This adds -frandom-seed to each compiler invocation in stdenv. The
object here is to make the compierl invocations produce the same output
every time they are called (for the same derivation). When the
-frandom-seed option is not set the compiler will use a combination of
random numbers (in GCC's case from /dev/urandom) and the durrent time to
produce a "random" input per file. This can (among other things) lead to
different ordering of symbols in the produced object files.
For reason of reproducibility we prefer having the same derivation
produce the exact same outputs. This is not a silver bullet but one way
to tame the compiler.
defaultHardeningFlags is set to enable pie for Musl, but is not
actually used because the default is never put into
NIX_HARDENING_ENABLE. That still works for cases other than Musl
only because NIX_HARDENING_ENABLE is defaulted in the binutils and
cc-wrapper setup-hook.sh scripts.
This hook moves systemd user service file from `lib/systemd/user` to
`share/systemd/user`. This is to allow systemd to find the user
services when installed into a user profile. The `lib/systemd/user`
path does not work since `lib` is not in `XDG_DATA_DIRS`.
This introduces the .inputDerivation attribute on all derivations
created with mkDerivation. This is another derivation that can always
build successfully and whose runtime dependencies are the build time
dependencies of the original derivation.
This allows easy building and distributing of all derivations needed to
enter a nix-shell with
nix-build shell.nix -A inputDerivation
I hate the thing too even though I made it, and rather just get rid of
it. But we can't do that yet. In the meantime, this brings us more
inline with autoconf and will make it slightly easier for me to write a
pkg-config wrapper, which we need.
The cross file is added in the `mkDerivation`. It isn't nice putting
build tool-specific stuff here, but our current architecture gives us
little alternative.
Currently it's not possible to determine the reason why a package is
unavailable without evaluating nixpkgs multiple times with different
settings. eg.
nix-repl> :p android-studio.meta
{ available = false; broken = false; unfree = true; unsupported = true; ... }
The following snippet is an example that uses this information to query
the availability information of all packages in nixpkgs, giving an
overview of all the packages currently marked as broken, etc.
{ pkgs }:
with import <nixpkgs/lib>;
let
mapPkgs =
let mapPkgs' = path: f: mapAttrs (n: v:
let result = builtins.tryEval (v ? meta); in
if !result.success then {} else
if isDerivation v then f (path ++ [n]) v else
if isAttrs v && v.recurseForDerivations or false then mapPkgs' (path ++ [n]) f v else
{}
);
in mapPkgs' [];
getMeta = path: drv:
if drv.meta ? available then
let meta = {
pkg = concatStringsSep "." path;
inherit (drv.meta) broken unfree unsupported insecure;
};
in builtins.trace meta.pkg meta
else {};
metaToList = attrs: flatten (map (v: if v ? pkg then v else metaToList v) (attrValues attrs));
in metaToList (mapPkgs getMeta pkgs)
While looking at the graph of all the outputs in my personal binary
cache it became obvious that we have a lot of self references within the
package set. That isn't an isuse by itself. However it increases the
size of the binary cache for every (reproducible) build of a package
that carries references to itself. You can no longer deduplicate the
outputs since they are all unique. One of the ways to get rid of (a few)
references is to rewrite all the symlinks that are currently used to be
relative symlinks. Two build of something that didn't really change but
carries a self-reference can the be store as the same NAR file again.
I quickly hacked together this change to see if that would yield and
success. My bash scripting skills are probably not great but so far it
seem to somewhat work.
Before, we'd always use `cc = null`, and check for that. The problem is
this breaks for cross compilation to platforms that don't support a C
compiler.
It's a very subtle issue. One might think there is no problem because we
have `stdenvNoCC`, and presumably one would only build derivations that
use that. The problem is that one still wants to use tools at build-time
that are themselves built with a C compiler, and those are gotten via
"splicing". The runtime version of those deps will explode, but the
build time / `buildPackages` versions of those deps will be fine, and
splicing attempts to work this by using `builtins.tryEval` to filter out
any broken "higher priority" packages (runtime is the default and
highest priority) so that both `foo` and `foo.nativeDrv` works.
However, `tryEval` only catches certain evaluation failures (e.g.
exceptions), and not arbitrary failures (such as `cc.attr` when `cc` is
null). This means `tryEval` fails to let us use our build time deps, and
everything comes apart.
The right solution is, as usually, to get rid of splicing. Or, baring
that, to make it so `foo` never works and one has to explicitly do
`foo.*`. But that is a much larger change, and certaily one unsuitable
to be backported to stable.
Given that, we instead make an exception-throwing `cc` attribute, and
create a `hasCC` attribute for those derivations which wish to
condtionally use a C compiler: instead of doing `stdenv.cc or null ==
null` or something similar, one does `stdenv.hasCC`. This allows quering
without "tripping" the exception, while also allowing `tryEval` to work.
No platform without a C compiler is yet wired up by default. That will
be done in a following commit.
Rewrite the `stripHash` helper function with 2 differences:
* Paths starting with `--` will no longer produce an error.
* Use Bash string manipulation instead of shelling out to `grep` and
`cut`. This should be faster.
A bunch of stdenv-internal variables were deleted in
1601a7fcce, but these are needed in the
fixup phase, whereas the rest are just needed for the initial work
(findInputs, etc) before the user phases.
CC @matthewbauer
There were two issues:
* builtins.getEnv was called deep into the nixpkgs tree making it hard
to discover. This is solved by moving the call into
pkgs/top-level/impure.nix
* when the config was explicitly set by the user to false, it would
still try and load the environment variable. This meant that it was
not possible to guarantee the same outcome on two different systems.
Before, we very carefully unapplied and reapplied `set -u` so the rest
of Nixpkgs could continue to not fail on undefined variables. Let's rip
off the band-aid.
A package's meta.license can either be a single license or a list. The
code to check config.whitelistedLicenses and config.blackListedLicenses
wasn't handling this, nor was the showLicense function.
These can be used to determine whether a ELF file with ELF header is an
executable or shared library.
We can't implement it in pure bash, as bash has problems with null
bytes.
That's very much consistent with the spirit of nix-shell --pure
BTW, nix 1.x shells will be always treated as pure;
in that version detection isn't possible.
https://github.com/NixOS/nix/commit/1bffd83e1a9c
Some SSL libs don't react to $SSL_CERT_FILE.
That actually makes sense to me, as we add this behavior
as nixpkgs-specific, so it seems "safer" to use $NIX_*.
We want initialPath to have lowest precedence.
In addition, unset _PATH and _HOST_PATH as they shouldn’t be needed
after final PATH and HOST_PATH are set.
Adds pkgsCross.wasm32 and pkgsCross.wasm64. Use it to build Nixpkgs
with a WebAssembly toolchain.
stdenv/cross: use static overlay on isWasm
isWasm doesn’t make sense dynamically linked.
This puts patches in all derivations even if it unspecified by the
derivation. By default it will be an empty list. This simplifies
overrides, as we can now assume that patches is a valid name so that
this works:
self: super: {
mypkg = super.pkg.overrideAttrs (o: {
patches = o.patches ++ [ ./my-very-own.patch ];
});
}
That is, you don’t need to provide a default "or []", make-derivation
provides one for you.
Unfortunately, this is a mass rebuild.
You can build (partially) with LLVM toolchain using the useLLVM flag.
This works like so:
nix-build -A hello --arg crossSystem '{ system =
"aarch64-unknown-linux-musl"; useLLVM = true }'
also don’t separate debug info in lldClang
It doesn’t work currently with that setup hook. Missing build-id?
Comments on conflicts:
- llvm: d6f401e1 vs. 469ecc70 - docs for 6 and 7 say the default is
to build all targets, so we should be fine
- some pypi hashes: they were equivalent, just base16 vs. base32
For a long time now, tracing has been broken in Nixpkgs. So when you
have an eval error you would get something like this:
error: while evaluating the attribute 'buildInputs' of the derivation 'hello-2.10' at /home/mbauer/nixpkgs/pkgs/stdenv/generic/make-derivation.nix:185:11:
while evaluating 'chooseDevOutputs' at /home/mbauer/nixpkgs/lib/attrsets.nix:474:22, called from undefined position:
while evaluating 'optionals' at /home/mbauer/nixpkgs/lib/lists.nix:257:5, called from /home/mbauer/nixpkgs/pkgs/stdenv/generic/make-derivation.nix:132:17:
This is coming from how Nix handles string context and how
make-derivation messes with the "name" attribute. This commit should
restore the old behavior so you get a nice line number like:
error: while evaluating the attribute 'buildInputs' of the derivation 'hello-2.10' at /home/mbauer/nixpkgs/pkgs/applications/misc/hello/default.nix:4:3:
while evaluating 'chooseDevOutputs' at /home/mbauer/nixpkgs/lib/attrsets.nix:474:22, called from undefined position:
while evaluating 'optionals' at /home/mbauer/nixpkgs/lib/lists.nix:257:5, called from /home/mbauer/nixpkgs/pkgs/stdenv/generic/make-derivation.nix:132:17:
NOTE: This will still be broken for cross compilation due to the
prefixes we are adding to name.
This behavior ended up breaking the handleEvalIssue functionality by hiding those packages. So something like this:
$ nix-env -iA nixpkgs.zoom-us
would silently fail, without telling the user how to fix it! Regardless, this "bug" should be handled in Nix - not Nixpkgs.
Fixes#38952.
We can't run the checkPhase when build != host, so we may as well make
the checkInputs native.
This signicantly improves the situation of Python packages when enabling
strictDeps.
* add generic x86_32 support
- Add support for i386-i586.
- Add `isx86_32` predicate that can replace most uses of `isi686`.
- `isi686` is reinterpreted to mean "exactly i686 arch, and not say i585 or i386".
- This branch was used to build working i586 kernel running on i586 hardware.
* revert `isi[345]86`, remove dead code
- Remove changes to dead code in `doubles.nix` and `for-meta.nix`.
- Remove `isi[345]86` predicates since other cpu families don't have specific model predicates.
* remove i386-linux since linux not supported on that cpu
Hydra's page showing evaluation errors is about a mile long, showing
buckets of user-friendly errors, like this:
in job ‘seyren.aarch64-linux’:
Package ‘oraclejre-8u191’ in /nix/store/fa9zzkbljkvdavwzirkrr5irg25ymbjl-source/pkgs/development/compilers/oraclejdk/jdk-linux-base.nix:71 has an unfree license (‘unfree’), refusing to evaluate.
a) For `nixos-rebuild` you can set
{ nixpkgs.config.allowUnfree = true; }
in configuration.nix to override this.
b) For `nix-env`, `nix-build`, `nix-shell` or any other Nix command you can add
{ allowUnfree = true; }
to ~/.config/nixpkgs/config.nix.
in job ‘jetbrains.webstorm.x86_64-linux’:
Package ‘webstorm-2018.3.1’ in /nix/store/fa9zzkbljkvdavwzirkrr5irg25ymbjl-source/pkgs/applications/editors/jetbrains/default.nix:230 has an unfree license (‘unfree’), refusing to evaluate.
a) For `nixos-rebuild` you can set
{ nixpkgs.config.allowUnfree = true; }
in configuration.nix to override this.
b) For `nix-env`, `nix-build`, `nix-shell` or any other Nix command you can add
{ allowUnfree = true; }
to ~/.config/nixpkgs/config.nix.
This makes it extremely hard to find actual issues in the output. This
patch set makes the output much more condensed in Hydra:
Failed to evaluate nifticlib-2.0.0: «unsupported»: is not supported on ‘x86_64-apple-darwin’
Failed to evaluate dmd-2.081.2: «unsupported»: is not supported on ‘aarch64-unknown-linux-gnu’
Failed to evaluate dmdBuild-2.081.2: «unsupported»: is not supported on ‘aarch64-unknown-linux-gnu’
Failed to evaluate ldc-1.11.0: «unsupported»: is not supported on ‘aarch64-unknown-linux-gnu’
Failed to evaluate ldcBuild-1.11.0: «unsupported»: is not supported on ‘aarch64-unknown-linux-gnu’
Failed to evaluate ldc-0.17.5: «unsupported»: is not supported on ‘aarch64-unknown-linux-gnu’
Failed to evaluate ldcBuild-0.17.5: «unsupported»: is not supported on ‘aarch64-unknown-linux-gnu’