});
}
}
}
pub fn is_indirect(&self) -> bool {
self.kind == ArgKind::Indirect
}
pub fn is_ignore(&self) -> bool {
self.kind == ArgKind::Ignore
}
/// Get the LLVM type for an lvalue of the original Rust type of
/// this argument/return, i.e. the result of `type_of::type_of`.
pub fn memory_ty(&self, ccx: &CrateContext) -> Type {
if self.original_ty == Type::i1(ccx) {
Type::i8(ccx)
} else {
self.original_ty
}
}
/// Store a direct/indirect value described by this ArgType into a
/// lvalue for the original Rust type of this argument/return.
/// Can be used for both storing formal arguments into Rust variables
/// or results of call/invoke instructions into their destinations.
pub fn store(&self, bcx: &BlockAndBuilder, mut val: ValueRef, dst: ValueRef) {
if self.is_ignore() {
return;
}
2016-12-19 23:25:00 +00:00
let ccx = bcx.ccx;
if self.is_indirect() {
let llsz = llsize_of(ccx, self.ty);
let llalign = llalign_of_min(ccx, self.ty);
base::call_memcpy(bcx, dst, val, llsz, llalign as u32);
} else if let Some(ty) = self.cast {
// FIXME(eddyb): Figure out when the simpler Store is safe, clang
// uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}.
let can_store_through_cast_ptr = false;
if can_store_through_cast_ptr {
let cast_dst = bcx.pointercast(dst, ty.ptr_to());
let store = bcx.store(val, cast_dst);
let llalign = llalign_of_min(ccx, self.ty);
unsafe {
llvm::LLVMSetAlignment(store, llalign);
}
} else {
// The actual return type is a struct, but the ABI
// adaptation code has cast it into some scalar type. The
// code that follows is the only reliable way I have
// found to do a transform like i64 -> {i32,i32}.
// Basically we dump the data onto the stack then memcpy it.
//
// Other approaches I tried:
// - Casting rust ret pointer to the foreign type and using Store
// is (a) unsafe if size of foreign type > size of rust type and
// (b) runs afoul of strict aliasing rules, yielding invalid
// assembly under -O (specifically, the store gets removed).
// - Truncating foreign type to correct integral type and then
// bitcasting to the struct type yields invalid cast errors.
// We instead thus allocate some scratch space...
let llscratch = bcx.fcx().alloca(ty, "abi_cast");
base::Lifetime::Start.call(bcx, llscratch);
// ...where we first store the value...
bcx.store(val, llscratch);
// ...and then memcpy it to the intended destination.
base::call_memcpy(bcx,
bcx.pointercast(dst, Type::i8p(ccx)),
bcx.pointercast(llscratch, Type::i8p(ccx)),
C_uint(ccx, llsize_of_alloc(ccx, self.ty)),
cmp::min(llalign_of_min(ccx, self.ty),
llalign_of_min(ccx, ty)) as u32);
base::Lifetime::End.call(bcx, llscratch);
}
} else {
if self.original_ty == Type::i1(ccx) {
val = bcx.zext(val, Type::i8(ccx));
}
bcx.store(val, dst);
}
}
pub fn store_fn_arg(&self, bcx: &BlockAndBuilder, idx: &mut usize, dst: ValueRef) {
if self.pad.is_some() {
*idx += 1;
}
if self.is_ignore() {
return;
}
let val = llvm::get_param(bcx.fcx().llfn, *idx as c_uint);
*idx += 1;
self.store(bcx, val, dst);
}
}
/// Metadata describing how the arguments to a native function
/// should be passed in order to respect the native ABI.
///
/// I will do my best to describe this structure, but these
/// comments are reverse-engineered and may be inaccurate. -NDM
#[derive(Clone)]
pub struct FnType {
/// The LLVM types of each argument.
pub args: Vec<ArgType>,
/// LLVM return type.
pub ret: ArgType,
pub variadic: bool,
pub cconv: llvm::CallConv
}
impl FnType {
pub fn new<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
abi: Abi,
sig: &ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType {
let mut fn_ty = FnType::unadjusted(ccx, abi, sig, extra_args);
fn_ty.adjust_for_abi(ccx, abi, sig);
fn_ty
}
pub fn unadjusted<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
abi: Abi,
sig: &ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType {
use self::Abi::*;
let cconv = match ccx.sess().target.target.adjust_abi(abi) {
RustIntrinsic | PlatformIntrinsic |
Rust | RustCall => llvm::CCallConv,
// It's the ABI's job to select this, not us.
System => bug!("system abi should be selected elsewhere"),
Stdcall => llvm::X86StdcallCallConv,
Fastcall => llvm::X86FastcallCallConv,
Vectorcall => llvm::X86_VectorCall,
C => llvm::CCallConv,
Win64 => llvm::X86_64_Win64,
SysV64 => llvm::X86_64_SysV,
Aapcs => llvm::ArmAapcsCallConv,
// These API constants ought to be more specific...
Cdecl => llvm::CCallConv,
};
let mut inputs = sig.inputs();
let extra_args = if abi == RustCall {
assert!(!sig.variadic && extra_args.is_empty());
match sig.inputs().last().unwrap().sty {
ty::TyTuple(ref tupled_arguments) => {
inputs = &sig.inputs()[0..sig.inputs().len() - 1];
&tupled_arguments[..]
}
_ => {
bug!("argument to function with \"rust-call\" ABI \
is not a tuple");
}
}
} else {
assert!(sig.variadic || extra_args.is_empty());
extra_args
};
let target = &ccx.sess().target.target;
let win_x64_gnu = target.target_os == "windows"
&& target.arch == "x86_64"
&& target.target_env == "gnu";
Add s390x support This adds support for building the Rust compiler and standard library for s390x-linux, allowing a full cross-bootstrap sequence to complete. This includes: - Makefile/configure changes to allow native s390x builds - Full Rust compiler support for the s390x C ABI (only the non-vector ABI is supported at this point) - Port of the standard library to s390x - Update the liblibc submodule to a version including s390x support - Testsuite fixes to allow clean "make check" on s390x Caveats: - Resets base cpu to "z10" to bring support in sync with the default behaviour of other compilers on the platforms. (Usually, upstream supports all older processors; a distribution build may then chose to require a more recent base version.) (Also, using zEC12 causes failures in the valgrind tests since valgrind doesn't fully support this CPU yet.) - z13 vector ABI is not yet supported. To ensure compatible code generation, the -vector feature is passed to LLVM. Note that this means that even when compiling for z13, no vector instructions will be used. In the future, support for the vector ABI should be added (this will require common code support for different ABIs that need different data_layout strings on the same platform). - Two test cases are (temporarily) ignored on s390x to allow passing the test suite. The underlying issues still need to be fixed: * debuginfo/simd.rs fails because of incorrect debug information. This seems to be a LLVM bug (also seen with C code). * run-pass/union/union-basic.rs simply seems to be incorrect for all big-endian platforms. Signed-off-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
2016-09-09 21:00:23 +00:00
let linux_s390x = target.target_os == "linux"
&& target.arch == "s390x"
&& target.target_env == "gnu";
let rust_abi = match abi {
RustIntrinsic | PlatformIntrinsic | Rust | RustCall => true,
_ => false
};
let arg_of = |ty: Ty<'tcx>, is_return: bool| {
if ty.is_bool() {
let llty = Type::i1(ccx);
let mut arg = ArgType::new(llty, llty);
arg.attrs.set(ArgAttribute::ZExt);
arg
} else {
let mut arg = ArgType::new(type_of::type_of(ccx, ty),
type_of::sizing_type_of(ccx, ty));
if ty.is_integral() {
arg.signedness = Some(ty.is_signed());
}
2016-09-07 19:03:21 +00:00
// Rust enum types that map onto C enums also need to follow
// the target ABI zero-/sign-extension rules.
if let Layout::CEnum { signed, .. } = *ccx.layout_of(ty) {
arg.signedness = Some(signed);
}
if llsize_of_alloc(ccx, arg.ty) == 0 {
// For some forsaken reason, x86_64-pc-windows-gnu
// doesn't ignore zero-sized struct arguments.
Add s390x support This adds support for building the Rust compiler and standard library for s390x-linux, allowing a full cross-bootstrap sequence to complete. This includes: - Makefile/configure changes to allow native s390x builds - Full Rust compiler support for the s390x C ABI (only the non-vector ABI is supported at this point) - Port of the standard library to s390x - Update the liblibc submodule to a version including s390x support - Testsuite fixes to allow clean "make check" on s390x Caveats: - Resets base cpu to "z10" to bring support in sync with the default behaviour of other compilers on the platforms. (Usually, upstream supports all older processors; a distribution build may then chose to require a more recent base version.) (Also, using zEC12 causes failures in the valgrind tests since valgrind doesn't fully support this CPU yet.) - z13 vector ABI is not yet supported. To ensure compatible code generation, the -vector feature is passed to LLVM. Note that this means that even when compiling for z13, no vector instructions will be used. In the future, support for the vector ABI should be added (this will require common code support for different ABIs that need different data_layout strings on the same platform). - Two test cases are (temporarily) ignored on s390x to allow passing the test suite. The underlying issues still need to be fixed: * debuginfo/simd.rs fails because of incorrect debug information. This seems to be a LLVM bug (also seen with C code). * run-pass/union/union-basic.rs simply seems to be incorrect for all big-endian platforms. Signed-off-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
2016-09-09 21:00:23 +00:00
// The same is true for s390x-unknown-linux-gnu.
if is_return || rust_abi ||
(!win_x64_gnu && !linux_s390x) {
arg.ignore();
}
}
arg
}
};
let ret_ty = sig.output();
let mut ret = arg_of(ret_ty, true);
if !type_is_fat_ptr(ccx, ret_ty) {
// The `noalias` attribute on the return value is useful to a
// function ptr caller.
if let ty::TyBox(_) = ret_ty.sty {
// `Box` pointer return values never alias because ownership
// is transferred
ret.attrs.set(ArgAttribute::NoAlias);
}
// We can also mark the return value as `dereferenceable` in certain cases
match ret_ty.sty {
// These are not really pointers but pairs, (pointer, len)
ty::TyRef(_, ty::TypeAndMut { ty, .. }) |
ty::TyBox(ty) => {
let llty = type_of::sizing_type_of(ccx, ty);
let llsz = llsize_of_alloc(ccx, llty);
ret.attrs.set_dereferenceable(llsz);
}
_ => {}
}
}
let mut args = Vec::with_capacity(inputs.len() + extra_args.len());
// Handle safe Rust thin and fat pointers.
let rust_ptr_attrs = |ty: Ty<'tcx>, arg: &mut ArgType| match ty.sty {
// `Box` pointer parameters never alias because ownership is transferred
ty::TyBox(inner) => {
arg.attrs.set(ArgAttribute::NoAlias);
Some(inner)
}
ty::TyRef(b, mt) => {
use rustc::ty::{BrAnon, ReLateBound};
// `&mut` pointer parameters never alias other parameters, or mutable global data
//
// `&T` where `T` contains no `UnsafeCell<U>` is immutable, and can be marked as
// both `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely
// on memory dependencies rather than pointer equality
let interior_unsafe = mt.ty.type_contents(ccx.tcx()).interior_unsafe();
if mt.mutbl != hir::MutMutable && !interior_unsafe {
arg.attrs.set(ArgAttribute::NoAlias);
}
if mt.mutbl == hir::MutImmutable && !interior_unsafe {
arg.attrs.set(ArgAttribute::ReadOnly);
}
// When a reference in an argument has no named lifetime, it's
// impossible for that reference to escape this function
// (returned or stored beyond the call by a closure).
if let ReLateBound(_, BrAnon(_)) = *b {
arg.attrs.set(ArgAttribute::NoCapture);
}
Some(mt.ty)
}
_ => None
};
for ty in inputs.iter().chain(extra_args.iter()) {
let mut arg = arg_of(ty, false);
if type_is_fat_ptr(ccx, ty) {
let original_tys = arg.original_ty.field_types();
let sizing_tys = arg.ty.field_types();
assert_eq!((original_tys.len(), sizing_tys.len()), (2, 2));
let mut data = ArgType::new(original_tys[0], sizing_tys[0]);
let mut info = ArgType::new(original_tys[1], sizing_tys[1]);
if let Some(inner) = rust_ptr_attrs(ty, &mut data) {
data.attrs.set(ArgAttribute::NonNull);
if ccx.tcx().struct_tail(inner).is_trait() {
info.attrs.set(ArgAttribute::NonNull);
}
}
args.push(data);
args.push(info);
} else {
if let Some(inner) = rust_ptr_attrs(ty, &mut arg) {
let llty = type_of::sizing_type_of(ccx, inner);
let llsz = llsize_of_alloc(ccx, llty);
arg.attrs.set_dereferenceable(llsz);
}
args.push(arg);
}
}
FnType {
args: args,
ret: ret,
variadic: sig.variadic,
cconv: cconv
}
}
pub fn adjust_for_abi<'a, 'tcx>(&mut self,
ccx: &CrateContext<'a, 'tcx>,
abi: Abi,
sig: &ty::FnSig<'tcx>) {
if abi == Abi::Rust || abi == Abi::RustCall ||
abi == Abi::RustIntrinsic || abi == Abi::PlatformIntrinsic {
let fixup = |arg: &mut ArgType| {
let mut llty = arg.ty;
// Replace newtypes with their inner-most type.
while llty.kind() == llvm::TypeKind::Struct {
let inner = llty.field_types();
if inner.len() != 1 {
break;
}
llty = inner[0];
}
if !llty.is_aggregate() {
// Scalars and vectors, always immediate.
if llty != arg.ty {
// Needs a cast as we've unpacked a newtype.
arg.cast = Some(llty);
}
return;
}
let size = llsize_of_alloc(ccx, llty);
if size > llsize_of_alloc(ccx, ccx.int_type()) {
arg.make_indirect(ccx);
} else if size > 0 {
// We want to pass small aggregates as immediates, but using
// a LLVM aggregate type for this leads to bad optimizations,
// so we pick an appropriately sized integer type instead.
arg.cast = Some(Type::ix(ccx, size * 8));
}
};
// Fat pointers are returned by-value.
if !self.ret.is_ignore() {
if !type_is_fat_ptr(ccx, sig.output()) {
fixup(&mut self.ret);
}
}
for arg in &mut self.args {
if arg.is_ignore() { continue; }
fixup(arg);
}
if self.ret.is_indirect() {
self.ret.attrs.set(ArgAttribute::StructRet);
}
return;
}
match &ccx.sess().target.target.arch[..] {
"x86" => cabi_x86::compute_abi_info(ccx, self),
"x86_64" => if abi == Abi::SysV64 {
cabi_x86_64::compute_abi_info(ccx, self);
} else if abi == Abi::Win64 || ccx.sess().target.target.options.is_like_windows {
cabi_x86_win64::compute_abi_info(ccx, self);
} else {
cabi_x86_64::compute_abi_info(ccx, self);
},
"aarch64" => cabi_aarch64::compute_abi_info(ccx, self),
"arm" => {
let flavor = if ccx.sess().target.target.target_os == "ios" {
cabi_arm::Flavor::Ios
} else {
cabi_arm::Flavor::General
};
cabi_arm::compute_abi_info(ccx, self, flavor);
},
"mips" => cabi_mips::compute_abi_info(ccx, self),
"mips64" => cabi_mips64::compute_abi_info(ccx, self),
"powerpc" => cabi_powerpc::compute_abi_info(ccx, self),
"powerpc64" => cabi_powerpc64::compute_abi_info(ccx, self),
Add s390x support This adds support for building the Rust compiler and standard library for s390x-linux, allowing a full cross-bootstrap sequence to complete. This includes: - Makefile/configure changes to allow native s390x builds - Full Rust compiler support for the s390x C ABI (only the non-vector ABI is supported at this point) - Port of the standard library to s390x - Update the liblibc submodule to a version including s390x support - Testsuite fixes to allow clean "make check" on s390x Caveats: - Resets base cpu to "z10" to bring support in sync with the default behaviour of other compilers on the platforms. (Usually, upstream supports all older processors; a distribution build may then chose to require a more recent base version.) (Also, using zEC12 causes failures in the valgrind tests since valgrind doesn't fully support this CPU yet.) - z13 vector ABI is not yet supported. To ensure compatible code generation, the -vector feature is passed to LLVM. Note that this means that even when compiling for z13, no vector instructions will be used. In the future, support for the vector ABI should be added (this will require common code support for different ABIs that need different data_layout strings on the same platform). - Two test cases are (temporarily) ignored on s390x to allow passing the test suite. The underlying issues still need to be fixed: * debuginfo/simd.rs fails because of incorrect debug information. This seems to be a LLVM bug (also seen with C code). * run-pass/union/union-basic.rs simply seems to be incorrect for all big-endian platforms. Signed-off-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
2016-09-09 21:00:23 +00:00
"s390x" => cabi_s390x::compute_abi_info(ccx, self),
"asmjs" => cabi_asmjs::compute_abi_info(ccx, self),
2016-09-06 00:41:50 +00:00
"wasm32" => cabi_asmjs::compute_abi_info(ccx, self),
2016-11-13 16:03:44 +00:00
"msp430" => cabi_msp430::compute_abi_info(ccx, self),
a => ccx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a))
}
if self.ret.is_indirect() {
self.ret.attrs.set(ArgAttribute::StructRet);
}
}
pub fn llvm_type(&self, ccx: &CrateContext) -> Type {
let mut llargument_tys = Vec::new();
let llreturn_ty = if self.ret.is_ignore() {
Type::void(ccx)
} else if self.ret.is_indirect() {
llargument_tys.push(self.ret.original_ty.ptr_to());
Type::void(ccx)
} else {
self.ret.cast.unwrap_or(self.ret.original_ty)
};
for arg in &self.args {
if arg.is_ignore() {
continue;
}
// add padding
if let Some(ty) = arg.pad {
llargument_tys.push(ty);
}
let llarg_ty = if arg.is_indirect() {
arg.original_ty.ptr_to()
} else {
arg.cast.unwrap_or(arg.original_ty)
};
llargument_tys.push(llarg_ty);
}
if self.variadic {
Type::variadic_func(&llargument_tys, &llreturn_ty)
} else {
Type::func(&llargument_tys, &llreturn_ty)
}
}
pub fn apply_attrs_llfn(&self, llfn: ValueRef) {
let mut i = if self.ret.is_indirect() { 1 } else { 0 };
if !self.ret.is_ignore() {
2016-08-02 21:25:19 +00:00
self.ret.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn);
}
i += 1;
for arg in &self.args {
if !arg.is_ignore() {
if arg.pad.is_some() { i += 1; }
2016-08-02 21:25:19 +00:00
arg.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn);
i += 1;
}
}
}
pub fn apply_attrs_callsite(&self, callsite: ValueRef) {
let mut i = if self.ret.is_indirect() { 1 } else { 0 };
if !self.ret.is_ignore() {
2016-08-02 21:25:19 +00:00
self.ret.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite);
}
i += 1;
for arg in &self.args {
if !arg.is_ignore() {
if arg.pad.is_some() { i += 1; }
2016-08-02 21:25:19 +00:00
arg.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite);
i += 1;
}
}
if self.cconv != llvm::CCallConv {
llvm::SetInstructionCallConv(callsite, self.cconv);
}
}
}
pub fn align_up_to(off: usize, a: usize) -> usize {
return (off + a - 1) / a * a;
}
fn align(off: usize, ty: Type, pointer: usize) -> usize {
let a = ty_align(ty, pointer);
return align_up_to(off, a);
}
pub fn ty_align(ty: Type, pointer: usize) -> usize {
match ty.kind() {
Integer => ((ty.int_width() as usize) + 7) / 8,
Pointer => pointer,
Float => 4,
Double => 8,
Struct => {
if ty.is_packed() {
1
} else {
let str_tys = ty.field_types();
str_tys.iter().fold(1, |a, t| cmp::max(a, ty_align(*t, pointer)))
}
}
Array => {
let elt = ty.element_type();
ty_align(elt, pointer)
}
Vector => {
let len = ty.vector_length();
let elt = ty.element_type();
ty_align(elt, pointer) * len
}
_ => bug!("ty_align: unhandled type")
}
}
pub fn ty_size(ty: Type, pointer: usize) -> usize {
match ty.kind() {
Integer => ((ty.int_width() as usize) + 7) / 8,
Pointer => pointer,
Float => 4,
Double => 8,
Struct => {
if ty.is_packed() {
let str_tys = ty.field_types();
str_tys.iter().fold(0, |s, t| s + ty_size(*t, pointer))
} else {
let str_tys = ty.field_types();
let size = str_tys.iter().fold(0, |s, t| {
align(s, *t, pointer) + ty_size(*t, pointer)
});
align(size, ty, pointer)
}
}
Array => {
let len = ty.array_length();
let elt = ty.element_type();
let eltsz = ty_size(elt, pointer);
len * eltsz
}
Vector => {
let len = ty.vector_length();
let elt = ty.element_type();
let eltsz = ty_size(elt, pointer);
len * eltsz
},
_ => bug!("ty_size: unhandled type")
}
}