Also begin to start work on cross compilation, though that will have to
be finished later.
The patches are based on the first version of
https://reviews.llvm.org/D99484. It's very annoying to do the
back-porting but the review has uncovered nothing super major so I'm
fine sticking with what I've got.
Beyond making the outputs work, I also strove to re-sync the packages,
as they have been drifting pointlessly apart for some time.
----
Other misc notes, highly incomplete
- lvm-config-native and llvm-config are put in `dev` because they are
tools just for build time.
- Clang no longer has an lld dep. That was introduced in
db29857eb3, but if clang needs help
finding lld when it is used we should just pass it flags / put in the
resource dir. Providing it at build time increases critical path
length for no good reason.
----
A note on `nativeCC`:
`stdenv` takes tools from the previous stage, so:
1. `pkgsBuildBuild`: `(?1, x, x)`
2. `pkgsBuildBuild.stdenv.cc`: `(?0, ?1, x)`
while:
1. `pkgsBuildBuild`: `(?1, x, x)`
2. `pkgsBuildBuild.targetPackages`: `(x, x, ?2)`
3. `pkgsBuildBuild.targetPackages.stdenv.cc`: `(?1, x, x)`
In a typical build environment the toolchain will use the value of the
MACOSX_DEPLOYMENT_TARGET environment variable to determine the version
of macOS to support. When cross compiling there are two distinct
toolchains, but they will look at this single environment variable. To
avoid contamination, we always set the equivalent command line flag
which effectively disables the toolchain's internal handling.
Prior to this change, the MACOSX_DEPLOYMENT_TARGET variable was
ignored, and the toolchains always used the Nix platform
definition (`darwinMinVersion`) unless overridden with command line
arguments.
This change restores support for MACOSX_DEPLOYMENT_TARGET, and adds
nix-specific MACOSX_DEPLOYMENT_TARGET_FOR_BUILD and
MACOSX_DEPLOYMENT_TARGET_FOR_TARGET for cross compilation.
Instead of always supplying flags, apply the flags as defaults. Use
clang's native flags instead of lifting the linker flags from binutils
with `-Wl,`.
If a project is using clang to drive linking, make clang do the right
thing with MACOSX_DEPLOYMENT_TARGET. This can be overridden by command
line arguments. This will cause modern clang to pass
`-platform_version 10.12 0.0.0`, since it doesn't know about the SDK
settings. Older versions of clang will pass down `-macos_version_min`
flags with no sdk version.
At the linker layer, apply a default value for anything left
ambiguous. If nothing is specified, pass a full
`-platform_version`. If only `-macos_version_min` is specified, then
lock down the sdk_version explicitly with `-sdk_version`. If a min
version and sdk version is passed, do nothing.
The `docker load` command supports loading tarballs that contain
multiple docker images with their respective image names and tags. This
enables distributing these images as a single file which simplifies the
release of software when an application requires multiple services to
run.
However, pkgs.dockerTools only create tarballs with a single docker
image and there exists is no mechanism in nixpkgs to combine the created
tarballs. This commit implements merging of tarballs in a way that is
compatible with `docker load`.
Since 03eaa48 added perl.withPackages, there is a canonical way to
create a perl interpreter from a list of libraries, for use in script
shebangs or generic build inputs. This method is declarative (what we
are doing is clear), produces short shebangs[1] and needs not to wrap
existing scripts.
Unfortunately there are a few exceptions that I've found:
1. Scripts that are calling perl with the -T switch. This makes perl
ignore PERL5LIB, which is what perl.withPackages is using to inform
the interpreter of the library paths.
2. Perl packages that depends on libraries in their own path. This
is not possible because perl.withPackages works at build time. The
workaround is to add `-I $out/${perl.libPrefix}` to the shebang.
In all other cases I propose to switch to perl.withPackages.
[1]: https://lwn.net/Articles/779997/