nixpkgs/pkgs/development/python-modules/torch/default.nix
Daniël de Kok 746f6ce73f python3Packages.torch: fix MKL build
PyTorch failed to build with the BLAS implementation set to MKL, because
CMake install tried to set an rpath that is incorrect for Nix. This
change simply removes the offending code to make the build succeed and
get correct rpaths.
2024-11-23 20:47:38 +01:00

705 lines
24 KiB
Nix
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
stdenv,
lib,
fetchFromGitHub,
buildPythonPackage,
python,
config,
cudaSupport ? config.cudaSupport,
cudaPackages,
autoAddDriverRunpath,
effectiveMagma ?
if cudaSupport then
magma-cuda-static
else if rocmSupport then
magma-hip
else
magma,
magma,
magma-hip,
magma-cuda-static,
# Use the system NCCL as long as we're targeting CUDA on a supported platform.
useSystemNccl ? (cudaSupport && !cudaPackages.nccl.meta.unsupported || rocmSupport),
MPISupport ? false,
mpi,
buildDocs ? false,
# tests.cudaAvailable:
callPackage,
# Native build inputs
cmake,
symlinkJoin,
which,
pybind11,
removeReferencesTo,
# Build inputs
apple-sdk_13,
numactl,
# dependencies
astunparse,
fsspec,
filelock,
jinja2,
networkx,
sympy,
numpy,
pyyaml,
cffi,
click,
typing-extensions,
# ROCm build and `torch.compile` requires `triton`
tritonSupport ? (!stdenv.hostPlatform.isDarwin),
triton,
# TODO: 1. callPackage needs to learn to distinguish between the task
# of "asking for an attribute from the parent scope" and
# the task of "exposing a formal parameter in .override".
# TODO: 2. We should probably abandon attributes such as `torchWithCuda` (etc.)
# as they routinely end up consuming the wrong arguments\
# (dependencies without cuda support).
# Instead we should rely on overlays and nixpkgsFun.
# (@SomeoneSerge)
_tritonEffective ? if cudaSupport then triton-cuda else triton,
triton-cuda,
# Unit tests
hypothesis,
psutil,
# Disable MKLDNN on aarch64-darwin, it negatively impacts performance,
# this is also what official pytorch build does
mklDnnSupport ? !(stdenv.hostPlatform.isDarwin && stdenv.hostPlatform.isAarch64),
# virtual pkg that consistently instantiates blas across nixpkgs
# See https://github.com/NixOS/nixpkgs/pull/83888
blas,
# ninja (https://ninja-build.org) must be available to run C++ extensions tests,
ninja,
# dependencies for torch.utils.tensorboard
pillow,
six,
future,
tensorboard,
protobuf,
# ROCm dependencies
rocmSupport ? config.rocmSupport,
rocmPackages_5,
gpuTargets ? [ ],
}:
let
inherit (lib)
attrsets
lists
strings
trivial
;
inherit (cudaPackages) cudaFlags cudnn nccl;
triton = throw "python3Packages.torch: use _tritonEffective instead of triton to avoid divergence";
rocmPackages = rocmPackages_5;
setBool = v: if v then "1" else "0";
# https://github.com/pytorch/pytorch/blob/v2.4.0/torch/utils/cpp_extension.py#L1953
supportedTorchCudaCapabilities =
let
real = [
"3.5"
"3.7"
"5.0"
"5.2"
"5.3"
"6.0"
"6.1"
"6.2"
"7.0"
"7.2"
"7.5"
"8.0"
"8.6"
"8.7"
"8.9"
"9.0"
"9.0a"
];
ptx = lists.map (x: "${x}+PTX") real;
in
real ++ ptx;
# NOTE: The lists.subtractLists function is perhaps a bit unintuitive. It subtracts the elements
# of the first list *from* the second list. That means:
# lists.subtractLists a b = b - a
# For CUDA
supportedCudaCapabilities = lists.intersectLists cudaFlags.cudaCapabilities supportedTorchCudaCapabilities;
unsupportedCudaCapabilities = lists.subtractLists supportedCudaCapabilities cudaFlags.cudaCapabilities;
# Use trivial.warnIf to print a warning if any unsupported GPU targets are specified.
gpuArchWarner =
supported: unsupported:
trivial.throwIf (supported == [ ]) (
"No supported GPU targets specified. Requested GPU targets: "
+ strings.concatStringsSep ", " unsupported
) supported;
# Create the gpuTargetString.
gpuTargetString = strings.concatStringsSep ";" (
if gpuTargets != [ ] then
# If gpuTargets is specified, it always takes priority.
gpuTargets
else if cudaSupport then
gpuArchWarner supportedCudaCapabilities unsupportedCudaCapabilities
else if rocmSupport then
rocmPackages.clr.gpuTargets
else
throw "No GPU targets specified"
);
rocmtoolkit_joined = symlinkJoin {
name = "rocm-merged";
paths = with rocmPackages; [
rocm-core
clr
rccl
miopen
miopengemm
rocrand
rocblas
rocsparse
hipsparse
rocthrust
rocprim
hipcub
roctracer
rocfft
rocsolver
hipfft
hipsolver
hipblas
rocminfo
rocm-thunk
rocm-comgr
rocm-device-libs
rocm-runtime
clr.icd
hipify
];
# Fix `setuptools` not being found
postBuild = ''
rm -rf $out/nix-support
'';
};
brokenConditions = attrsets.filterAttrs (_: cond: cond) {
"CUDA and ROCm are mutually exclusive" = cudaSupport && rocmSupport;
"CUDA is not targeting Linux" = cudaSupport && !stdenv.hostPlatform.isLinux;
"Unsupported CUDA version" =
cudaSupport
&& !(builtins.elem cudaPackages.cudaMajorVersion [
"11"
"12"
]);
"MPI cudatoolkit does not match cudaPackages.cudatoolkit" =
MPISupport && cudaSupport && (mpi.cudatoolkit != cudaPackages.cudatoolkit);
# This used to be a deep package set comparison between cudaPackages and
# effectiveMagma.cudaPackages, making torch too strict in cudaPackages.
# In particular, this triggered warnings from cuda's `aliases.nix`
"Magma cudaPackages does not match cudaPackages" =
cudaSupport && (effectiveMagma.cudaPackages.cudaVersion != cudaPackages.cudaVersion);
"Rocm support is currently broken because `rocmPackages.hipblaslt` is unpackaged. (2024-06-09)" =
rocmSupport;
};
in
buildPythonPackage rec {
pname = "torch";
# Don't forget to update torch-bin to the same version.
version = "2.5.1";
pyproject = true;
outputs = [
"out" # output standard python package
"dev" # output libtorch headers
"lib" # output libtorch libraries
"cxxdev" # propagated deps for the cmake consumers of torch
];
cudaPropagateToOutput = "cxxdev";
src = fetchFromGitHub {
owner = "pytorch";
repo = "pytorch";
rev = "refs/tags/v${version}";
fetchSubmodules = true;
hash = "sha256-17lgAcqJN+vir+Zvffy5cXRmNjd5Y80ev8b8pOj9F+g=";
};
patches =
lib.optionals cudaSupport [ ./fix-cmake-cuda-toolkit.patch ]
++ lib.optionals (stdenv.hostPlatform.isDarwin && stdenv.hostPlatform.isx86_64) [
# pthreadpool added support for Grand Central Dispatch in April
# 2020. However, this relies on functionality (DISPATCH_APPLY_AUTO)
# that is available starting with macOS 10.13. However, our current
# base is 10.12. Until we upgrade, we can fall back on the older
# pthread support.
./pthreadpool-disable-gcd.diff
]
++ lib.optionals stdenv.hostPlatform.isLinux [
# Propagate CUPTI to Kineto by overriding the search path with environment variables.
# https://github.com/pytorch/pytorch/pull/108847
./pytorch-pr-108847.patch
]
++ lib.optionals (lib.getName blas.provider == "mkl") [
# The CMake install tries to add some hardcoded rpaths, incompatible
# with the Nix store, which fails. Simply remove this step to get
# rpaths that point to the Nix store.
./disable-cmake-mkl-rpath.patch
];
postPatch =
''
substituteInPlace cmake/public/cuda.cmake \
--replace-fail \
'message(FATAL_ERROR "Found two conflicting CUDA' \
'message(WARNING "Found two conflicting CUDA' \
--replace-warn \
"set(CUDAToolkit_ROOT" \
"# Upstream: set(CUDAToolkit_ROOT"
substituteInPlace third_party/gloo/cmake/Cuda.cmake \
--replace-warn "find_package(CUDAToolkit 7.0" "find_package(CUDAToolkit"
''
+ lib.optionalString rocmSupport ''
# https://github.com/facebookincubator/gloo/pull/297
substituteInPlace third_party/gloo/cmake/Hipify.cmake \
--replace "\''${HIPIFY_COMMAND}" "python \''${HIPIFY_COMMAND}"
# Replace hard-coded rocm paths
substituteInPlace caffe2/CMakeLists.txt \
--replace "/opt/rocm" "${rocmtoolkit_joined}" \
--replace "hcc/include" "hip/include" \
--replace "rocblas/include" "include/rocblas" \
--replace "hipsparse/include" "include/hipsparse"
# Doesn't pick up the environment variable?
substituteInPlace third_party/kineto/libkineto/CMakeLists.txt \
--replace "\''$ENV{ROCM_SOURCE_DIR}" "${rocmtoolkit_joined}" \
--replace "/opt/rocm" "${rocmtoolkit_joined}"
# Strangely, this is never set in cmake
substituteInPlace cmake/public/LoadHIP.cmake \
--replace "set(ROCM_PATH \$ENV{ROCM_PATH})" \
"set(ROCM_PATH \$ENV{ROCM_PATH})''\nset(ROCM_VERSION ${lib.concatStrings (lib.intersperse "0" (lib.splitVersion rocmPackages.clr.version))})"
''
# Detection of NCCL version doesn't work particularly well when using the static binary.
+ lib.optionalString cudaSupport ''
substituteInPlace cmake/Modules/FindNCCL.cmake \
--replace \
'message(FATAL_ERROR "Found NCCL header version and library version' \
'message(WARNING "Found NCCL header version and library version'
''
# Remove PyTorch's FindCUDAToolkit.cmake and use CMake's default.
# NOTE: Parts of pytorch rely on unmaintained FindCUDA.cmake with custom patches to support e.g.
# newer architectures (sm_90a). We do want to delete vendored patches, but have to keep them
# until https://github.com/pytorch/pytorch/issues/76082 is addressed
+ lib.optionalString cudaSupport ''
rm cmake/Modules/FindCUDAToolkit.cmake
''
# error: no member named 'aligned_alloc' in the global namespace; did you mean simply 'aligned_alloc'
# This lib overrided aligned_alloc hence the error message. Tltr: his function is linkable but not in header.
+
lib.optionalString
(stdenv.hostPlatform.isDarwin && lib.versionOlder stdenv.hostPlatform.darwinSdkVersion "11.0")
''
substituteInPlace third_party/pocketfft/pocketfft_hdronly.h --replace-fail '#if (__cplusplus >= 201703L) && (!defined(__MINGW32__)) && (!defined(_MSC_VER))
inline void *aligned_alloc(size_t align, size_t size)' '#if 0
inline void *aligned_alloc(size_t align, size_t size)'
'';
# NOTE(@connorbaker): Though we do not disable Gloo or MPI when building with CUDA support, caution should be taken
# when using the different backends. Gloo's GPU support isn't great, and MPI and CUDA can't be used at the same time
# without extreme care to ensure they don't lock each other out of shared resources.
# For more, see https://github.com/open-mpi/ompi/issues/7733#issuecomment-629806195.
preConfigure =
lib.optionalString cudaSupport ''
export TORCH_CUDA_ARCH_LIST="${gpuTargetString}"
export CUPTI_INCLUDE_DIR=${lib.getDev cudaPackages.cuda_cupti}/include
export CUPTI_LIBRARY_DIR=${lib.getLib cudaPackages.cuda_cupti}/lib
''
+ lib.optionalString (cudaSupport && cudaPackages ? cudnn) ''
export CUDNN_INCLUDE_DIR=${lib.getLib cudnn}/include
export CUDNN_LIB_DIR=${cudnn.lib}/lib
''
+ lib.optionalString rocmSupport ''
export ROCM_PATH=${rocmtoolkit_joined}
export ROCM_SOURCE_DIR=${rocmtoolkit_joined}
export PYTORCH_ROCM_ARCH="${gpuTargetString}"
export CMAKE_CXX_FLAGS="-I${rocmtoolkit_joined}/include -I${rocmtoolkit_joined}/include/rocblas"
python tools/amd_build/build_amd.py
'';
# Use pytorch's custom configurations
dontUseCmakeConfigure = true;
# causes possible redefinition of _FORTIFY_SOURCE
hardeningDisable = [ "fortify3" ];
BUILD_NAMEDTENSOR = setBool true;
BUILD_DOCS = setBool buildDocs;
# We only do an imports check, so do not build tests either.
BUILD_TEST = setBool false;
# Unlike MKL, oneDNN (née MKLDNN) is FOSS, so we enable support for
# it by default. PyTorch currently uses its own vendored version
# of oneDNN through Intel iDeep.
USE_MKLDNN = setBool mklDnnSupport;
USE_MKLDNN_CBLAS = setBool mklDnnSupport;
# Avoid using pybind11 from git submodule
# Also avoids pytorch exporting the headers of pybind11
USE_SYSTEM_PYBIND11 = true;
# NB technical debt: building without NNPACK as workaround for missing `six`
USE_NNPACK = 0;
# Explicitly enable MPS for Darwin
USE_MPS = setBool stdenv.hostPlatform.isDarwin;
cmakeFlags =
[
# (lib.cmakeBool "CMAKE_FIND_DEBUG_MODE" true)
(lib.cmakeFeature "CUDAToolkit_VERSION" cudaPackages.cudaVersion)
]
++ lib.optionals cudaSupport [
# Unbreaks version discovery in enable_language(CUDA) when wrapping nvcc with ccache
# Cf. https://gitlab.kitware.com/cmake/cmake/-/issues/26363
(lib.cmakeFeature "CMAKE_CUDA_COMPILER_TOOLKIT_VERSION" cudaPackages.cudaVersion)
];
preBuild = ''
export MAX_JOBS=$NIX_BUILD_CORES
${python.pythonOnBuildForHost.interpreter} setup.py build --cmake-only
${cmake}/bin/cmake build
'';
preFixup = ''
function join_by { local IFS="$1"; shift; echo "$*"; }
function strip2 {
IFS=':'
read -ra RP <<< $(patchelf --print-rpath $1)
IFS=' '
RP_NEW=$(join_by : ''${RP[@]:2})
patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1"
}
for f in $(find ''${out} -name 'libcaffe2*.so')
do
strip2 $f
done
'';
# Override the (weirdly) wrong version set by default. See
# https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038
# https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267
PYTORCH_BUILD_VERSION = version;
PYTORCH_BUILD_NUMBER = 0;
# In-tree builds of NCCL are not supported.
# Use NCCL when cudaSupport is enabled and nccl is available.
USE_NCCL = setBool useSystemNccl;
USE_SYSTEM_NCCL = USE_NCCL;
USE_STATIC_NCCL = USE_NCCL;
# Set the correct Python library path, broken since
# https://github.com/pytorch/pytorch/commit/3d617333e
PYTHON_LIB_REL_PATH = "${placeholder "out"}/${python.sitePackages}";
# Suppress a weird warning in mkl-dnn, part of ideep in pytorch
# (upstream seems to have fixed this in the wrong place?)
# https://github.com/intel/mkl-dnn/commit/8134d346cdb7fe1695a2aa55771071d455fae0bc
# https://github.com/pytorch/pytorch/issues/22346
#
# Also of interest: pytorch ignores CXXFLAGS uses CFLAGS for both C and C++:
# https://github.com/pytorch/pytorch/blob/v1.11.0/setup.py#L17
env.NIX_CFLAGS_COMPILE = toString (
(
lib.optionals (blas.implementation == "mkl") [ "-Wno-error=array-bounds" ]
# Suppress gcc regression: avx512 math function raises uninitialized variable warning
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105593
# See also: Fails to compile with GCC 12.1.0 https://github.com/pytorch/pytorch/issues/77939
++ lib.optionals (stdenv.cc.isGNU && lib.versionAtLeast stdenv.cc.version "12.0.0") [
"-Wno-error=maybe-uninitialized"
"-Wno-error=uninitialized"
]
# Since pytorch 2.0:
# gcc-12.2.0/include/c++/12.2.0/bits/new_allocator.h:158:33: error: void operator delete(void*, std::size_t)
# ... called on pointer <unknown> with nonzero offset [1, 9223372036854775800] [-Werror=free-nonheap-object]
++ lib.optionals (stdenv.cc.isGNU && lib.versions.major stdenv.cc.version == "12") [
"-Wno-error=free-nonheap-object"
]
# .../source/torch/csrc/autograd/generated/python_functions_0.cpp:85:3:
# error: cast from ... to ... converts to incompatible function type [-Werror,-Wcast-function-type-strict]
++ lib.optionals (stdenv.cc.isClang && lib.versionAtLeast stdenv.cc.version "16") [
"-Wno-error=cast-function-type-strict"
# Suppresses the most spammy warnings.
# This is mainly to fix https://github.com/NixOS/nixpkgs/issues/266895.
]
++ lib.optionals rocmSupport [
"-Wno-#warnings"
"-Wno-cpp"
"-Wno-unknown-warning-option"
"-Wno-ignored-attributes"
"-Wno-deprecated-declarations"
"-Wno-defaulted-function-deleted"
"-Wno-pass-failed"
]
++ [
"-Wno-unused-command-line-argument"
"-Wno-uninitialized"
"-Wno-array-bounds"
"-Wno-free-nonheap-object"
"-Wno-unused-result"
]
++ lib.optionals stdenv.cc.isGNU [
"-Wno-maybe-uninitialized"
"-Wno-stringop-overflow"
]
)
);
nativeBuildInputs =
[
cmake
which
ninja
pybind11
removeReferencesTo
]
++ lib.optionals cudaSupport (
with cudaPackages;
[
autoAddDriverRunpath
cuda_nvcc
]
)
++ lib.optionals rocmSupport [ rocmtoolkit_joined ];
buildInputs =
[
blas
blas.provider
]
++ lib.optionals cudaSupport (
with cudaPackages;
[
cuda_cccl # <thrust/*>
cuda_cudart # cuda_runtime.h and libraries
cuda_cupti # For kineto
cuda_nvcc # crt/host_config.h; even though we include this in nativeBuildInputs, it's needed here too
cuda_nvml_dev # <nvml.h>
cuda_nvrtc
cuda_nvtx # -llibNVToolsExt
libcublas
libcufft
libcurand
libcusolver
libcusparse
]
++ lists.optionals (cudaPackages ? cudnn) [ cudnn ]
++ lists.optionals useSystemNccl [
# Some platforms do not support NCCL (i.e., Jetson)
nccl # Provides nccl.h AND a static copy of NCCL!
]
++ lists.optionals (strings.versionOlder cudaVersion "11.8") [
cuda_nvprof # <cuda_profiler_api.h>
]
++ lists.optionals (strings.versionAtLeast cudaVersion "11.8") [
cuda_profiler_api # <cuda_profiler_api.h>
]
)
++ lib.optionals rocmSupport [ rocmPackages.llvm.openmp ]
++ lib.optionals (cudaSupport || rocmSupport) [ effectiveMagma ]
++ lib.optionals stdenv.hostPlatform.isLinux [ numactl ]
++ lib.optionals stdenv.hostPlatform.isDarwin [
apple-sdk_13
]
++ lib.optionals tritonSupport [ _tritonEffective ]
++ lib.optionals MPISupport [ mpi ]
++ lib.optionals rocmSupport [ rocmtoolkit_joined ];
pythonRelaxDeps = [
"sympy"
];
dependencies = [
astunparse
cffi
click
numpy
pyyaml
# From install_requires:
fsspec
filelock
typing-extensions
sympy
networkx
jinja2
# the following are required for tensorboard support
pillow
six
future
tensorboard
protobuf
# torch/csrc requires `pybind11` at runtime
pybind11
] ++ lib.optionals tritonSupport [ _tritonEffective ];
propagatedCxxBuildInputs =
[ ] ++ lib.optionals MPISupport [ mpi ] ++ lib.optionals rocmSupport [ rocmtoolkit_joined ];
# Tests take a long time and may be flaky, so just sanity-check imports
doCheck = false;
pythonImportsCheck = [ "torch" ];
nativeCheckInputs = [
hypothesis
ninja
psutil
];
checkPhase =
with lib.versions;
with lib.strings;
concatStringsSep " " [
"runHook preCheck"
"${python.interpreter} test/run_test.py"
"--exclude"
(concatStringsSep " " [
"utils" # utils requires git, which is not allowed in the check phase
# "dataloader" # psutils correctly finds and triggers multiprocessing, but is too sandboxed to run -- resulting in numerous errors
# ^^^^^^^^^^^^ NOTE: while test_dataloader does return errors, these are acceptable errors and do not interfere with the build
# tensorboard has acceptable failures for pytorch 1.3.x due to dependencies on tensorboard-plugins
(optionalString (majorMinor version == "1.3") "tensorboard")
])
"runHook postCheck"
];
pythonRemoveDeps = [
# In our dist-info the name is just "triton"
"pytorch-triton-rocm"
];
postInstall =
''
find "$out/${python.sitePackages}/torch/include" "$out/${python.sitePackages}/torch/lib" -type f -exec remove-references-to -t ${stdenv.cc} '{}' +
mkdir $dev
cp -r $out/${python.sitePackages}/torch/include $dev/include
cp -r $out/${python.sitePackages}/torch/share $dev/share
# Fix up library paths for split outputs
substituteInPlace \
$dev/share/cmake/Torch/TorchConfig.cmake \
--replace \''${TORCH_INSTALL_PREFIX}/lib "$lib/lib"
substituteInPlace \
$dev/share/cmake/Caffe2/Caffe2Targets-release.cmake \
--replace \''${_IMPORT_PREFIX}/lib "$lib/lib"
mkdir $lib
mv $out/${python.sitePackages}/torch/lib $lib/lib
ln -s $lib/lib $out/${python.sitePackages}/torch/lib
''
+ lib.optionalString rocmSupport ''
substituteInPlace $dev/share/cmake/Tensorpipe/TensorpipeTargets-release.cmake \
--replace "\''${_IMPORT_PREFIX}/lib64" "$lib/lib"
substituteInPlace $dev/share/cmake/ATen/ATenConfig.cmake \
--replace "/build/source/torch/include" "$dev/include"
'';
postFixup =
''
mkdir -p "$cxxdev/nix-support"
printWords "''${propagatedCxxBuildInputs[@]}" >> "$cxxdev/nix-support/propagated-build-inputs"
''
+ lib.optionalString stdenv.hostPlatform.isDarwin ''
for f in $(ls $lib/lib/*.dylib); do
install_name_tool -id $lib/lib/$(basename $f) $f || true
done
install_name_tool -change @rpath/libshm.dylib $lib/lib/libshm.dylib $lib/lib/libtorch_python.dylib
install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libtorch_python.dylib
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch_python.dylib
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch.dylib
install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libshm.dylib
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libshm.dylib
'';
# See https://github.com/NixOS/nixpkgs/issues/296179
#
# This is a quick hack to add `libnvrtc` to the runpath so that torch can find
# it when it is needed at runtime.
extraRunpaths = lib.optionals cudaSupport [ "${lib.getLib cudaPackages.cuda_nvrtc}/lib" ];
postPhases = lib.optionals stdenv.hostPlatform.isLinux [ "postPatchelfPhase" ];
postPatchelfPhase = ''
while IFS= read -r -d $'\0' elf ; do
for extra in $extraRunpaths ; do
echo patchelf "$elf" --add-rpath "$extra" >&2
patchelf "$elf" --add-rpath "$extra"
done
done < <(
find "''${!outputLib}" "$out" -type f -iname '*.so' -print0
)
'';
# Builds in 2+h with 2 cores, and ~15m with a big-parallel builder.
requiredSystemFeatures = [ "big-parallel" ];
passthru = {
inherit
cudaSupport
cudaPackages
rocmSupport
rocmPackages
;
cudaCapabilities = if cudaSupport then supportedCudaCapabilities else [ ];
# At least for 1.10.2 `torch.fft` is unavailable unless BLAS provider is MKL. This attribute allows for easy detection of its availability.
blasProvider = blas.provider;
# To help debug when a package is broken due to CUDA support
inherit brokenConditions;
tests = callPackage ./tests.nix { };
};
meta = {
changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}";
# keep PyTorch in the description so the package can be found under that name on search.nixos.org
description = "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration";
homepage = "https://pytorch.org/";
license = lib.licenses.bsd3;
maintainers = with lib.maintainers; [
teh
thoughtpolice
tscholak
]; # tscholak esp. for darwin-related builds
platforms =
lib.platforms.linux
++ lib.optionals (!cudaSupport && !rocmSupport) lib.platforms.darwin;
broken = builtins.any trivial.id (builtins.attrValues brokenConditions);
};
}