diff --git a/examples/example-runner/src/main.rs b/examples/example-runner/src/main.rs index 787afd54db..155e7161b1 100644 --- a/examples/example-runner/src/main.rs +++ b/examples/example-runner/src/main.rs @@ -728,7 +728,7 @@ fn main() { }) .collect(); - let index_buffer_data = [0u32, 1, 2]; + let index_buffer_data = [0u32, 1, 2, 1, 2, 3]; let index_buffer_info = vk::BufferCreateInfo::builder() .size(std::mem::size_of_val(&index_buffer_data) as u64) .usage(vk::BufferUsageFlags::INDEX_BUFFER) @@ -772,8 +772,27 @@ fn main() { .bind_buffer_memory(index_buffer, index_buffer_memory, 0) .unwrap(); + let vertices = [ + Vertex { + pos: [-1.0, 1.0, 0.0, 1.0], + color: [0.0, 1.0, 0.0, 1.0], + }, + Vertex { + pos: [1.0, 1.0, 0.0, 1.0], + color: [0.0, 0.0, 1.0, 1.0], + }, + Vertex { + pos: [-1.0, -1.0, 0.0, 1.0], + color: [1.0, 0.0, 0.0, 1.0], + }, + Vertex { + pos: [1.0, -1.0, 0.0, 1.0], + color: [1.0, 1.0, 1.0, 1.0], + }, + ]; + let vertex_input_buffer_info = vk::BufferCreateInfo { - size: 3 * std::mem::size_of::() as u64, + size: std::mem::size_of_val(&vertices) as u64 as u64, usage: vk::BufferUsageFlags::VERTEX_BUFFER, sharing_mode: vk::SharingMode::EXCLUSIVE, ..Default::default() @@ -806,21 +825,6 @@ fn main() { .allocate_memory(&vertex_buffer_allocate_info, None) .unwrap(); - let vertices = [ - Vertex { - pos: [-1.0, 1.0, 0.0, 1.0], - color: [0.0, 1.0, 0.0, 1.0], - }, - Vertex { - pos: [1.0, 1.0, 0.0, 1.0], - color: [0.0, 0.0, 1.0, 1.0], - }, - Vertex { - pos: [0.0, -1.0, 0.0, 1.0], - color: [1.0, 0.0, 0.0, 1.0], - }, - ]; - let vert_ptr = base .device .map_memory( @@ -1061,7 +1065,7 @@ fn main() { 1, 0, 0, - 1, + 0, ); // Or draw without the index buffer // device.cmd_draw(draw_command_buffer, 3, 1, 0, 0); diff --git a/examples/example-shader/src/lib.rs b/examples/example-shader/src/lib.rs index 5b8fb2e797..ee966b4cf9 100644 --- a/examples/example-shader/src/lib.rs +++ b/examples/example-shader/src/lib.rs @@ -1,26 +1,183 @@ +//! Ported to Rust from https://github.com/Tw1ddle/Sky-Shader/blob/master/src/shaders/glsl/sky.fragment + #![no_std] #![feature(register_attr)] #![register_attr(spirv)] +use core::f32::consts::PI; use core::panic::PanicInfo; -use spirv_std::{f32x4, Input, Output}; +use spirv_std::{f32x4, Input, Mat4, MathExt, Output, Vec3, Vec4}; -#[allow(unused_attributes)] -#[spirv(entry = "fragment")] -pub fn main_fs(input: Input, mut output: Output) { - output.store(input.load()); +const DEPOLARIZATION_FACTOR: f32 = 0.035; +const LUMINANCE: f32 = 1.0; +const MIE_COEFFICIENT: f32 = 0.005; +const MIE_DIRECTIONAL_G: f32 = 0.8; +const MIE_K_COEFFICIENT: Vec3 = Vec3::new(0.686, 0.678, 0.666); +const MIE_V: f32 = 4.0; +const MIE_ZENITH_LENGTH: f32 = 1.25e3; +const NUM_MOLECULES: f32 = 2.542e25f32; +const PRIMARIES: Vec3 = Vec3::new(6.8e-7f32, 5.5e-7f32, 4.5e-7f32); +const RAYLEIGH: f32 = 1.0; +const RAYLEIGH_ZENITH_LENGTH: f32 = 8.4e3; +const REFRACTIVE_INDEX: f32 = 1.0003; +const SUN_ANGULAR_DIAMETER_DEGREES: f32 = 0.0093333; +const SUN_INTENSITY_FACTOR: f32 = 1000.0; +const SUN_INTENSITY_FALLOFF_STEEPNESS: f32 = 1.5; +const TONEMAP_WEIGHTING: Vec3 = Vec3::splat(9.50); +const TURBIDITY: f32 = 2.0; + +/// Based on: https://seblagarde.wordpress.com/2014/12/01/inverse-trigonometric-functions-gpu-optimization-for-amd-gcn-architecture/ +fn acos_approx(v: f32) -> f32 { + let x = v.abs(); + let mut res = -0.155972 * x + 1.56467; // p(x) + res *= (1.0f32 - x).sqrt(); + + let mask = (v >= 0.0) as u32 as f32; + + // can't use if-statement so do oldskool shader masking instead to avoid conditional + (res * mask) + ((1.0f32 - mask) * (PI - res)) +} + +fn smoothstep(edge0: f32, edge1: f32, x: f32) -> f32 { + // Scale, bias and saturate x to 0..1 range + let x = ((x - edge0) / (edge1 - edge0)).clamp(0.0, 1.0); + // Evaluate polynomial + return x * x * (3.0 - 2.0 * x); +} + +fn total_rayleigh(lambda: Vec3) -> Vec3 { + (8.0 * PI.pow(3.0) + * (REFRACTIVE_INDEX.pow(2.0) - 1.0).pow(2.0) + * (6.0 + 3.0 * DEPOLARIZATION_FACTOR)) + / (3.0 * NUM_MOLECULES * lambda.pow(4.0) * (6.0 - 7.0 * DEPOLARIZATION_FACTOR)) +} + +fn total_mie(lambda: Vec3, k: Vec3, t: f32) -> Vec3 { + let c = 0.2 * t * 10e-18; + 0.434 * c * PI * ((2.0 * PI) / lambda).pow(MIE_V - 2.0) * k +} + +fn rayleigh_phase(cos_theta: f32) -> f32 { + (3.0 / (16.0 * PI)) * (1.0 + cos_theta.pow(2.0)) +} + +fn henyey_greenstein_phase(cos_theta: f32, g: f32) -> f32 { + (1.0 / (4.0 * PI)) * ((1.0 - g.pow(2.0)) / (1.0 - 2.0 * g * cos_theta + g.pow(2.0)).pow(1.5)) +} + +fn sun_intensity(zenith_angle_cos: f32) -> f32 { + let cutoff_angle = PI / 1.95; // Earth shadow hack + SUN_INTENSITY_FACTOR + * 0.0f32.max( + 1.0 - (-((cutoff_angle - acos_approx(zenith_angle_cos)) + / SUN_INTENSITY_FALLOFF_STEEPNESS)) + .exp(), + ) +} + +fn uncharted2_tonemap(w: Vec3) -> Vec3 { + let a = Vec3::splat(0.15); // Shoulder strength + let b = Vec3::splat(0.50); // Linear strength + let c = Vec3::splat(0.10); // Linear angle + let d = Vec3::splat(0.20); // Toe strength + let e = Vec3::splat(0.02); // Toe numerator + let f = Vec3::splat(0.30); // Toe denominator + + ((w * (a * w + c * b) + d * e) / (w * (a * w + b) + d * f)) - e / f +} + +fn sky(dir: Vec3, sun_position: Vec3) -> Vec3 { + let up = Vec3::new(0.0, 1.0, 0.0); + let sunfade = 1.0 - (1.0 - (sun_position.1 / 450000.0).exp()).clamp(0.0, 1.0); + let rayleigh_coefficient = RAYLEIGH - (1.0 * (1.0 - sunfade)); + let beta_r = total_rayleigh(PRIMARIES) * rayleigh_coefficient; + + // Mie coefficient + let beta_m = total_mie(PRIMARIES, MIE_K_COEFFICIENT, TURBIDITY) * MIE_COEFFICIENT; + + // Optical length, cutoff angle at 90 to avoid singularity + let zenith_angle = acos_approx(up.dot(dir).max(0.0)); + let denom = (zenith_angle).cos() + 0.15 * (93.885 - ((zenith_angle * 180.0) / PI)).pow(-1.253); + + let s_r = RAYLEIGH_ZENITH_LENGTH / denom; + let s_m = MIE_ZENITH_LENGTH / denom; + + // Combined extinction factor + let fex = (-(beta_r * s_r + beta_m * s_m)).exp(); + + // In-scattering + let sun_direction = sun_position.normalize(); + let cos_theta = dir.dot(sun_direction); + let beta_r_theta = beta_r * rayleigh_phase(cos_theta * 0.5 + 0.5); + + let beta_m_theta = beta_m * henyey_greenstein_phase(cos_theta, MIE_DIRECTIONAL_G); + let sun_e = sun_intensity(sun_direction.dot(up)); + let mut lin = + (sun_e * ((beta_r_theta + beta_m_theta) / (beta_r + beta_m)) * (Vec3::splat(1.0) - fex)) + .pow(1.5); + lin *= Vec3::splat(1.0).lerp( + (sun_e * ((beta_r_theta + beta_m_theta) / (beta_r + beta_m)) * fex).pow(0.5), + ((1.0 - up.dot(sun_direction)).pow(5.0)).clamp(0.0, 1.0), + ); + + // Composition + solar disc + let sun_angular_diameter_cos = SUN_ANGULAR_DIAMETER_DEGREES.cos(); + let sundisk = smoothstep( + sun_angular_diameter_cos, + sun_angular_diameter_cos + 0.00002, + cos_theta, + ); + let mut l0 = 0.1 * fex; + l0 += sun_e * 19000.0 * fex * sundisk; + let mut tex_color = lin + l0; + tex_color *= Vec3::splat(0.04); + tex_color += Vec3::new(0.0, 0.001, 0.0025) * 0.3; + + // Tonemapping + let white_scale = 1.0 / uncharted2_tonemap(TONEMAP_WEIGHTING); + let curr = uncharted2_tonemap(((2.0 / LUMINANCE.pow(4.0)).log2()) * tex_color); + let color = curr * white_scale; + + color.pow(1.0 / (1.2 + (1.2 * sunfade))) +} + +#[spirv(entry = "fragment")] +pub fn main_fs(input: Input, mut output: Output) { + let color = input.load(); + let mut dir = Vec3::new(color.0, color.1, 0.0); + + // hard-code information because we can't bind buffers at the moment + let eye_pos = Vec3(0.0, 0.0997, 0.2); + let sun_pos = Vec3::new(0.0, 75.0, -1000.0); + let clip_to_world = Mat4 { + x_axis: Vec4(-0.5522849, 0.0, 0.0, 0.0), + y_axis: Vec4(0.0, 0.4096309, -0.061444636, 0.0), + z_axis: Vec4(0.0, 99.99999, 199.99998, 999.99994), + w_axis: Vec4(0.0, -0.14834046, -0.98893654, 0.0), + }; + + let cs_pos = Vec4(dir.0, -dir.1, 1.0, 1.0); + let mut ws_pos = clip_to_world.mul_vec4(cs_pos); + let ws_pos = Vec3( + ws_pos.0 / ws_pos.3, + ws_pos.1 / ws_pos.3, + ws_pos.2 / ws_pos.3, + ); + let dir = (ws_pos - eye_pos).normalize(); + let k = sky(dir, sun_pos); + + output.store(k.extend(0.0)) } -#[allow(unused_attributes)] #[spirv(entry = "vertex")] pub fn main_vs( - in_pos: Input, - in_color: Input, - #[spirv(builtin = "position")] mut out_pos: Output, - mut out_color: Output, + in_pos: Input, + in_color: Input, + #[spirv(builtin = "position")] mut out_pos: Output, + mut out_color: Output, ) { out_pos.store(in_pos.load()); - out_color.store(in_color.load()); + out_color.store(in_pos.load()); } #[panic_handler] diff --git a/spirv-std/src/lib.rs b/spirv-std/src/lib.rs index c835d32c57..8a644b8d5a 100644 --- a/spirv-std/src/lib.rs +++ b/spirv-std/src/lib.rs @@ -1,7 +1,11 @@ #![no_std] -#![feature(register_attr, repr_simd)] +#![feature(register_attr, repr_simd, core_intrinsics)] #![register_attr(spirv)] +pub mod math; +pub use crate::math::MathExt; +pub use crate::math::*; + macro_rules! pointer_addrspace_write { (false) => {}; (true) => { diff --git a/spirv-std/src/math/mat2.rs b/spirv-std/src/math/mat2.rs new file mode 100644 index 0000000000..44670a1b29 --- /dev/null +++ b/spirv-std/src/math/mat2.rs @@ -0,0 +1,242 @@ +use super::{Vec2, Vec4}; +use core::ops::{Add, Mul, Sub}; + +/// Creates a `Mat2` from two column vectors. +#[inline] +pub fn mat2(x_axis: Vec2, y_axis: Vec2) -> Mat2 { + Mat2::from_cols(x_axis, y_axis) +} + +/// A 2x2 column major matrix. +#[derive(Clone, Copy, PartialEq, PartialOrd, Debug)] +pub struct Mat2(pub Vec4); + +impl Default for Mat2 { + #[inline] + fn default() -> Self { + Self::identity() + } +} + +impl Mat2 { + /// Creates a 2x2 matrix with all elements set to `0.0`. + #[inline] + pub const fn zero() -> Self { + Self(Vec4::zero()) + } + + /// Creates a 2x2 identity matrix. + #[inline] + pub const fn identity() -> Self { + Self(Vec4::new(1.0, 0.0, 0.0, 1.0)) + } + + /// Creates a 2x2 matrix from two column vectors. + #[inline] + pub fn from_cols(x_axis: Vec2, y_axis: Vec2) -> Self { + Self(Vec4::new(x_axis.x(), x_axis.y(), y_axis.x(), y_axis.y())) + } + + /// Creates a 2x2 matrix from a `[f32; 4]` stored in column major order. If + /// your data is stored in row major you will need to `transpose` the + /// returned matrix. + #[inline] + pub fn from_cols_array(m: &[f32; 4]) -> Self { + Mat2(Vec4::new(m[0], m[1], m[2], m[3])) + } + + /// Creates a `[f32; 4]` storing data in column major order. + /// If you require data in row major order `transpose` the matrix first. + #[inline] + pub fn to_cols_array(&self) -> [f32; 4] { + self.0.into() + } + + /// Creates a 2x2 matrix from a `[[f32; 2]; 2]` stored in column major + /// order. If your data is in row major order you will need to `transpose` + /// the returned matrix. + #[inline] + pub fn from_cols_array_2d(m: &[[f32; 2]; 2]) -> Self { + Mat2(Vec4::new(m[0][0], m[0][1], m[1][0], m[1][1])) + } + + /// Creates a `[[f32; 2]; 2]` storing data in column major order. + /// If you require data in row major order `transpose` the matrix first. + #[inline] + pub fn to_cols_array_2d(&self) -> [[f32; 2]; 2] { + let (x0, y0, x1, y1) = self.0.into(); + [[x0, y0], [x1, y1]] + } + + /// Creates a 2x2 matrix containing the given non-uniform `scale`. + #[inline] + pub fn from_scale(scale: Vec2) -> Self { + let (x, y) = scale.into(); + Self(Vec4::new(x, 0.0, 0.0, y)) + } + + /// Sets the first column, the `x` axis. + #[inline] + pub fn set_x_axis(&mut self, x: Vec2) { + (self.0).0 = x.x(); + (self.0).1 = x.y(); + } + + /// Sets the second column, the `y` axis. + #[inline] + pub fn set_y_axis(&mut self, y: Vec2) { + (self.0).2 = y.x(); + (self.0).3 = y.y(); + } + + /// Returns the first column, the `x` axis. + #[inline] + pub fn x_axis(&self) -> Vec2 { + let (x, y, _, _) = self.0.into(); + Vec2::new(x, y) + } + + /// Returns the second column, the `y` axis. + #[inline] + pub fn y_axis(&self) -> Vec2 { + let (_, _, x, y) = self.0.into(); + Vec2::new(x, y) + } + + // #[inline] + // pub(crate) fn col(&self, index: usize) -> Vec2 { + // match index { + // 0 => self.x_axis(), + // 1 => self.y_axis(), + // _ => panic!( + // "index out of bounds: the len is 2 but the index is {}", + // index + // ), + // } + // } + + // #[inline] + // pub(crate) fn col_mut(&mut self, index: usize) -> &mut Vec2 { + // match index { + // 0 => unsafe { &mut *(self.0.as_mut().as_mut_ptr() as *mut Vec2) }, + // 1 => unsafe { &mut *(self.0.as_mut()[2..].as_mut_ptr() as *mut Vec2) }, + // _ => panic!( + // "index out of bounds: the len is 2 but the index is {}", + // index + // ), + // } + // } + + /// Returns the transpose of `self`. + #[inline] + pub fn transpose(&self) -> Self { + let (m00, m01, m10, m11) = self.0.into(); + Self(Vec4::new(m00, m10, m01, m11)) + } + + /// Returns the determinant of `self`. + #[inline] + pub fn determinant(&self) -> f32 { + let (a, b, c, d) = self.0.into(); + a * d - b * c + } + + /// Returns the inverse of `self`. + /// + /// If the matrix is not invertible the returned matrix will be invalid. + #[inline] + pub fn inverse(&self) -> Self { + let (a, b, c, d) = self.0.into(); + let det = a * d - b * c; + let tmp = Vec4::new(1.0, -1.0, -1.0, 1.0) / det; + Self(Vec4::new(d, b, c, a) * tmp) + } + + /// Transforms a `Vec2`. + #[inline] + pub fn mul_vec2(&self, other: Vec2) -> Vec2 { + // TODO: SSE2 + let other = Vec4::new(other.x(), other.x(), other.y(), other.y()); + let tmp = self.0 * other; + let (x0, y0, x1, y1) = tmp.into(); + Vec2::new(x0 + x1, y0 + y1) + } + + /// Multiplies two 2x2 matrices. + #[inline] + pub fn mul_mat2(&self, other: &Self) -> Self { + // TODO: SSE2 + let (x0, y0, x1, y1) = other.0.into(); + Mat2::from_cols( + self.mul_vec2(Vec2::new(x0, y0)), + self.mul_vec2(Vec2::new(x1, y1)), + ) + } + + /// Adds two 2x2 matrices. + #[inline] + pub fn add_mat2(&self, other: &Self) -> Self { + Mat2(self.0 + other.0) + } + + /// Subtracts two 2x2 matrices. + #[inline] + pub fn sub_mat2(&self, other: &Self) -> Self { + Mat2(self.0 - other.0) + } + + /// Multiplies a 2x2 matrix by a scalar. + #[inline] + pub fn mul_scalar(&self, other: f32) -> Self { + let s = Vec4::splat(other); + Mat2(self.0 * s) + } +} + +impl Add for Mat2 { + type Output = Self; + #[inline] + fn add(self, other: Self) -> Self { + self.add_mat2(&other) + } +} + +impl Sub for Mat2 { + type Output = Self; + #[inline] + fn sub(self, other: Self) -> Self { + self.sub_mat2(&other) + } +} + +impl Mul for Mat2 { + type Output = Self; + #[inline] + fn mul(self, other: Self) -> Self { + self.mul_mat2(&other) + } +} + +impl Mul for Mat2 { + type Output = Vec2; + #[inline] + fn mul(self, other: Vec2) -> Vec2 { + self.mul_vec2(other) + } +} + +impl Mul for f32 { + type Output = Mat2; + #[inline] + fn mul(self, other: Mat2) -> Mat2 { + other.mul_scalar(self) + } +} + +impl Mul for Mat2 { + type Output = Self; + #[inline] + fn mul(self, other: f32) -> Self { + self.mul_scalar(other) + } +} diff --git a/spirv-std/src/math/mat3.rs b/spirv-std/src/math/mat3.rs new file mode 100644 index 0000000000..bd822e517a --- /dev/null +++ b/spirv-std/src/math/mat3.rs @@ -0,0 +1,320 @@ +use super::Vec3; +use core::ops::{Add, Mul, Sub}; + +/// Creates a `Mat3` from three column vectors. +#[inline] +pub fn mat3(x_axis: Vec3, y_axis: Vec3, z_axis: Vec3) -> Mat3 { + Mat3 { + x_axis, + y_axis, + z_axis, + } +} + +/// A 3x3 column major matrix. +#[derive(Clone, Copy, PartialEq, PartialOrd, Debug)] +pub struct Mat3 { + pub x_axis: Vec3, + pub y_axis: Vec3, + pub z_axis: Vec3, +} + +impl Default for Mat3 { + #[inline] + fn default() -> Self { + Self::identity() + } +} + +impl Mat3 { + /// Creates a 3x3 matrix with all elements set to `0.0`. + #[inline] + pub const fn zero() -> Self { + Self { + x_axis: Vec3::zero(), + y_axis: Vec3::zero(), + z_axis: Vec3::zero(), + } + } + + /// Creates a 3x3 identity matrix. + #[inline] + pub const fn identity() -> Self { + Self { + x_axis: Vec3::new(1.0, 0.0, 0.0), + y_axis: Vec3::new(0.0, 1.0, 0.0), + z_axis: Vec3::new(0.0, 0.0, 1.0), + } + } + + /// Creates a 3x3 matrix from three column vectors. + #[inline] + pub fn from_cols(x_axis: Vec3, y_axis: Vec3, z_axis: Vec3) -> Self { + Self { + x_axis, + y_axis, + z_axis, + } + } + + /// Creates a 3x3 matrix from a `[f32; 9]` stored in column major order. + /// If your data is stored in row major you will need to `transpose` the + /// returned matrix. + #[inline] + pub fn from_cols_array(m: &[f32; 9]) -> Self { + Mat3 { + x_axis: Vec3::new(m[0], m[1], m[2]), + y_axis: Vec3::new(m[3], m[4], m[5]), + z_axis: Vec3::new(m[6], m[7], m[8]), + } + } + + /// Creates a `[f32; 9]` storing data in column major order. + /// If you require data in row major order `transpose` the matrix first. + #[inline] + pub fn to_cols_array(&self) -> [f32; 9] { + let (m00, m01, m02) = self.x_axis.into(); + let (m10, m11, m12) = self.y_axis.into(); + let (m20, m21, m22) = self.z_axis.into(); + [m00, m01, m02, m10, m11, m12, m20, m21, m22] + } + + /// Creates a 3x3 matrix from a `[[f32; 3]; 3]` stored in column major order. + /// If your data is in row major order you will need to `transpose` the + /// returned matrix. + #[inline] + pub fn from_cols_array_2d(m: &[[f32; 3]; 3]) -> Self { + Mat3 { + x_axis: m[0].into(), + y_axis: m[1].into(), + z_axis: m[2].into(), + } + } + + /// Creates a `[[f32; 3]; 3]` storing data in column major order. + /// If you require data in row major order `transpose` the matrix first. + #[inline] + pub fn to_cols_array_2d(&self) -> [[f32; 3]; 3] { + [self.x_axis.into(), self.y_axis.into(), self.z_axis.into()] + } + + /// Creates a 3x3 non-uniform scale matrix. + #[inline] + pub fn from_scale(scale: Vec3) -> Self { + // TODO: should have a affine 2D scale and a 3d scale? + // Do not panic as long as any component is non-zero + let (x, y, z) = scale.into(); + Self { + x_axis: Vec3::new(x, 0.0, 0.0), + y_axis: Vec3::new(0.0, y, 0.0), + z_axis: Vec3::new(0.0, 0.0, z), + } + } + + /// Sets the first column, the `x` axis. + #[inline] + pub fn set_x_axis(&mut self, x: Vec3) { + self.x_axis = x; + } + + /// Sets the second column, the `y` axis. + #[inline] + pub fn set_y_axis(&mut self, y: Vec3) { + self.y_axis = y; + } + + /// Sets the third column, the `z` axis. + #[inline] + pub fn set_z_axis(&mut self, z: Vec3) { + self.z_axis = z; + } + + /// Returns the first column, the `x` axis. + #[inline] + pub fn x_axis(&self) -> Vec3 { + self.x_axis + } + + /// Returns the second column, the `y` axis. + #[inline] + pub fn y_axis(&self) -> Vec3 { + self.y_axis + } + + /// Returns the third column, the `z` axis. + #[inline] + pub fn z_axis(&self) -> Vec3 { + self.z_axis + } + + /// Returns a mutable reference to the first column, the `x` axis. + #[inline] + pub fn x_axis_mut(&mut self) -> &mut Vec3 { + &mut self.x_axis + } + + /// Returns a mutable reference to the second column, the `y` axis. + #[inline] + pub fn y_axis_mut(&mut self) -> &mut Vec3 { + &mut self.y_axis + } + + /// Returns a mutable reference to the third column, the `z` axis. + #[inline] + pub fn z_axis_mut(&mut self) -> &mut Vec3 { + &mut self.z_axis + } + + // #[inline] + // pub(crate) fn col(&self, index: usize) -> Vec3 { + // match index { + // 0 => self.x_axis, + // 1 => self.y_axis, + // 2 => self.z_axis, + // _ => panic!( + // "index out of bounds: the len is 3 but the index is {}", + // index + // ), + // } + // } + + // #[inline] + // pub(crate) fn col_mut(&mut self, index: usize) -> &mut Vec3 { + // match index { + // 0 => &mut self.x_axis, + // 1 => &mut self.y_axis, + // 2 => &mut self.z_axis, + // _ => panic!( + // "index out of bounds: the len is 3 but the index is {}", + // index + // ), + // } + // } + + /// Returns the transpose of `self`. + #[inline] + pub fn transpose(&self) -> Self { + Self { + x_axis: Vec3::new(self.x_axis.0, self.y_axis.0, self.z_axis.0), + y_axis: Vec3::new(self.x_axis.1, self.y_axis.1, self.z_axis.1), + z_axis: Vec3::new(self.x_axis.2, self.y_axis.2, self.z_axis.2), + } + } + + /// Returns the determinant of `self`. + #[inline] + pub fn determinant(&self) -> f32 { + self.z_axis.dot(self.x_axis.cross(self.y_axis)) + } + + /// Returns the inverse of `self`. + /// + /// If the matrix is not invertible the returned matrix will be invalid. + pub fn inverse(&self) -> Self { + let tmp0 = self.y_axis.cross(self.z_axis); + let tmp1 = self.z_axis.cross(self.x_axis); + let tmp2 = self.x_axis.cross(self.y_axis); + let det = self.z_axis.dot_as_vec3(tmp2); + let inv_det = det.recip(); + // TODO: Work out if it's possible to get rid of the transpose + Mat3::from_cols(tmp0 * inv_det, tmp1 * inv_det, tmp2 * inv_det).transpose() + } + + /// Multiplies two 3x3 matrices. + #[inline] + pub fn mul_mat3(&self, other: &Self) -> Self { + Self { + x_axis: self.mul_vec3(other.x_axis), + y_axis: self.mul_vec3(other.y_axis), + z_axis: self.mul_vec3(other.z_axis), + } + } + + /// Adds two 3x3 matrices. + #[inline] + pub fn add_mat3(&self, other: &Self) -> Self { + Self { + x_axis: self.x_axis + other.x_axis, + y_axis: self.y_axis + other.y_axis, + z_axis: self.z_axis + other.z_axis, + } + } + + /// Subtracts two 3x3 matrices. + #[inline] + pub fn sub_mat3(&self, other: &Self) -> Self { + Self { + x_axis: self.x_axis - other.x_axis, + y_axis: self.y_axis - other.y_axis, + z_axis: self.z_axis - other.z_axis, + } + } + + /// Transforms a `Vec3`. + #[inline] + pub fn mul_vec3(&self, other: Vec3) -> Vec3 { + let mut res = self.x_axis * Vec3::splat(other.x()); + res = self.y_axis.mul_add(Vec3::splat(other.y()), res); + res = self.z_axis.mul_add(Vec3::splat(other.z()), res); + res + } + + #[inline] + /// Multiplies a 3x3 matrix by a scalar. + pub fn mul_scalar(&self, other: f32) -> Self { + let s = Vec3::splat(other); + Self { + x_axis: self.x_axis * s, + y_axis: self.y_axis * s, + z_axis: self.z_axis * s, + } + } +} + +impl Add for Mat3 { + type Output = Self; + #[inline] + fn add(self, other: Self) -> Self { + self.add_mat3(&other) + } +} + +impl Sub for Mat3 { + type Output = Self; + #[inline] + fn sub(self, other: Self) -> Self { + self.sub_mat3(&other) + } +} + +impl Mul for Mat3 { + type Output = Self; + #[inline] + fn mul(self, other: Self) -> Self { + self.mul_mat3(&other) + } +} + +impl Mul for Mat3 { + type Output = Vec3; + #[inline] + fn mul(self, other: Vec3) -> Vec3 { + self.mul_vec3(other) + } +} + +impl Mul for f32 { + type Output = Mat3; + #[inline] + fn mul(self, other: Mat3) -> Mat3 { + other.mul_scalar(self) + } +} + +impl Mul for Mat3 { + type Output = Self; + #[inline] + fn mul(self, other: f32) -> Self { + self.mul_scalar(other) + } +} diff --git a/spirv-std/src/math/mat4.rs b/spirv-std/src/math/mat4.rs new file mode 100644 index 0000000000..a96b2f287e --- /dev/null +++ b/spirv-std/src/math/mat4.rs @@ -0,0 +1,464 @@ +use super::{Vec3, Vec4}; +use core::ops::{Add, Mul, Sub}; + +/// Creates a `Mat4` from four column vectors. +#[inline] +pub fn mat4(x_axis: Vec4, y_axis: Vec4, z_axis: Vec4, w_axis: Vec4) -> Mat4 { + Mat4 { + x_axis, + y_axis, + z_axis, + w_axis, + } +} + +/// A 4x4 column major matrix. +/// +/// This type is 16 byte aligned. +#[derive(Clone, Copy, PartialEq, PartialOrd, Debug)] +pub struct Mat4 { + pub x_axis: Vec4, + pub y_axis: Vec4, + pub z_axis: Vec4, + pub w_axis: Vec4, +} + +impl Default for Mat4 { + #[inline] + fn default() -> Self { + Self::identity() + } +} + +impl Mat4 { + /// Creates a 4x4 matrix with all elements set to `0.0`. + #[inline] + pub const fn zero() -> Self { + Mat4 { + x_axis: Vec4::zero(), + y_axis: Vec4::zero(), + z_axis: Vec4::zero(), + w_axis: Vec4::zero(), + } + } + + /// Creates a 4x4 identity matrix. + #[inline] + pub const fn identity() -> Self { + Mat4 { + x_axis: Vec4::new(1.0, 0.0, 0.0, 0.0), + y_axis: Vec4::new(0.0, 1.0, 0.0, 0.0), + z_axis: Vec4::new(0.0, 0.0, 1.0, 0.0), + w_axis: Vec4::new(0.0, 0.0, 0.0, 1.0), + } + } + + /// Creates a 4x4 matrix from four column vectors. + #[inline] + pub fn from_cols(x_axis: Vec4, y_axis: Vec4, z_axis: Vec4, w_axis: Vec4) -> Self { + Self { + x_axis, + y_axis, + z_axis, + w_axis, + } + } + + /// Creates a 4x4 matrix from a `[f32; 16]` stored in column major order. + /// If your data is stored in row major you will need to `transpose` the + /// returned matrix. + #[inline] + pub fn from_cols_array(m: &[f32; 16]) -> Self { + Mat4 { + x_axis: Vec4::new(m[0], m[1], m[2], m[3]), + y_axis: Vec4::new(m[4], m[5], m[6], m[7]), + z_axis: Vec4::new(m[8], m[9], m[10], m[11]), + w_axis: Vec4::new(m[12], m[13], m[14], m[15]), + } + } + + /// Creates a `[f32; 16]` storing data in column major order. + /// If you require data in row major order `transpose` the matrix first. + #[inline] + pub fn to_cols_array(&self) -> [f32; 16] { + *self.as_ref() + } + + /// Creates a 4x4 matrix from a `[[f32; 4]; 4]` stored in column major + /// order. If your data is in row major order you will need to `transpose` + /// the returned matrix. + #[inline] + pub fn from_cols_array_2d(m: &[[f32; 4]; 4]) -> Self { + Mat4 { + x_axis: m[0].into(), + y_axis: m[1].into(), + z_axis: m[2].into(), + w_axis: m[3].into(), + } + } + + /// Creates a `[[f32; 4]; 4]` storing data in column major order. + /// If you require data in row major order `transpose` the matrix first. + #[inline] + pub fn to_cols_array_2d(&self) -> [[f32; 4]; 4] { + [ + self.x_axis.into(), + self.y_axis.into(), + self.z_axis.into(), + self.w_axis.into(), + ] + } + + /// Creates a 4x4 homogeneous transformation matrix from the given `translation`. + #[inline] + pub fn from_translation(translation: Vec3) -> Self { + Self { + x_axis: Vec4::unit_x(), + y_axis: Vec4::unit_y(), + z_axis: Vec4::unit_z(), + w_axis: translation.extend(1.0), + } + } + + /// Creates a 4x4 homogeneous transformation matrix containing the given + /// non-uniform `scale`. + #[inline] + pub fn from_scale(scale: Vec3) -> Self { + // Do not panic as long as any component is non-zero + let (x, y, z) = scale.into(); + Self { + x_axis: Vec4::new(x, 0.0, 0.0, 0.0), + y_axis: Vec4::new(0.0, y, 0.0, 0.0), + z_axis: Vec4::new(0.0, 0.0, z, 0.0), + w_axis: Vec4::unit_w(), + } + } + + /// Sets the first column, the `x` axis. + #[inline] + pub fn set_x_axis(&mut self, x: Vec4) { + self.x_axis = x; + } + + /// Sets the second column, the `y` axis. + #[inline] + pub fn set_y_axis(&mut self, y: Vec4) { + self.y_axis = y; + } + + /// Sets the third column, the `z` axis. + #[inline] + pub fn set_z_axis(&mut self, z: Vec4) { + self.z_axis = z; + } + + /// Sets the fourth column, the `w` axis. + #[inline] + pub fn set_w_axis(&mut self, w: Vec4) { + self.w_axis = w; + } + + /// Returns the first column, the `x` axis. + #[inline] + pub fn x_axis(&self) -> Vec4 { + self.x_axis + } + + /// Returns the second column, the `y` axis. + #[inline] + pub fn y_axis(&self) -> Vec4 { + self.y_axis + } + + /// Returns the third column, the `z` axis. + #[inline] + pub fn z_axis(&self) -> Vec4 { + self.z_axis + } + + /// Returns the fourth column, the `w` axis. + #[inline] + pub fn w_axis(&self) -> Vec4 { + self.w_axis + } + + /// Returns a mutable reference to the first column, the `x` axis. + #[inline] + pub fn x_axis_mut(&mut self) -> &mut Vec4 { + &mut self.x_axis + } + + /// Returns a mutable reference to the second column, the `y` axis. + #[inline] + pub fn y_axis_mut(&mut self) -> &mut Vec4 { + &mut self.y_axis + } + + /// Returns a mutable reference to the third column, the `z` axis. + #[inline] + pub fn z_axis_mut(&mut self) -> &mut Vec4 { + &mut self.z_axis + } + + /// Returns a mutable reference to the fourth column, the `w` axis. + #[inline] + pub fn w_axis_mut(&mut self) -> &mut Vec4 { + &mut self.w_axis + } + + // #[inline] + // pub(crate) fn col(&self, index: usize) -> Vec4 { + // match index { + // 0 => self.x_axis, + // 1 => self.y_axis, + // 2 => self.z_axis, + // 3 => self.w_axis, + // _ => panic!( + // "index out of bounds: the len is 4 but the index is {}", + // index + // ), + // } + // } + + // #[inline] + // pub(crate) fn col_mut(&mut self, index: usize) -> &mut Vec4 { + // match index { + // 0 => &mut self.x_axis, + // 1 => &mut self.y_axis, + // 2 => &mut self.z_axis, + // 3 => &mut self.w_axis, + // _ => panic!( + // "index out of bounds: the len is 4 but the index is {}", + // index + // ), + // } + // } + + /// Returns the transpose of `self`. + #[inline] + pub fn transpose(&self) -> Self { + let (m00, m01, m02, m03) = self.x_axis.into(); + let (m10, m11, m12, m13) = self.y_axis.into(); + let (m20, m21, m22, m23) = self.z_axis.into(); + let (m30, m31, m32, m33) = self.w_axis.into(); + + Self { + x_axis: Vec4::new(m00, m10, m20, m30), + y_axis: Vec4::new(m01, m11, m21, m31), + z_axis: Vec4::new(m02, m12, m22, m32), + w_axis: Vec4::new(m03, m13, m23, m33), + } + } + + /// Returns the determinant of `self`. + #[inline] + pub fn determinant(&self) -> f32 { + let (m00, m01, m02, m03) = self.x_axis.into(); + let (m10, m11, m12, m13) = self.y_axis.into(); + let (m20, m21, m22, m23) = self.z_axis.into(); + let (m30, m31, m32, m33) = self.w_axis.into(); + + let a2323 = m22 * m33 - m23 * m32; + let a1323 = m21 * m33 - m23 * m31; + let a1223 = m21 * m32 - m22 * m31; + let a0323 = m20 * m33 - m23 * m30; + let a0223 = m20 * m32 - m22 * m30; + let a0123 = m20 * m31 - m21 * m30; + + m00 * (m11 * a2323 - m12 * a1323 + m13 * a1223) + - m01 * (m10 * a2323 - m12 * a0323 + m13 * a0223) + + m02 * (m10 * a1323 - m11 * a0323 + m13 * a0123) + - m03 * (m10 * a1223 - m11 * a0223 + m12 * a0123) + } + + /// Returns the inverse of `self`. + /// + /// If the matrix is not invertible the returned matrix will be invalid. + pub fn inverse(&self) -> Self { + let (m00, m01, m02, m03) = self.x_axis.into(); + let (m10, m11, m12, m13) = self.y_axis.into(); + let (m20, m21, m22, m23) = self.z_axis.into(); + let (m30, m31, m32, m33) = self.w_axis.into(); + + let coef00 = m22 * m33 - m32 * m23; + let coef02 = m12 * m33 - m32 * m13; + let coef03 = m12 * m23 - m22 * m13; + + let coef04 = m21 * m33 - m31 * m23; + let coef06 = m11 * m33 - m31 * m13; + let coef07 = m11 * m23 - m21 * m13; + + let coef08 = m21 * m32 - m31 * m22; + let coef10 = m11 * m32 - m31 * m12; + let coef11 = m11 * m22 - m21 * m12; + + let coef12 = m20 * m33 - m30 * m23; + let coef14 = m10 * m33 - m30 * m13; + let coef15 = m10 * m23 - m20 * m13; + + let coef16 = m20 * m32 - m30 * m22; + let coef18 = m10 * m32 - m30 * m12; + let coef19 = m10 * m22 - m20 * m12; + + let coef20 = m20 * m31 - m30 * m21; + let coef22 = m10 * m31 - m30 * m11; + let coef23 = m10 * m21 - m20 * m11; + + let fac0 = Vec4::new(coef00, coef00, coef02, coef03); + let fac1 = Vec4::new(coef04, coef04, coef06, coef07); + let fac2 = Vec4::new(coef08, coef08, coef10, coef11); + let fac3 = Vec4::new(coef12, coef12, coef14, coef15); + let fac4 = Vec4::new(coef16, coef16, coef18, coef19); + let fac5 = Vec4::new(coef20, coef20, coef22, coef23); + + let vec0 = Vec4::new(m10, m00, m00, m00); + let vec1 = Vec4::new(m11, m01, m01, m01); + let vec2 = Vec4::new(m12, m02, m02, m02); + let vec3 = Vec4::new(m13, m03, m03, m03); + + let inv0 = vec1 * fac0 - vec2 * fac1 + vec3 * fac2; + let inv1 = vec0 * fac0 - vec2 * fac3 + vec3 * fac4; + let inv2 = vec0 * fac1 - vec1 * fac3 + vec3 * fac5; + let inv3 = vec0 * fac2 - vec1 * fac4 + vec2 * fac5; + + let sign_a = Vec4::new(1.0, -1.0, 1.0, -1.0); + let sign_b = Vec4::new(-1.0, 1.0, -1.0, 1.0); + + let inverse = Self { + x_axis: inv0 * sign_a, + y_axis: inv1 * sign_b, + z_axis: inv2 * sign_a, + w_axis: inv3 * sign_b, + }; + + let col0 = Vec4::new( + inverse.x_axis.x(), + inverse.y_axis.x(), + inverse.z_axis.x(), + inverse.w_axis.x(), + ); + + let dot0 = self.x_axis * col0; + let dot1 = dot0.x() + dot0.y() + dot0.z() + dot0.w(); + + let rcp_det = 1.0 / dot1; + inverse * rcp_det + } + + /// Transforms a 4D vector. + #[inline] + pub fn mul_vec4(&self, other: Vec4) -> Vec4 { + let mut res = self.x_axis * other.dup_x(); + res = self.y_axis.mul_add(other.dup_y(), res); + res = self.z_axis.mul_add(other.dup_z(), res); + res = self.w_axis.mul_add(other.dup_w(), res); + res + } + + /// Multiplies two 4x4 matrices. + #[inline] + pub fn mul_mat4(&self, other: &Self) -> Self { + Self { + x_axis: self.mul_vec4(other.x_axis), + y_axis: self.mul_vec4(other.y_axis), + z_axis: self.mul_vec4(other.z_axis), + w_axis: self.mul_vec4(other.w_axis), + } + } + + /// Adds two 4x4 matrices. + #[inline] + pub fn add_mat4(&self, other: &Self) -> Self { + Self { + x_axis: self.x_axis + other.x_axis, + y_axis: self.y_axis + other.y_axis, + z_axis: self.z_axis + other.z_axis, + w_axis: self.w_axis + other.w_axis, + } + } + + /// Subtracts two 4x4 matrices. + #[inline] + pub fn sub_mat4(&self, other: &Self) -> Self { + Self { + x_axis: self.x_axis - other.x_axis, + y_axis: self.y_axis - other.y_axis, + z_axis: self.z_axis - other.z_axis, + w_axis: self.w_axis - other.w_axis, + } + } + + /// Multiplies this matrix by a scalar value. + #[inline] + pub fn mul_scalar(&self, other: f32) -> Self { + let s = Vec4::splat(other); + Self { + x_axis: self.x_axis * s, + y_axis: self.y_axis * s, + z_axis: self.z_axis * s, + w_axis: self.w_axis * s, + } + } +} + +impl AsRef<[f32; 16]> for Mat4 { + #[inline] + fn as_ref(&self) -> &[f32; 16] { + unsafe { &*(self as *const Self as *const [f32; 16]) } + } +} + +impl AsMut<[f32; 16]> for Mat4 { + #[inline] + fn as_mut(&mut self) -> &mut [f32; 16] { + unsafe { &mut *(self as *mut Self as *mut [f32; 16]) } + } +} + +impl Add for Mat4 { + type Output = Self; + #[inline] + fn add(self, other: Self) -> Self { + self.add_mat4(&other) + } +} + +impl Sub for Mat4 { + type Output = Self; + #[inline] + fn sub(self, other: Self) -> Self { + self.sub_mat4(&other) + } +} + +impl Mul for Mat4 { + type Output = Self; + #[inline] + fn mul(self, other: Self) -> Self { + self.mul_mat4(&other) + } +} + +impl Mul for Mat4 { + type Output = Vec4; + #[inline] + fn mul(self, other: Vec4) -> Vec4 { + self.mul_vec4(other) + } +} + +impl Mul for f32 { + type Output = Mat4; + #[inline] + fn mul(self, other: Mat4) -> Mat4 { + other.mul_scalar(self) + } +} + +impl Mul for Mat4 { + type Output = Self; + #[inline] + fn mul(self, other: f32) -> Self { + self.mul_scalar(other) + } +} diff --git a/spirv-std/src/math/mod.rs b/spirv-std/src/math/mod.rs new file mode 100644 index 0000000000..2aa8120a9c --- /dev/null +++ b/spirv-std/src/math/mod.rs @@ -0,0 +1,70 @@ +//! This math library is heavily borrowed from https://github.com/bitshifter/glam-rs +//! In the future we hope to be able to use it directly! + +pub mod mat2; +pub mod mat3; +pub mod mat4; +pub mod vec2; +pub mod vec3; +pub mod vec4; +pub use mat2::*; +pub use mat3::*; +pub use mat4::*; +pub use vec2::*; +pub use vec3::*; +pub use vec4::*; + +pub trait MathExt { + fn pow(self, factor: Self) -> Self; + fn sqrt(self) -> Self; + fn log2(self) -> Self; + fn abs(self) -> Self; + fn cos(self) -> Self; + fn round(self) -> Self; + fn floor(self) -> Self; + fn ceil(self) -> Self; + fn exp(self) -> Self; + fn clamp(self, low: Self, high: Self) -> Self; +} + +impl MathExt for f32 { + fn pow(self, factor: f32) -> f32 { + unsafe { core::intrinsics::powf32(self, factor) } + } + + fn sqrt(self) -> f32 { + unsafe { core::intrinsics::sqrtf32(self) } + } + + fn log2(self) -> f32 { + unsafe { core::intrinsics::log2f32(self) } + } + + fn abs(self) -> f32 { + unsafe { core::intrinsics::fabsf32(self) } + } + + fn cos(self) -> f32 { + unsafe { core::intrinsics::cosf32(self) } + } + + fn round(self) -> f32 { + unsafe { core::intrinsics::roundf32(self) } + } + + fn floor(self) -> f32 { + unsafe { core::intrinsics::floorf32(self) } + } + + fn ceil(self) -> f32 { + unsafe { core::intrinsics::ceilf32(self) } + } + + fn exp(self) -> f32 { + unsafe { core::intrinsics::expf32(self) } + } + + fn clamp(self, low: Self, high: Self) -> f32 { + self.max(low).min(high) + } +} diff --git a/spirv-std/src/math/vec2.rs b/spirv-std/src/math/vec2.rs new file mode 100644 index 0000000000..f26a4567b8 --- /dev/null +++ b/spirv-std/src/math/vec2.rs @@ -0,0 +1,409 @@ +use super::Vec3; +use crate::math::MathExt; +use core::{f32, ops::*}; + +/// A 2-dimensional vector. +#[derive(Clone, Copy, PartialEq, PartialOrd, Debug, Default)] +#[repr(simd)] +pub struct Vec2(pub(crate) f32, pub(crate) f32); + +/// Creates a `Vec2`. +#[inline] +pub fn vec2(x: f32, y: f32) -> Vec2 { + Vec2(x, y) +} + +impl Vec2 { + #[deprecated(since = "0.9.5", note = "please use `Vec2::recip` instead")] + #[inline(always)] + pub fn reciprocal(self) -> Self { + self.recip() + } + + /// Returns a `Vec2` containing the reciprocal `1.0/n` of each element of `self`. + #[inline] + pub fn recip(self) -> Self { + Self(self.0.recip(), self.1.recip()) + } + + /// Performs a linear interpolation between `self` and `other` based on + /// the value `s`. + /// + /// When `s` is `0.0`, the result will be equal to `self`. When `s` + /// is `1.0`, the result will be equal to `other`. + #[inline] + pub fn lerp(self, other: Self, s: f32) -> Self { + self + ((other - self) * s) + } + + /// Creates a new `Vec2`. + #[inline] + pub fn new(x: f32, y: f32) -> Vec2 { + Vec2(x, y) + } + + /// Creates a `Vec2` with all elements set to `0.0`. + #[inline] + pub fn zero() -> Vec2 { + Self::splat(0.0) + } + + /// Creates a `Vec2` with all elements set to `1.0`. + #[inline] + pub fn one() -> Vec2 { + Self::splat(1.0) + } + + /// Creates a `Vec2` with values `[x: 1.0, y: 0.0]`. + #[inline] + pub fn unit_x() -> Vec2 { + Self::new(1.0, 0.0) + } + + /// Creates a `Vec2` with values `[x: 0.0, y: 1.0]`. + #[inline] + pub fn unit_y() -> Vec2 { + Self::new(0.0, 1.0) + } + + /// Creates a `Vec2` with all elements set to `v`. + #[inline] + pub fn splat(v: f32) -> Vec2 { + Vec2(v, v) + } + + /// Creates a `Vec3` from `self` and the given `z` value. + #[inline] + pub fn extend(self, z: f32) -> Vec3 { + Vec3::new(self.0, self.1, z) + } + + /// Returns element `x`. + #[inline] + pub fn x(self) -> f32 { + self.0 + } + + /// Returns element `y`. + #[inline] + pub fn y(self) -> f32 { + self.1 + } + + /// Returns a mutable reference to element `x`. + #[inline] + pub fn x_mut(&mut self) -> &mut f32 { + &mut self.0 + } + + /// Returns a mutable reference to element `y`. + #[inline] + pub fn y_mut(&mut self) -> &mut f32 { + &mut self.1 + } + + /// Sets element `x`. + #[inline] + pub fn set_x(&mut self, x: f32) { + self.0 = x; + } + + /// Sets element `y`. + #[inline] + pub fn set_y(&mut self, y: f32) { + self.1 = y; + } + + /// Computes the dot product of `self` and `other`. + #[inline] + pub fn dot(self, other: Vec2) -> f32 { + (self.0 * other.0) + (self.1 * other.1) + } + + /// Computes the length of `self`. + #[inline] + pub fn length(self) -> f32 { + self.dot(self).sqrt() + } + + /// Computes the squared length of `self`. + /// + /// This is generally faster than `Vec2::length()` as it avoids a square + /// root operation. + #[inline] + pub fn length_squared(self) -> f32 { + self.dot(self) + } + + #[deprecated(since = "0.9.5", note = "please use `Vec2::length_recip` instead")] + #[inline(always)] + pub fn length_reciprocal(self) -> f32 { + self.length_recip() + } + + /// Computes `1.0 / Vec2::length()`. + /// + /// For valid results, `self` must _not_ be of length zero. + #[inline] + pub fn length_recip(self) -> f32 { + self.length().recip() + } + + /// Returns `self` normalized to length 1.0. + /// + /// For valid results, `self` must _not_ be of length zero. + #[inline] + pub fn normalize(self) -> Vec2 { + self * self.length_recip() + } + + /// Returns the vertical minimum of `self` and `other`. + /// + /// In other words, this computes + /// `[x: min(x1, x2), y: min(y1, y2)]`, + /// taking the minimum of each element individually. + #[inline] + pub fn min(self, other: Vec2) -> Vec2 { + Vec2(self.0.min(other.0), self.1.min(other.1)) + } + + /// Returns the vertical maximum of `self` and `other`. + /// + /// In other words, this computes + /// `[x: max(x1, x2), y: max(y1, y2)]`, + /// taking the maximum of each element individually. + #[inline] + pub fn max(self, other: Vec2) -> Vec2 { + Vec2(self.0.max(other.0), self.1.max(other.1)) + } + + /// Returns the horizontal minimum of `self`'s elements. + /// + /// In other words, this computes `min(x, y)`. + #[inline] + pub fn min_element(self) -> f32 { + self.0.min(self.1) + } + + /// Returns the horizontal maximum of `self`'s elements. + /// + /// In other words, this computes `max(x, y)`. + #[inline] + pub fn max_element(self) -> f32 { + self.0.max(self.1) + } + + /// Creates a `Vec2` from the first two values in `slice`. + /// + /// # Panics + /// + /// Panics if `slice` is less than two elements long. + #[inline] + pub fn from_slice_unaligned(slice: &[f32]) -> Self { + Self(slice[0], slice[1]) + } + + /// Writes the elements of `self` to the first two elements in `slice`. + /// + /// # Panics + /// + /// Panics if `slice` is less than two elements long. + #[inline] + pub fn write_to_slice_unaligned(self, slice: &mut [f32]) { + slice[0] = self.0; + slice[1] = self.1; + } + + /// Returns a `Vec2` containing the absolute value of each element of `self`. + #[inline] + pub fn abs(self) -> Self { + Self(self.0.abs(), self.1.abs()) + } + + /// Returns a `Vec2` containing the nearest integer to a number for each element of `self`. + /// Round half-way cases away from 0.0. + #[inline] + pub fn round(self) -> Self { + Self(self.0.round(), self.1.round()) + } + + /// Returns a `Vec2` containing the largest integer less than or equal to a number for each + /// element of `self`. + #[inline] + pub fn floor(self) -> Self { + Self(self.0.floor(), self.1.floor()) + } + + /// Returns a `Vec2` containing this vector raised to the power of `power` + #[inline] + pub fn pow(self, power: f32) -> Self { + Self(self.0.pow(power), self.1.pow(power)) + } + + /// Returns a `Vec2` containing this vector exp'd + #[inline] + pub fn exp(self) -> Self { + Self(self.0.exp(), self.1.exp()) + } + + /// Returns a `Vec2` containing the smallest integer greater than or equal to a number for each + /// element of `self`. + #[inline] + pub fn ceil(self) -> Self { + Self(self.0.ceil(), self.1.ceil()) + } + + /// The perpendicular dot product of the vector and `other`. + #[inline] + pub fn perp_dot(self, other: Vec2) -> f32 { + (self.0 * other.1) - (self.1 * other.0) + } +} + +impl Div for Vec2 { + type Output = Self; + #[inline] + fn div(self, other: Vec2) -> Self { + Self(self.0 / other.0, self.1 / other.1) + } +} + +impl DivAssign for Vec2 { + #[inline] + fn div_assign(&mut self, other: Vec2) { + self.0 /= other.0; + self.1 /= other.1; + } +} + +impl Div for Vec2 { + type Output = Self; + #[inline] + fn div(self, other: f32) -> Self { + Self(self.0 / other, self.1 / other) + } +} + +impl DivAssign for Vec2 { + #[inline] + fn div_assign(&mut self, other: f32) { + self.0 /= other; + self.1 /= other; + } +} + +impl Div for f32 { + type Output = Vec2; + #[inline] + fn div(self, other: Vec2) -> Vec2 { + Vec2(self / other.0, self / other.1) + } +} + +impl Mul for Vec2 { + type Output = Self; + #[inline] + fn mul(self, other: Vec2) -> Self { + Self(self.0 * other.0, self.1 * other.1) + } +} + +impl MulAssign for Vec2 { + #[inline] + fn mul_assign(&mut self, other: Vec2) { + self.0 *= other.0; + self.1 *= other.1; + } +} + +impl Mul for Vec2 { + type Output = Self; + #[inline] + fn mul(self, other: f32) -> Self { + Self(self.0 * other, self.1 * other) + } +} + +impl MulAssign for Vec2 { + #[inline] + fn mul_assign(&mut self, other: f32) { + self.0 *= other; + self.1 *= other; + } +} + +impl Mul for f32 { + type Output = Vec2; + #[inline] + fn mul(self, other: Vec2) -> Vec2 { + Vec2(self * other.0, self * other.1) + } +} + +impl Add for Vec2 { + type Output = Self; + #[inline] + fn add(self, other: Self) -> Self { + Self(self.0 + other.0, self.1 + other.1) + } +} + +impl AddAssign for Vec2 { + #[inline] + fn add_assign(&mut self, other: Self) { + self.0 += other.0; + self.1 += other.1; + } +} + +impl Sub for Vec2 { + type Output = Self; + #[inline] + fn sub(self, other: Vec2) -> Self { + Self(self.0 - other.0, self.1 - other.1) + } +} + +impl SubAssign for Vec2 { + #[inline] + fn sub_assign(&mut self, other: Vec2) { + self.0 -= other.0; + self.1 -= other.1; + } +} + +impl Neg for Vec2 { + type Output = Self; + #[inline] + fn neg(self) -> Self { + Self(-self.0, -self.1) + } +} + +impl From<(f32, f32)> for Vec2 { + #[inline] + fn from(t: (f32, f32)) -> Self { + Self(t.0, t.1) + } +} + +impl From for (f32, f32) { + #[inline] + fn from(v: Vec2) -> Self { + (v.0, v.1) + } +} + +impl From<[f32; 2]> for Vec2 { + #[inline] + fn from(a: [f32; 2]) -> Self { + Self(a[0], a[1]) + } +} + +impl From for [f32; 2] { + #[inline] + fn from(v: Vec2) -> Self { + [v.0, v.1] + } +} diff --git a/spirv-std/src/math/vec3.rs b/spirv-std/src/math/vec3.rs new file mode 100644 index 0000000000..26ee5a4aa1 --- /dev/null +++ b/spirv-std/src/math/vec3.rs @@ -0,0 +1,510 @@ +use super::{Vec2, Vec4}; +use crate::math::MathExt; +use core::ops::*; + +/// A 3-dimensional vector without SIMD support. +#[derive(Clone, Copy, PartialEq, PartialOrd, Debug, Default)] +#[repr(simd)] +pub struct Vec3(pub f32, pub f32, pub f32); + +/// Creates a `Vec3`. +#[inline] +pub fn vec3(x: f32, y: f32, z: f32) -> Vec3 { + Vec3::new(x, y, z) +} + +impl Vec3 { + /// Creates a new `Vec3`. + #[inline] + pub const fn new(x: f32, y: f32, z: f32) -> Self { + Self(x, y, z) + } + + /// Creates a `Vec3` with all elements set to `0.0`. + #[inline] + pub const fn zero() -> Self { + Self::splat(0.0) + } + + /// Creates a `Vec3` with all elements set to `1.0`. + #[inline] + pub const fn one() -> Self { + Self::splat(1.0) + } + + /// Creates a `Vec3` with values `[x: 1.0, y: 0.0, z: 0.0]`. + #[inline] + pub const fn unit_x() -> Self { + Self::new(1.0, 0.0, 0.0) + } + + /// Creates a `Vec3` with values `[x: 0.0, y: 1.0, z: 0.0]`. + #[inline] + pub const fn unit_y() -> Self { + Self::new(0.0, 1.0, 0.0) + } + + /// Creates a `Vec3` with values `[x: 0.0, y: 0.0, z: 1.0]`. + #[inline] + pub const fn unit_z() -> Self { + Self::new(0.0, 0.0, 1.0) + } + + /// Creates a `Vec3` with all elements set to `v`. + #[inline] + pub const fn splat(v: f32) -> Self { + Self(v, v, v) + } + + /// Creates a `Vec4` from `self` and the given `w` value. + #[inline] + pub fn extend(self, w: f32) -> Vec4 { + Vec4::new(self.0, self.1, self.2, w) + } + + /// Creates a `Vec2` from the first three elements of `self`, + /// removing `z`. + #[inline] + pub fn truncate(self) -> Vec2 { + Vec2::new(self.0, self.1) + } + + /// Returns element `x`. + #[inline] + pub fn x(self) -> f32 { + self.0 + } + + /// Returns element `y`. + #[inline] + pub fn y(self) -> f32 { + self.1 + } + + /// Returns element `z`. + #[inline] + pub fn z(self) -> f32 { + self.2 + } + + /// Returns a mutable reference to element `x`. + #[inline] + pub fn x_mut(&mut self) -> &mut f32 { + &mut self.0 + } + + /// Returns a mutable reference to element `y`. + #[inline] + pub fn y_mut(&mut self) -> &mut f32 { + &mut self.1 + } + + /// Returns a mutable reference to element `z`. + #[inline] + pub fn z_mut(&mut self) -> &mut f32 { + &mut self.2 + } + + /// Sets element `x`. + #[inline] + pub fn set_x(&mut self, x: f32) { + self.0 = x; + } + + /// Sets element `y`. + #[inline] + pub fn set_y(&mut self, y: f32) { + self.1 = y; + } + + /// Sets element `z`. + #[inline] + pub fn set_z(&mut self, z: f32) { + self.2 = z; + } + + /// Returns a `Vec3` with all elements set to the value of element `x`. + #[inline] + #[allow(dead_code)] + pub(crate) fn dup_x(self) -> Self { + Self(self.0, self.0, self.0) + } + + /// Returns a `Vec3` with all elements set to the value of element `y`. + #[inline] + #[allow(dead_code)] + pub(crate) fn dup_y(self) -> Self { + Self(self.1, self.1, self.1) + } + + /// Returns a `Vec3` with all elements set to the value of element `z`. + #[inline] + #[allow(dead_code)] + pub(crate) fn dup_z(self) -> Self { + Self(self.2, self.2, self.2) + } + + /// Computes the dot product of `self` and `other`. + #[inline] + pub fn dot(self, other: Self) -> f32 { + (self.0 * other.0) + (self.1 * other.1) + (self.2 * other.2) + } + + /// Returns Vec3 dot in all lanes of Vec3 + #[inline] + #[allow(dead_code)] + pub(crate) fn dot_as_vec3(self, other: Self) -> Self { + let dot = self.dot(other); + Vec3::new(dot, dot, dot) + } + + /// Computes the cross product of `self` and `other`. + #[inline] + pub fn cross(self, other: Self) -> Self { + Self( + self.1 * other.2 - other.1 * self.2, + self.2 * other.0 - other.2 * self.0, + self.0 * other.1 - other.0 * self.1, + ) + } + + /// Computes the length of `self`. + #[inline] + pub fn length(self) -> f32 { + self.dot(self).sqrt() + } + + /// Computes the squared length of `self`. + /// + /// This is generally faster than `Vec3::length()` as it avoids a square + /// root operation. + #[inline] + pub fn length_squared(self) -> f32 { + self.dot(self) + } + + #[deprecated(since = "0.9.5", note = "please use `Vec3::length_recip` instead")] + #[inline(always)] + pub fn length_reciprocal(self) -> f32 { + self.length_recip() + } + + /// Computes `1.0 / Vec3::length()`. + /// + /// For valid results, `self` must _not_ be of length zero. + #[inline] + pub fn length_recip(self) -> f32 { + self.length().recip() + } + + /// Returns `self` normalized to length 1.0. + /// + /// For valid results, `self` must _not_ be of length zero. + #[inline] + pub fn normalize(self) -> Self { + self * self.length_recip() + } + + /// Returns the vertical minimum of `self` and `other`. + /// + /// In other words, this computes + /// `[x: min(x1, x2), y: min(y1, y2), z: min(z1, z2)]`, + /// taking the minimum of each element individually. + #[inline] + pub fn min(self, other: Self) -> Self { + Self( + self.0.min(other.0), + self.1.min(other.1), + self.2.min(other.2), + ) + } + + /// Returns the vertical maximum of `self` and `other`. + /// + /// In other words, this computes + /// `[x: max(x1, x2), y: max(y1, y2), z: max(z1, z2)]`, + /// taking the maximum of each element individually. + #[inline] + pub fn max(self, other: Self) -> Self { + Self( + self.0.max(other.0), + self.1.max(other.1), + self.2.max(other.2), + ) + } + + /// Returns the horizontal minimum of `self`'s elements. + /// + /// In other words, this computes `min(x, y, z)`. + #[inline] + pub fn min_element(self) -> f32 { + self.0.min(self.1.min(self.2)) + } + + /// Returns the horizontal maximum of `self`'s elements. + /// + /// In other words, this computes `max(x, y, z)`. + #[inline] + pub fn max_element(self) -> f32 { + self.0.max(self.1.max(self.2)) + } + + /// Creates a `Vec3` from the first three values in `slice`. + /// + /// # Panics + /// + /// Panics if `slice` is less than three elements long. + #[inline] + pub fn from_slice_unaligned(slice: &[f32]) -> Self { + Self::new(slice[0], slice[1], slice[2]) + } + + /// Writes the elements of `self` to the first three elements in `slice`. + /// + /// # Panics + /// + /// Panics if `slice` is less than three elements long. + #[inline] + pub fn write_to_slice_unaligned(self, slice: &mut [f32]) { + slice[0] = self.0; + slice[1] = self.1; + slice[2] = self.2; + } + + /// Per element multiplication/addition of the three inputs: b + (self * a) + #[inline] + #[allow(dead_code)] + pub(crate) fn mul_add(self, a: Self, b: Self) -> Self { + Self( + (self.0 * a.0) + b.0, + (self.1 * a.1) + b.1, + (self.2 * a.2) + b.2, + ) + } + + /// Returns a `Vec3` containing the absolute value of each element of `self`. + #[inline] + pub fn abs(self) -> Self { + Self(self.0.abs(), self.1.abs(), self.2.abs()) + } + + /// Returns a `Vec3` containing the nearest integer to a number for each element of `self`. + /// Round half-way cases away from 0.0. + #[inline] + pub fn round(self) -> Self { + Self(self.0.round(), self.1.round(), self.2.round()) + } + + /// Returns a `Vec3` containing the largest integer less than or equal to a number for each + /// element of `self`. + #[inline] + pub fn floor(self) -> Self { + Self(self.0.floor(), self.1.floor(), self.2.floor()) + } + + /// Returns a `Vec3` containing this vector raised to the power of `power` + #[inline] + pub fn pow(self, power: f32) -> Self { + Self(self.0.pow(power), self.1.pow(power), self.2.pow(power)) + } + + /// Returns a `Vec3` containing this vector exp'd + #[inline] + pub fn exp(self) -> Self { + Self(self.0.exp(), self.1.exp(), self.2.exp()) + } + + /// Returns a `Vec3` containing the smallest integer greater than or equal to a number for each + /// element of `self`. + #[inline] + pub fn ceil(self) -> Self { + Self(self.0.ceil(), self.1.ceil(), self.2.ceil()) + } + + #[deprecated(since = "0.9.5", note = "please use `Vec3::recip` instead")] + #[inline(always)] + pub fn reciprocal(self) -> Self { + self.recip() + } + + /// Returns a `Vec3` containing the reciprocal `1.0/n` of each element of `self`. + #[inline] + pub fn recip(self) -> Self { + Self(self.0.recip(), self.1.recip(), self.2.recip()) + } + + /// Performs a linear interpolation between `self` and `other` based on + /// the value `s`. + /// + /// When `s` is `0.0`, the result will be equal to `self`. When `s` + /// is `1.0`, the result will be equal to `other`. + #[inline] + pub fn lerp(self, other: Self, s: f32) -> Self { + self + ((other - self) * s) + } +} + +impl Div for Vec3 { + type Output = Self; + #[inline] + fn div(self, other: Self) -> Self { + Self(self.0 / other.0, self.1 / other.1, self.2 / other.2) + } +} + +impl DivAssign for Vec3 { + #[inline] + fn div_assign(&mut self, other: Self) { + self.0 /= other.0; + self.1 /= other.1; + self.2 /= other.2; + } +} + +impl Div for Vec3 { + type Output = Self; + #[inline] + fn div(self, other: f32) -> Self { + Self(self.0 / other, self.1 / other, self.2 / other) + } +} + +impl DivAssign for Vec3 { + #[inline] + fn div_assign(&mut self, other: f32) { + self.0 /= other; + self.1 /= other; + self.2 /= other; + } +} + +impl Div for f32 { + type Output = Vec3; + #[inline] + fn div(self, other: Vec3) -> Vec3 { + Vec3(self / other.0, self / other.1, self / other.2) + } +} + +impl Mul for Vec3 { + type Output = Self; + #[inline] + fn mul(self, other: Self) -> Self { + Self(self.0 * other.0, self.1 * other.1, self.2 * other.2) + } +} + +impl MulAssign for Vec3 { + #[inline] + fn mul_assign(&mut self, other: Self) { + self.0 *= other.0; + self.1 *= other.1; + self.2 *= other.2; + } +} + +impl Mul for Vec3 { + type Output = Self; + #[inline] + fn mul(self, other: f32) -> Self { + Self(self.0 * other, self.1 * other, self.2 * other) + } +} + +impl MulAssign for Vec3 { + #[inline] + fn mul_assign(&mut self, other: f32) { + self.0 *= other; + self.1 *= other; + self.2 *= other; + } +} + +impl Mul for f32 { + type Output = Vec3; + #[inline] + fn mul(self, other: Vec3) -> Vec3 { + Vec3(self * other.0, self * other.1, self * other.2) + } +} + +impl Add for Vec3 { + type Output = Self; + #[inline] + fn add(self, other: Self) -> Self { + Self(self.0 + other.0, self.1 + other.1, self.2 + other.2) + } +} + +impl AddAssign for Vec3 { + #[inline] + fn add_assign(&mut self, other: Self) { + self.0 += other.0; + self.1 += other.1; + self.2 += other.2; + } +} + +impl Sub for Vec3 { + type Output = Self; + #[inline] + fn sub(self, other: Self) -> Self { + Self(self.0 - other.0, self.1 - other.1, self.2 - other.2) + } +} + +impl SubAssign for Vec3 { + #[inline] + fn sub_assign(&mut self, other: Self) { + self.0 -= other.0; + self.1 -= other.1; + self.2 -= other.2; + } +} + +impl Neg for Vec3 { + type Output = Self; + #[inline] + fn neg(self) -> Self { + Self(-self.0, -self.1, -self.2) + } +} + +impl From<(f32, f32, f32)> for Vec3 { + #[inline] + fn from(t: (f32, f32, f32)) -> Self { + Self::new(t.0, t.1, t.2) + } +} + +impl From for (f32, f32, f32) { + #[inline] + fn from(v: Vec3) -> Self { + (v.0, v.1, v.2) + } +} + +impl From<[f32; 3]> for Vec3 { + #[inline] + fn from(a: [f32; 3]) -> Self { + Self::new(a[0], a[1], a[2]) + } +} + +impl From for [f32; 3] { + #[inline] + fn from(v: Vec3) -> Self { + [v.0, v.1, v.2] + } +} + +#[test] +fn test_vec3_private() { + assert_eq!( + vec3(1.0, 1.0, 1.0).mul_add(vec3(0.5, 2.0, -4.0), vec3(-1.0, -1.0, -1.0)), + vec3(-0.5, 1.0, -5.0) + ); + assert_eq!(vec3(1.0, 2.0, 3.0).dup_x(), vec3(1.0, 1.0, 1.0)); + assert_eq!(vec3(1.0, 2.0, 3.0).dup_y(), vec3(2.0, 2.0, 2.0)); + assert_eq!(vec3(1.0, 2.0, 3.0).dup_z(), vec3(3.0, 3.0, 3.0)); +} diff --git a/spirv-std/src/math/vec4.rs b/spirv-std/src/math/vec4.rs new file mode 100644 index 0000000000..e25d214e0e --- /dev/null +++ b/spirv-std/src/math/vec4.rs @@ -0,0 +1,612 @@ +use crate::math::MathExt; +use core::{f32, ops::*}; + +/// A 4-dimensional vector. +/// +/// A 4-dimensional vector. +/// +/// This type is 16 byte aligned unless the `scalar-math` feature is enabed. +#[derive(Clone, Copy, PartialEq, PartialOrd, Debug, Default)] +// if compiling with simd enabled assume alignment needs to match the simd type +#[repr(simd)] +pub struct Vec4(pub f32, pub f32, pub f32, pub f32); + +/// Creates a `Vec4`. +#[inline] +pub fn vec4(x: f32, y: f32, z: f32, w: f32) -> Vec4 { + Vec4::new(x, y, z, w) +} + +impl Vec4 { + /// Creates a new `Vec4`. + #[inline] + pub const fn new(x: f32, y: f32, z: f32, w: f32) -> Self { + Self(x, y, z, w) + } + + /// Creates a `Vec4` with all elements set to `0.0`. + #[inline] + pub const fn zero() -> Self { + Vec4::splat(0.0) + } + + /// Creates a `Vec4` with all elements set to `1.0`. + #[inline] + pub const fn one() -> Self { + Vec4::splat(1.0) + } + + /// Creates a `Vec4` with values `[x: 1.0, y: 0.0, z: 0.0, w: 0.0]`. + #[inline] + pub const fn unit_x() -> Self { + Vec4::new(1.0, 0.0, 0.0, 0.0) + } + + /// Creates a `Vec4` with values `[x: 0.0, y: 1.0, z: 0.0, w: 0.0]`. + #[inline] + pub const fn unit_y() -> Self { + Vec4::new(0.0, 1.0, 0.0, 0.0) + } + + /// Creates a `Vec4` with values `[x: 0.0, y: 0.0, z: 1.0, w: 0.0]`. + #[inline] + pub const fn unit_z() -> Self { + Vec4::new(0.0, 0.0, 1.0, 0.0) + } + + /// Creates a `Vec4` with values `[x: 0.0, y: 0.0, z: 0.0, w: 1.0]`. + #[inline] + pub const fn unit_w() -> Self { + Vec4::new(0.0, 0.0, 0.0, 1.0) + } + + /// Creates a `Vec4` with all elements set to `v`. + #[inline] + pub const fn splat(v: f32) -> Self { + Self(v, v, v, v) + } + + /// Returns element `x`. + #[inline] + pub fn x(self) -> f32 { + self.0 + } + + /// Returns element `y`. + #[inline] + pub fn y(self) -> f32 { + self.1 + } + + /// Returns element `z`. + #[inline] + pub fn z(self) -> f32 { + self.2 + } + + /// Returns element `w`. + #[inline] + pub fn w(self) -> f32 { + self.3 + } + + /// Returns a mutable reference to element `x`. + #[inline] + pub fn x_mut(&mut self) -> &mut f32 { + &mut self.0 + } + + /// Returns a mutable reference to element `y`. + #[inline] + pub fn y_mut(&mut self) -> &mut f32 { + &mut self.1 + } + + /// Returns a mutable reference to element `z`. + #[inline] + pub fn z_mut(&mut self) -> &mut f32 { + &mut self.2 + } + + /// Returns a mutable reference to element `w`. + #[inline] + pub fn w_mut(&mut self) -> &mut f32 { + &mut self.3 + } + + /// Sets element `x`. + #[inline] + pub fn set_x(&mut self, x: f32) { + self.0 = x; + } + + /// Sets element `y`. + #[inline] + pub fn set_y(&mut self, y: f32) { + self.1 = y; + } + + /// Sets element `z`. + #[inline] + pub fn set_z(&mut self, z: f32) { + self.2 = z; + } + + /// Sets element `w`. + #[inline] + pub fn set_w(&mut self, w: f32) { + self.3 = w; + } + + /// Returns a `Vec4` with all elements set to the value of element `x`. + #[inline] + pub fn dup_x(self) -> Self { + Self(self.0, self.0, self.0, self.0) + } + + /// Returns a `Vec4` with all elements set to the value of element `y`. + #[inline] + pub fn dup_y(self) -> Self { + Self(self.1, self.1, self.1, self.1) + } + + /// Returns a `Vec4` with all elements set to the value of element `z`. + #[inline] + pub fn dup_z(self) -> Self { + Self(self.2, self.2, self.2, self.2) + } + + /// Returns a `Vec4` with all elements set to the value of element `w`. + #[inline] + pub fn dup_w(self) -> Self { + Self(self.3, self.3, self.3, self.3) + } + + /// Computes the 4D dot product of `self` and `other`. + #[inline] + pub fn dot(self, other: Self) -> f32 { + (self.0 * other.0) + (self.1 * other.1) + (self.2 * other.2) + (self.3 * other.3) + } + + /// Computes the 4D length of `self`. + #[inline] + pub fn length(self) -> f32 { + self.dot(self).sqrt() + } + + /// Computes the squared 4D length of `self`. + /// + /// This is generally faster than `Vec4::length()` as it avoids a square + /// root operation. + #[inline] + pub fn length_squared(self) -> f32 { + self.dot(self) + } + + #[deprecated(since = "0.9.5", note = "please use `Vec4::length_recip` instead")] + #[inline(always)] + pub fn length_reciprocal(self) -> f32 { + self.length_recip() + } + + /// Computes `1.0 / Vec4::length()`. + /// + /// For valid results, `self` must _not_ be of length zero. + #[inline] + pub fn length_recip(self) -> f32 { + self.length().recip() + } + + /// Returns `self` normalized to length 1.0. + /// + /// For valid results, `self` must _not_ be of length zero. + #[inline] + pub fn normalize(self) -> Self { + self * self.length_recip() + } + + /// Returns the vertical minimum of `self` and `other`. + /// + /// In other words, this computes + /// `[x: min(x1, x2), y: min(y1, y2), z: min(z1, z2), w: min(w1, w2)]`, + /// taking the minimum of each element individually. + #[inline] + pub fn min(self, other: Self) -> Self { + Self( + self.0.min(other.0), + self.1.min(other.1), + self.2.min(other.2), + self.3.min(other.3), + ) + } + + /// Returns the vertical maximum of `self` and `other`. + /// + /// In other words, this computes + /// `[x: max(x1, x2), y: max(y1, y2), z: max(z1, z2), w: max(w1, w2)]`, + /// taking the maximum of each element individually. + #[inline] + pub fn max(self, other: Self) -> Self { + Self( + self.0.max(other.0), + self.1.max(other.1), + self.2.max(other.2), + self.3.max(other.3), + ) + } + + /// Returns the horizontal minimum of `self`'s elements. + /// + /// In other words, this computes `min(x, y, z, w)`. + #[inline] + pub fn min_element(self) -> f32 { + self.0.min(self.1.min(self.2.min(self.3))) + } + + /// Returns the horizontal maximum of `self`'s elements. + /// + /// In other words, this computes `max(x, y, z, w)`. + #[inline] + pub fn max_element(self) -> f32 { + self.0.max(self.1.max(self.2.min(self.3))) + } + + /// Creates a `Vec4` from the first four values in `slice`. + /// + /// # Panics + /// + /// Panics if `slice` is less than four elements long. + #[inline] + pub fn from_slice_unaligned(slice: &[f32]) -> Self { + Self(slice[0], slice[1], slice[2], slice[3]) + } + + /// Writes the elements of `self` to the first four elements in `slice`. + /// + /// # Panics + /// + /// Panics if `slice` is less than four elements long. + #[inline] + pub fn write_to_slice_unaligned(self, slice: &mut [f32]) { + slice[0] = self.0; + slice[1] = self.1; + slice[2] = self.2; + slice[3] = self.3; + } + + /// Per element multiplication/addition of the three inputs: b + (self * a) + #[inline] + pub fn mul_add(self, a: Self, b: Self) -> Self { + Self( + (self.0 * a.0) + b.0, + (self.1 * a.1) + b.1, + (self.2 * a.2) + b.2, + (self.3 * a.3) + b.3, + ) + } + + /// Returns a `Vec4` containing the absolute value of each element of `self`. + #[inline] + pub fn abs(self) -> Self { + Self(self.0.abs(), self.1.abs(), self.2.abs(), self.3.abs()) + } + + /// Returns a `Vec4` containing the nearest integer to a number for each element of `self`. + /// Round half-way cases away from 0.0. + #[inline] + pub fn round(self) -> Self { + Self( + self.0.round(), + self.1.round(), + self.2.round(), + self.3.round(), + ) + } + + /// Returns a `Vec4` containing the largest integer less than or equal to a number for each + /// element of `self`. + #[inline] + pub fn floor(self) -> Self { + Self( + self.0.floor(), + self.1.floor(), + self.2.floor(), + self.3.floor(), + ) + } + + /// Returns a `Vec4` containing this vector raised to the power of `power` + #[inline] + pub fn pow(self, power: f32) -> Self { + Self( + self.0.pow(power), + self.1.pow(power), + self.2.pow(power), + self.3.pow(power), + ) + } + + /// Returns a `Vec4` containing this vector exp'd + #[inline] + pub fn exp(self) -> Self { + Self(self.0.exp(), self.1.exp(), self.2.exp(), self.3.exp()) + } + + /// Returns a `Vec4` containing the smallest integer greater than or equal to a number for each + /// element of `self`. + #[inline] + pub fn ceil(self) -> Self { + Self(self.0.ceil(), self.1.ceil(), self.2.ceil(), self.3.ceil()) + } + + #[deprecated(since = "0.9.5", note = "please use `Vec4::recip` instead")] + #[inline(always)] + pub fn reciprocal(self) -> Self { + self.recip() + } + + /// Returns a `Vec4` containing the reciprocal `1.0/n` of each element of `self`. + #[inline] + pub fn recip(self) -> Self { + // TODO: Optimize + Self::one() / self + } + + /// Performs a linear interpolation between `self` and `other` based on + /// the value `s`. + /// + /// When `s` is `0.0`, the result will be equal to `self`. When `s` + /// is `1.0`, the result will be equal to `other`. + #[inline] + pub fn lerp(self, other: Self, s: f32) -> Self { + self + ((other - self) * s) + } +} + +impl Div for Vec4 { + type Output = Self; + #[inline] + fn div(self, other: Self) -> Self { + { + Self( + self.0 / other.0, + self.1 / other.1, + self.2 / other.2, + self.3 / other.3, + ) + } + } +} + +impl DivAssign for Vec4 { + #[inline] + fn div_assign(&mut self, other: Self) { + { + self.0 /= other.0; + self.1 /= other.1; + self.2 /= other.2; + self.3 /= other.3; + } + } +} + +impl Div for Vec4 { + type Output = Self; + #[inline] + fn div(self, other: f32) -> Self { + { + Self( + self.0 / other, + self.1 / other, + self.2 / other, + self.3 / other, + ) + } + } +} + +impl DivAssign for Vec4 { + #[inline] + fn div_assign(&mut self, other: f32) { + { + self.0 /= other; + self.1 /= other; + self.2 /= other; + self.3 /= other; + } + } +} + +impl Div for f32 { + type Output = Vec4; + #[inline] + fn div(self, other: Vec4) -> Vec4 { + { + Vec4( + self / other.0, + self / other.1, + self / other.2, + self / other.3, + ) + } + } +} + +impl Mul for Vec4 { + type Output = Self; + #[inline] + fn mul(self, other: Self) -> Self { + { + Self( + self.0 * other.0, + self.1 * other.1, + self.2 * other.2, + self.3 * other.3, + ) + } + } +} + +impl MulAssign for Vec4 { + #[inline] + fn mul_assign(&mut self, other: Self) { + { + self.0 *= other.0; + self.1 *= other.1; + self.2 *= other.2; + self.3 *= other.3; + } + } +} + +impl Mul for Vec4 { + type Output = Self; + #[inline] + fn mul(self, other: f32) -> Self { + { + Self( + self.0 * other, + self.1 * other, + self.2 * other, + self.3 * other, + ) + } + } +} + +impl MulAssign for Vec4 { + #[inline] + fn mul_assign(&mut self, other: f32) { + { + self.0 *= other; + self.1 *= other; + self.2 *= other; + self.3 *= other; + } + } +} + +impl Mul for f32 { + type Output = Vec4; + #[inline] + fn mul(self, other: Vec4) -> Vec4 { + { + Vec4( + self * other.0, + self * other.1, + self * other.2, + self * other.3, + ) + } + } +} + +impl Add for Vec4 { + type Output = Self; + #[inline] + fn add(self, other: Self) -> Self { + { + Self( + self.0 + other.0, + self.1 + other.1, + self.2 + other.2, + self.3 + other.3, + ) + } + } +} + +impl AddAssign for Vec4 { + #[inline] + fn add_assign(&mut self, other: Self) { + { + self.0 += other.0; + self.1 += other.1; + self.2 += other.2; + self.3 += other.3; + } + } +} + +impl Sub for Vec4 { + type Output = Self; + #[inline] + fn sub(self, other: Self) -> Self { + { + Self( + self.0 - other.0, + self.1 - other.1, + self.2 - other.2, + self.3 - other.3, + ) + } + } +} + +impl SubAssign for Vec4 { + #[inline] + fn sub_assign(&mut self, other: Self) { + { + self.0 -= other.0; + self.1 -= other.1; + self.2 -= other.2; + self.3 -= other.3; + } + } +} + +impl Neg for Vec4 { + type Output = Self; + #[inline] + fn neg(self) -> Self { + { + Self(-self.0, -self.1, -self.2, -self.3) + } + } +} + +impl From<(f32, f32, f32, f32)> for Vec4 { + #[inline] + fn from(t: (f32, f32, f32, f32)) -> Self { + Self::new(t.0, t.1, t.2, t.3) + } +} + +impl From for (f32, f32, f32, f32) { + #[inline] + fn from(v: Vec4) -> Self { + { + (v.0, v.1, v.2, v.3) + } + } +} + +impl From<[f32; 4]> for Vec4 { + #[inline] + fn from(a: [f32; 4]) -> Self { + { + Self(a[0], a[1], a[2], a[3]) + } + } +} + +impl From for [f32; 4] { + #[inline] + fn from(v: Vec4) -> Self { + { + [v.0, v.1, v.2, v.3] + } + } +} + +#[test] +fn test_vec4_private() { + assert_eq!( + vec4(1.0, 1.0, 1.0, 1.0).mul_add(vec4(0.5, 2.0, -4.0, 0.0), vec4(-1.0, -1.0, -1.0, -1.0)), + vec4(-0.5, 1.0, -5.0, -1.0) + ); + assert_eq!(vec4(1.0, 2.0, 3.0, 4.0).dup_x(), vec4(1.0, 1.0, 1.0, 1.0)); + assert_eq!(vec4(1.0, 2.0, 3.0, 4.0).dup_y(), vec4(2.0, 2.0, 2.0, 2.0)); + assert_eq!(vec4(1.0, 2.0, 3.0, 4.0).dup_z(), vec4(3.0, 3.0, 3.0, 3.0)); + assert_eq!(vec4(1.0, 2.0, 4.0, 4.0).dup_w(), vec4(4.0, 4.0, 4.0, 4.0)); +}