{ stdenv, fetchurl, buildPythonPackage, pythonOlder, cudaSupport ? false, cudatoolkit ? null, cudnn ? null, fetchFromGitHub, lib, numpy, pyyaml, cffi, typing, cmake, hypothesis, numactl, linkFarm, symlinkJoin, utillinux, which }: assert cudnn == null || cudatoolkit != null; assert !cudaSupport || cudatoolkit != null; let cudatoolkit_joined = symlinkJoin { name = "${cudatoolkit.name}-unsplit"; paths = [ cudatoolkit.out cudatoolkit.lib ]; }; # Normally libcuda.so.1 is provided at runtime by nvidia-x11 via # LD_LIBRARY_PATH=/run/opengl-driver/lib. We only use the stub # libcuda.so from cudatoolkit for running tests, so that we don’t have # to recompile pytorch on every update to nvidia-x11 or the kernel. cudaStub = linkFarm "cuda-stub" [{ name = "libcuda.so.1"; path = "${cudatoolkit}/lib/stubs/libcuda.so"; }]; cudaStubEnv = lib.optionalString cudaSupport "LD_LIBRARY_PATH=${cudaStub}\${LD_LIBRARY_PATH:+:$LD_LIBRARY_PATH} "; in buildPythonPackage rec { version = "1.0.0"; pname = "pytorch"; src = fetchFromGitHub { owner = "pytorch"; repo = "pytorch"; rev = "v${version}"; fetchSubmodules = true; sha256 = "076cpbig4sywn9vv674c0xdg832sdrd5pk1d0725pjkm436kpvlm"; }; patches = [ # Skips two tests that are only meant to run on multi GPUs (fetchurl { url = "https://github.com/pytorch/pytorch/commit/bfa666eb0deebac21b03486e26642fd70d66e478.patch"; sha256 = "1fgblcj02gjc0y62svwc5gnml879q3x2z7m69c9gax79dpr37s9i"; }) ]; dontUseCmakeConfigure = true; preConfigure = lib.optionalString cudaSupport '' export CC=${cudatoolkit.cc}/bin/gcc CXX=${cudatoolkit.cc}/bin/g++ '' + lib.optionalString (cudaSupport && cudnn != null) '' export CUDNN_INCLUDE_DIR=${cudnn}/include ''; preFixup = '' function join_by { local IFS="$1"; shift; echo "$*"; } function strip2 { IFS=':' read -ra RP <<< $(patchelf --print-rpath $1) IFS=' ' RP_NEW=$(join_by : ''${RP[@]:2}) patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1" } for f in $(find ''${out} -name 'libcaffe2*.so') do strip2 $f done ''; # Override the (weirdly) wrong version set by default. See # https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038 # https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267 PYTORCH_BUILD_VERSION = version; PYTORCH_BUILD_NUMBER = 0; # Suppress a weird warning in mkl-dnn, part of ideep in pytorch # (upstream seems to have fixed this in the wrong place?) # https://github.com/intel/mkl-dnn/commit/8134d346cdb7fe1695a2aa55771071d455fae0bc NIX_CFLAGS_COMPILE = lib.optionals (numpy.blasImplementation == "mkl") [ "-Wno-error=array-bounds" ]; nativeBuildInputs = [ cmake utillinux which ] ++ lib.optionals cudaSupport [ cudatoolkit_joined ]; buildInputs = [ numpy.blas ] ++ lib.optionals cudaSupport [ cudnn ] ++ lib.optionals stdenv.isLinux [ numactl ]; propagatedBuildInputs = [ cffi numpy pyyaml ] ++ lib.optional (pythonOlder "3.5") typing; checkInputs = [ hypothesis ]; checkPhase = '' ${cudaStubEnv}python test/run_test.py --exclude dataloader sparse torch utils thd_distributed distributed cpp_extensions ''; meta = { description = "Open source, prototype-to-production deep learning platform"; homepage = https://pytorch.org/; license = lib.licenses.bsd3; platforms = lib.platforms.linux; maintainers = with lib.maintainers; [ teh thoughtpolice ]; }; }