nixpkgs/pkgs/stdenv/booter.nix
Silvan Mosberger 4f0dadbf38 treewide: format all inactive Nix files
After final improvements to the official formatter implementation,
this commit now performs the first treewide reformat of Nix files using it.
This is part of the implementation of RFC 166.

Only "inactive" files are reformatted, meaning only files that
aren't being touched by any PR with activity in the past 2 months.
This is to avoid conflicts for PRs that might soon be merged.
Later we can do a full treewide reformat to get the rest,
which should not cause as many conflicts.

A CI check has already been running for some time to ensure that new and
already-formatted files are formatted, so the files being reformatted here
should also stay formatted.

This commit was automatically created and can be verified using

    nix-build a08b3a4d19.tar.gz \
      --argstr baseRev b32a094368
    result/bin/apply-formatting $NIXPKGS_PATH
2024-12-10 20:26:33 +01:00

167 lines
6.4 KiB
Nix

# This file defines a single function for booting a package set from a list of
# stages. The exact mechanics of that function are defined below; here I
# (@Ericson2314) wish to describe the purpose of the abstraction.
#
# The first goal is consistency across stdenvs. Regardless of what this function
# does, by making every stdenv use it for bootstrapping we ensure that they all
# work in a similar way. [Before this abstraction, each stdenv was its own
# special snowflake due to different authors writing in different times.]
#
# The second goal is consistency across each stdenv's stage functions. By
# writing each stage in terms of the previous stage, commonalities between them
# are more easily observable. [Before, there usually was a big attribute set
# with each stage, and stages would access the previous stage by name.]
#
# The third goal is composition. Because each stage is written in terms of the
# previous, the list can be reordered or, more practically, extended with new
# stages. The latter is used for cross compiling and custom
# stdenvs. Additionally, certain options should by default apply only to the
# last stage, whatever it may be. By delaying the creation of stage package sets
# until the final fold, we prevent these options from inhibiting composition.
#
# The fourth and final goal is debugging. Normal packages should only source
# their dependencies from the current stage. But for the sake of debugging, it
# is nice that all packages still remain accessible. We make sure previous
# stages are kept around with a `stdenv.__bootPackges` attribute referring the
# previous stage. It is idiomatic that attributes prefixed with `__` come with
# special restrictions and should not be used under normal circumstances.
{ lib, allPackages }:
# Type:
# [ pkgset -> (args to stage/default.nix) or ({ __raw = true; } // pkgs) ]
# -> pkgset
#
# In english: This takes a list of function from the previous stage pkgset and
# returns the final pkgset. Each of those functions returns, if `__raw` is
# undefined or false, args for this stage's pkgset (the most complex and
# important arg is the stdenv), or, if `__raw = true`, simply this stage's
# pkgset itself.
#
# The list takes stages in order, so the final stage is last in the list. In
# other words, this does a foldr not foldl.
stageFuns:
let
/*
"dfold" a ternary function `op' between successive elements of `list' as if
it was a doubly-linked list with `lnul' and `rnul` base cases at either
end. In precise terms, `dfold op lnul rnul [x_0 x_1 x_2 ... x_n-1]` is the
same as
let
f_-1 = lnul f_0;
f_0 = op f_-1 x_0 f_1;
f_1 = op f_0 x_1 f_2;
f_2 = op f_1 x_2 f_3;
...
f_n = op f_n-1 x_n f_n+1;
f_n+1 = rnul f_n;
in
f_0
*/
dfold =
op: lnul: rnul: list:
let
len = builtins.length list;
go =
pred: n:
if n == len then
rnul pred
else
let
# Note the cycle -- call-by-need ensures finite fold.
cur = op pred (builtins.elemAt list n) succ;
succ = go cur (n + 1);
in
cur;
lapp = lnul cur;
cur = go lapp 0;
in
cur;
# Take the list and disallow custom overrides in all but the final stage,
# and allow it in the final flag. Only defaults this boolean field if it
# isn't already set.
withAllowCustomOverrides = lib.lists.imap1 (
index: stageFun: prevStage:
# So true by default for only the first element because one
# 1-indexing. Since we reverse the list, this means this is true
# for the final stage.
{ allowCustomOverrides = index == 1; } // (stageFun prevStage)
) (lib.lists.reverseList stageFuns);
# Adds the stdenv to the arguments, and sticks in it the previous stage for
# debugging purposes.
folder =
nextStage: stageFun: prevStage:
let
args = stageFun prevStage;
args' = args // {
stdenv = args.stdenv // {
# For debugging
__bootPackages = prevStage;
__hatPackages = nextStage;
};
};
thisStage =
if args.__raw or false then
args'
else
allPackages (
(builtins.removeAttrs args' [ "selfBuild" ])
// {
adjacentPackages =
if args.selfBuild or true then
null
else
rec {
pkgsBuildBuild = prevStage.buildPackages;
pkgsBuildHost = prevStage;
pkgsBuildTarget =
if args.stdenv.targetPlatform == args.stdenv.hostPlatform then
pkgsBuildHost
else
assert args.stdenv.hostPlatform == args.stdenv.buildPlatform;
thisStage;
pkgsHostHost =
if args.stdenv.hostPlatform == args.stdenv.targetPlatform then
thisStage
else
assert args.stdenv.buildPlatform == args.stdenv.hostPlatform;
pkgsBuildHost;
pkgsTargetTarget = nextStage;
};
}
);
in
thisStage;
# This is a hack for resolving cross-compiled compilers' run-time
# deps. (That is, compilers that are themselves cross-compiled, as
# opposed to used to cross-compile packages.)
postStage = buildPackages: {
__raw = true;
stdenv.cc =
if buildPackages.stdenv.hasCC then
if
buildPackages.stdenv.cc.isClang or false
# buildPackages.clang checks targetPackages.stdenv.cc (i. e. this
# attribute) to get a sense of the its set's default compiler and
# chooses between libc++ and libstdc++ based on that. If we hit this
# code here, we'll cause an infinite recursion. Since a set with
# clang as its default compiler always means libc++, we can infer this
# decision statically.
then
buildPackages.pkgsBuildTarget.llvmPackages.libcxxClang
else
buildPackages.gcc
else
# This will blow up if anything uses it, but that's OK. The `if
# buildPackages.stdenv.cc.isClang then ... else ...` would blow up
# everything, so we make sure to avoid that.
buildPackages.stdenv.cc;
};
in
dfold folder postStage (_: { }) withAllowCustomOverrides