Include the system string in the error message to give a bit more context to
the user.
Co-authored-by: Wolfgang Walther <wolfgangwalther@users.noreply.github.com>
gnu-config will ignore the portion of a triple matching the regex
`e?abi.*$` when determining the validity of a triple. In other
words, `i386-linuxabichickenlips` is a valid triple.
This commit updates our parsing routines to match gnu-config.
I was recently surprised to discover that it is in fact possible to
shoehorn ABI flavors into nix doubles in a way which preserves their
property of being a (non-canonical) subset of the valid gnu-config
triples. This commit is required in order to exploit that discovery
to add automatic detection of ILP32 platforms (64-bit void*, 32-bit
int, like the Apple Watch and MIPS n32) to Nix.
The eminent Donald E. Knuth should be recognized as having equal
standing with such entities as IBM, Apple, and the Personal
Computer. We should acknowledge this by including him as a "vendor".
Also, `gnu-config` recognizes `mmix-knuth-*` triples (and in fact
requires `vendor="knuth"` when `cpu="mmix"`) -- so we sort of have
to. But we should do it anyways.
- Christmas is over!
- Upstream has changed the name of the target triplet used for the JS
backend from js-unknown-ghcjs to javascript-unknown-ghcjs, since Cabal
calls the architecture "javascript":
6636b67023
Since the triplet is made up anyways, i.e. autoconf does not support
it and Rust uses different triplets for its emscripten backends, we'll
just change it as well.
- Upstream fixed the problem with ar(1) being invoked incorrectly by stage0:
e987e345c8
In the past, most (if not all) armv8 CPUs could also execute armv7. However,
with the advent of Apple Silicon, aarch64 CPUs without any aarch32 capabilities
are now wide-spread among users.
The main purpose of this PR is to make the basis for
`mkSkeletonFromList`'s decision between `cpu-kernel-libcabi` vs
`cpu-vendor-os` clear, without changing its behavior. The existing
code obscures this decision behind a sequence of prioritized matches
(i.e. `if-then`) which jump around between different coordinates.
Two side benefits of this PR:
1. It makes the root cause of #165836 obvious: we are missing a case
for `cpu-vendor-libcabi`. This is why nixpkgs stumbles over
`*-none-*`.
2. It illuminates some very weird corner cases in the existing
logic, like `*-${vendor}-ghcjs` overriding the `vendor` field,
and `mingw32` being transformed into `windows` in some cases.
Co-authored-by: John Ericson <git@JohnEricson.me>
A tricky thing about FreeBSD is that there is no stable ABI across
versions. That means that putting in the version as part of the config
string is paramount.
We have a parsed represenation that separates name versus version to
accomplish this. We include FreeBSD versions 12 and 13 to demonstrate
how it works.
Since we (exclusively) use isCompatible to gauge whether platform a can
execute binaries built for platform b, mode switching CPUs are not to be
considered compatible for our purposes: Switching the mode of a CPU
usually requires a reset. At the very least we can't execute a mix of
executables for the two modes which would usually be the case in nixpkgs
where we may want to execute buildInputs for the hostPlatform in
addition to nativeBuildInputs for the buildPlatform.
MIPS has a large space of {architecture,abi,endianness}; this commit
adds all of them to lib/systems/platforms.nix so we can be done with
it.
Currently lib/systems/inspect.nix has a single "isMips" predicate,
which is a bit ambiguous now that we will have both mips32 and mips64
support, with the latter having two ABIs. Let's add four new
predicates (isMips32, isMips64, isMips64n32, and isMips64n64) and
treat the now-ambiguous isMips as deprecated in favor of the
more-specific predicates. These predicates are used mainly for
enabling/disabling target-specific workarounds, and it is extremely
rare that a platform-specific workaround is needed, and both mips32
and mips64 need exactly the same workaround.
The separate predicates (isMips64n32 and isMips64n64) for ABI
distinctions are, unfortunately, useful. Boost's user-scheduled
threading (used by nix) does does not currently supports mips64n32,
which is a very desirable ABI on routers since they rarely have
more than 2**32 bytes of DRAM.
m68k was recently added for Linux and none, but NetBSD also supports
m68k. Nothing will build yet, but I want to make sure we at least
encode the existence of NetBSD support for every applicable
architecture we support for other operating systems.
In Autoconf, some old NetBSD targets like "i686-unknown-netbsd" are
interpreted as a.out, not elf, and virtually nothing supports it. We
need to specify e.g. "i686-unknown-netbsdelf" to get the right
behaviour.
Stating that CPUs and the isCompatible relation forms a category (or
preorder) is correct but overtly technical. We can state it more
clearly for readers unfamiliar with mathematics while retaining some
keywords to be useful to technical readers.
PPC64 supports two ABIs: ELF v1 and v2.
ELFv1 is historically what GCC and most packages expect, but this is
changing because musl outright does not work with ELFv1. So any distro
which uses musl must use ELFv2. Many other platforms are moving to ELFv2
too, such as FreeBSD (as of v13) and Gentoo (as of late 2020).
Since we use musl extensively, let's default to ELFv2.
Nix gives us the power to specify this declaratively for the entire
system, so ELFv1 is not dropped entirely. It can be specified explicitly
in the target config, e.g. "powerpc64-unknown-linux-elfv1". Otherwise the
default is "powerpc64-unknown-linux-elfv2". For musl,
"powerpc64-unknown-linux-musl" must use elfv2 internally to function.
Adds pkgsCross.wasm32 and pkgsCross.wasm64. Use it to build Nixpkgs
with a WebAssembly toolchain.
stdenv/cross: use static overlay on isWasm
isWasm doesn’t make sense dynamically linked.
It is useful to make these dynamic and not bake them into gcc. This
means we don’t have to rebuild gcc to change these values. Instead, we
will pass cflags to gcc based on platform values. This was already
done hackily for android gcc (which is multi-target), but not for our
own gccs which are single target.
To accomplish this, we need to add a few things:
- add ‘arch’ to cpu
- add NIX_CFLAGS_COMPILE_BEFORE flag (goes before args)
- set -march everywhere
- set mcpu, mfpu, mmode, and mtune based on targetPlatform.gcc flags
cc-wrapper: only set -march when it is in the cpu type
Some architectures don’t have a good mapping of -march. For instance
POWER architecture doesn’t support the -march flag at all!
https://gcc.gnu.org/onlinedocs/gcc/RS_002f6000-and-PowerPC-Options.html#RS_002f6000-and-PowerPC-Options