mirror of
https://github.com/NixOS/nixpkgs.git
synced 2024-11-28 09:53:10 +00:00
c4fd7cf16d
This patch is about removing `wireguardPeerConfig`, `dhcpServerStaticLeaseConfig` - a.k.a. the AbstractSingletonProxyFactoryBean of nixpkgs - and friends. As a former colleague said > worst abstraction ever I second that. I've written enough networkd config for NixOS systems so far to have a strong dislike. In fact, these don't even make sense: `netdevs.wireguardPeers._.wireguardPeerConfig` will be rendered into the key `[WireGuardPeer]` and every key from `wireguardPeerConfig` is in there. Since it's INI, there's no place where sections on the same level as wireguardPeerConfig fit into. Hence, get rid of it all. For the transition, using the old way is still allowed, but gives a warning. I think we could drop this after one release. The tests of rosenpass and systemd-networkd-dhcpserver-static-leases were broken on the rev before, hence they were updated, but are still not building.
190 lines
5.7 KiB
Nix
190 lines
5.7 KiB
Nix
# This test verifies that we can ping an IPv4-only server from an IPv6-only
|
|
# client via a NAT64 router using CLAT on the client. The hosts and networks
|
|
# are configured as follows:
|
|
#
|
|
# +------
|
|
# Client | clat Address: 192.0.0.1/32 (configured via clatd)
|
|
# | Route: default
|
|
# |
|
|
# | eth1 Address: 2001:db8::2/64
|
|
# | | Route: default via 2001:db8::1
|
|
# +--|---
|
|
# | VLAN 3
|
|
# +--|---
|
|
# | eth2 Address: 2001:db8::1/64
|
|
# Router |
|
|
# | nat64 Address: 64:ff9b::1/128
|
|
# | Route: 64:ff9b::/96
|
|
# | Address: 192.0.2.0/32
|
|
# | Route: 192.0.2.0/24
|
|
# |
|
|
# | eth1 Address: 100.64.0.1/24
|
|
# +--|---
|
|
# | VLAN 2
|
|
# +--|---
|
|
# Server | eth1 Address: 100.64.0.2/24
|
|
# | Route: 192.0.2.0/24 via 100.64.0.1
|
|
# +------
|
|
|
|
import ./make-test-python.nix ({ pkgs, lib, ... }:
|
|
|
|
{
|
|
name = "clatd";
|
|
meta = with pkgs.lib.maintainers; {
|
|
maintainers = [ hax404 ];
|
|
};
|
|
|
|
nodes = {
|
|
# The server is configured with static IPv4 addresses. RFC 6052 Section 3.1
|
|
# disallows the mapping of non-global IPv4 addresses like RFC 1918 into the
|
|
# Well-Known Prefix 64:ff9b::/96. TAYGA also does not allow the mapping of
|
|
# documentation space (RFC 5737). To circumvent this, 100.64.0.2/24 from
|
|
# RFC 6589 (Carrier Grade NAT) is used here.
|
|
# To reach the IPv4 address pool of the NAT64 gateway, there is a static
|
|
# route configured. In normal cases, where the router would also source NAT
|
|
# the pool addresses to one IPv4 addresses, this would not be needed.
|
|
server = {
|
|
virtualisation.vlans = [
|
|
2 # towards router
|
|
];
|
|
networking = {
|
|
useDHCP = false;
|
|
interfaces.eth1 = lib.mkForce {};
|
|
};
|
|
systemd.network = {
|
|
enable = true;
|
|
networks."vlan1" = {
|
|
matchConfig.Name = "eth1";
|
|
address = [
|
|
"100.64.0.2/24"
|
|
];
|
|
routes = [
|
|
{ Destination = "192.0.2.0/24"; Gateway = "100.64.0.1"; }
|
|
];
|
|
};
|
|
};
|
|
};
|
|
|
|
# The router is configured with static IPv4 addresses towards the server
|
|
# and IPv6 addresses towards the client. For NAT64, the Well-Known prefix
|
|
# 64:ff9b::/96 is used. NAT64 is done with TAYGA which provides the
|
|
# tun-interface nat64 and does the translation over it. The IPv6 packets
|
|
# are sent to this interfaces and received as IPv4 packets and vice versa.
|
|
# As TAYGA only translates IPv6 addresses to dedicated IPv4 addresses, it
|
|
# needs a pool of IPv4 addresses which must be at least as big as the
|
|
# expected amount of clients. In this test, the packets from the pool are
|
|
# directly routed towards the client. In normal cases, there would be a
|
|
# second source NAT44 to map all clients behind one IPv4 address.
|
|
router = {
|
|
boot.kernel.sysctl = {
|
|
"net.ipv4.ip_forward" = 1;
|
|
"net.ipv6.conf.all.forwarding" = 1;
|
|
};
|
|
|
|
virtualisation.vlans = [
|
|
2 # towards server
|
|
3 # towards client
|
|
];
|
|
|
|
networking = {
|
|
useDHCP = false;
|
|
useNetworkd = true;
|
|
firewall.enable = false;
|
|
interfaces.eth1 = lib.mkForce {
|
|
ipv4 = {
|
|
addresses = [ { address = "100.64.0.1"; prefixLength = 24; } ];
|
|
};
|
|
};
|
|
interfaces.eth2 = lib.mkForce {
|
|
ipv6 = {
|
|
addresses = [ { address = "2001:db8::1"; prefixLength = 64; } ];
|
|
};
|
|
};
|
|
};
|
|
|
|
services.tayga = {
|
|
enable = true;
|
|
ipv4 = {
|
|
address = "192.0.2.0";
|
|
router = {
|
|
address = "192.0.2.1";
|
|
};
|
|
pool = {
|
|
address = "192.0.2.0";
|
|
prefixLength = 24;
|
|
};
|
|
};
|
|
ipv6 = {
|
|
address = "2001:db8::1";
|
|
router = {
|
|
address = "64:ff9b::1";
|
|
};
|
|
pool = {
|
|
address = "64:ff9b::";
|
|
prefixLength = 96;
|
|
};
|
|
};
|
|
};
|
|
};
|
|
|
|
# The client is configured with static IPv6 addresses. It has also a static
|
|
# default route towards the router. To reach the IPv4-only server, the
|
|
# client starts the clat daemon which starts and configures the local
|
|
# IPv4 -> IPv6 translation via Tayga.
|
|
client = {
|
|
virtualisation.vlans = [
|
|
3 # towards router
|
|
];
|
|
|
|
networking = {
|
|
useDHCP = false;
|
|
interfaces.eth1 = lib.mkForce {};
|
|
};
|
|
|
|
systemd.network = {
|
|
enable = true;
|
|
networks."vlan1" = {
|
|
matchConfig.Name = "eth1";
|
|
address = [
|
|
"2001:db8::2/64"
|
|
];
|
|
routes = [
|
|
{ Destination = "::/0"; Gateway = "2001:db8::1"; }
|
|
];
|
|
};
|
|
};
|
|
|
|
services.clatd = {
|
|
enable = true;
|
|
settings.plat-prefix = "64:ff9b::/96";
|
|
};
|
|
|
|
environment.systemPackages = [ pkgs.mtr ];
|
|
};
|
|
};
|
|
|
|
testScript = ''
|
|
start_all()
|
|
|
|
# wait for all machines to start up
|
|
for machine in client, router, server:
|
|
machine.wait_for_unit("network-online.target")
|
|
|
|
with subtest("Wait for tayga and clatd"):
|
|
router.wait_for_unit("tayga.service")
|
|
client.wait_for_unit("clatd.service")
|
|
# clatd checks if this system has IPv4 connectivity for 10 seconds
|
|
client.wait_until_succeeds(
|
|
'journalctl -u clatd -e | grep -q "Starting up TAYGA, using config file"'
|
|
)
|
|
|
|
with subtest("Test ICMP"):
|
|
client.wait_until_succeeds("ping -c 3 100.64.0.2 >&2")
|
|
|
|
with subtest("Test ICMP and show a traceroute"):
|
|
client.wait_until_succeeds("mtr --show-ips --report-wide 100.64.0.2 >&2")
|
|
|
|
client.log(client.execute("systemd-analyze security clatd.service")[1])
|
|
'';
|
|
})
|