nixpkgs/pkgs/development/python-modules/torch-geometric/default.nix

187 lines
3.3 KiB
Nix

{
lib,
stdenv,
buildPythonPackage,
fetchFromGitHub,
# build-system
flit-core,
# dependencies
aiohttp,
fsspec,
jinja2,
numpy,
psutil,
pyparsing,
requests,
torch,
tqdm,
# optional-dependencies
matplotlib,
networkx,
pandas,
protobuf,
wandb,
ipython,
matplotlib-inline,
pre-commit,
torch-geometric,
ase,
# captum,
graphviz,
h5py,
numba,
opt-einsum,
pgmpy,
pynndescent,
# pytorch-memlab,
rdflib,
rdkit,
scikit-image,
scikit-learn,
scipy,
statsmodels,
sympy,
tabulate,
torchmetrics,
trimesh,
pytorch-lightning,
yacs,
huggingface-hub,
onnx,
onnxruntime,
pytest,
pytest-cov-stub,
# tests
pytestCheckHook,
}:
buildPythonPackage rec {
pname = "torch-geometric";
version = "2.6.1";
pyproject = true;
src = fetchFromGitHub {
owner = "pyg-team";
repo = "pytorch_geometric";
rev = "refs/tags/${version}";
hash = "sha256-Zw9YqPQw2N0ZKn5i5Kl4Cjk9JDTmvZmyO/VvIVr6fTU=";
};
build-system = [
flit-core
];
dependencies = [
aiohttp
fsspec
jinja2
numpy
psutil
pyparsing
requests
torch
tqdm
];
optional-dependencies = {
benchmark = [
matplotlib
networkx
pandas
protobuf
wandb
];
dev = [
ipython
matplotlib-inline
pre-commit
torch-geometric
];
full = [
ase
# captum
graphviz
h5py
matplotlib
networkx
numba
opt-einsum
pandas
pgmpy
pynndescent
# pytorch-memlab
rdflib
rdkit
scikit-image
scikit-learn
scipy
statsmodels
sympy
tabulate
torch-geometric
torchmetrics
trimesh
];
graphgym = [
protobuf
pytorch-lightning
yacs
];
modelhub = [
huggingface-hub
];
test = [
onnx
onnxruntime
pytest
pytest-cov-stub
];
};
pythonImportsCheck = [
"torch_geometric"
];
nativeCheckInputs = [
pytestCheckHook
];
preCheck = ''
export HOME=$(mktemp -d)
'';
disabledTests =
[
# TODO: try to re-enable when triton will have been updated to 3.0
# torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised:
# LoweringException: ImportError: cannot import name 'triton_key' from 'triton.compiler.compiler'
"test_compile_hetero_conv_graph_breaks"
"test_compile_multi_aggr_sage_conv"
# RuntimeError: addmm: computation on CPU is not implemented for SparseCsr + SparseCsr @ SparseCsr without MKL.
# PyTorch built with MKL has better support for addmm with sparse CPU tensors.
"test_asap"
"test_graph_unet"
# AttributeError: type object 'Any' has no attribute '_name'
"test_type_repr"
]
++ lib.optionals stdenv.hostPlatform.isDarwin [
# This test uses `torch.jit` which might not be working on darwin:
# RuntimeError: required keyword attribute 'value' has the wrong type
"test_traceable_my_conv_with_self_loops"
];
meta = {
description = "Graph Neural Network Library for PyTorch";
homepage = "https://github.com/pyg-team/pytorch_geometric";
changelog = "https://github.com/pyg-team/pytorch_geometric/blob/${src.rev}/CHANGELOG.md";
license = lib.licenses.mit;
maintainers = with lib.maintainers; [ GaetanLepage ];
};
}