The module installs `zmap` globally and links the config files to
`/etc/zmap`, the default location of config files for zmap.
The package provides pretty much a sensitive default, custom configs can
be created like this:
```
{ lib, ... }:
{
environment.etc."zmap/blacklist.conf" = lib.mkForce {
text = ''
# custom zmap blacklist
0.0.0.0/0
'';
};
}
```
Currently, this uses the somewhat crude method of setting LD_PRELOAD in the
system environment. This works, but should be considered a stepping stone to
a more robust solution.
This is an implementation of wireguard support using wg-quick config
generation.
This seems preferrable to the existing wireguard support because
it handles many more routing and resolvconf edge cases than the
current wireguard support.
It also includes work-arounds to make key files work.
This has one quirk:
We need to set reverse path checking in the firewall to false because
it interferes with the way wg-quick sets up its routing.
Documize is an open-source alternative for wiki software like Confluence
based on Go and EmberJS. This patch adds the sources for the community
edition[1], for commercial their paid-plan[2] needs to be used.
For commercial use a derivation that bundles the commercial package and
contains a `$out/bin/documize` can be passed to
`services.documize.enable`.
The package compiles the Go sources, the build process also bundles the
pre-built frontend from `gui/public` into the binary.
The NixOS module generates a simple `systemd` unit which starts the
service as a dynamic user, database and a reverse proxy won't be
configured.
[1] https://www.documize.com/get-started/
[2] https://www.documize.com/pricing/
Currently if you want to properly chroot a systemd service, you could do
it using BindReadOnlyPaths=/nix/store or use a separate derivation which
gathers the runtime closure of the service you want to chroot. The
former is the easier method and there is also a method directly offered
by systemd, called ProtectSystem, which still leaves the whole store
accessible. The latter however is a bit more involved, because you need
to bind-mount each store path of the runtime closure of the service you
want to chroot.
This can be achieved using pkgs.closureInfo and a small derivation that
packs everything into a systemd unit, which later can be added to
systemd.packages.
However, this process is a bit tedious, so the changes here implement
this in a more generic way.
Now if you want to chroot a systemd service, all you need to do is:
{
systemd.services.myservice = {
description = "My Shiny Service";
wantedBy = [ "multi-user.target" ];
confinement.enable = true;
serviceConfig.ExecStart = "${pkgs.myservice}/bin/myservice";
};
}
If more than the dependencies for the ExecStart* and ExecStop* (which
btw. also includes script and {pre,post}Start) need to be in the chroot,
it can be specified using the confinement.packages option. By default
(which uses the full-apivfs confinement mode), a user namespace is set
up as well and /proc, /sys and /dev are mounted appropriately.
In addition - and by default - a /bin/sh executable is provided, which
is useful for most programs that use the system() C library call to
execute commands via shell.
Unfortunately, there are a few limitations at the moment. The first
being that DynamicUser doesn't work in conjunction with tmpfs, because
systemd seems to ignore the TemporaryFileSystem option if DynamicUser is
enabled. I started implementing a workaround to do this, but I decided
to not include it as part of this pull request, because it needs a lot
more testing to ensure it's consistent with the behaviour without
DynamicUser.
The second limitation/issue is that RootDirectoryStartOnly doesn't work
right now, because it only affects the RootDirectory option and doesn't
include/exclude the individual bind mounts or the tmpfs.
A quirk we do have right now is that systemd tries to create a /usr
directory within the chroot, which subsequently fails. Fortunately, this
is just an ugly error and not a hard failure.
The changes also come with a changelog entry for NixOS 19.03, which is
why I asked for a vote of the NixOS 19.03 stable maintainers whether to
include it (I admit it's a bit late a few days before official release,
sorry for that):
@samueldr:
Via pull request comment[1]:
+1 for backporting as this only enhances the feature set of nixos,
and does not (at a glance) change existing behaviours.
Via IRC:
new feature: -1, tests +1, we're at zero, self-contained, with no
global effects without actively using it, +1, I think it's good
@lheckemann:
Via pull request comment[2]:
I'm neutral on backporting. On the one hand, as @samueldr says,
this doesn't change any existing functionality. On the other hand,
it's a new feature and we're well past the feature freeze, which
AFAIU is intended so that new, potentially buggy features aren't
introduced in the "stabilisation period". It is a cool feature
though? :)
A few other people on IRC didn't have opposition either against late
inclusion into NixOS 19.03:
@edolstra: "I'm not against it"
@Infinisil: "+1 from me as well"
@grahamc: "IMO its up to the RMs"
So that makes +1 from @samueldr, 0 from @lheckemann, 0 from @edolstra
and +1 from @Infinisil (even though he's not a release manager) and no
opposition from anyone, which is the reason why I'm merging this right
now.
I also would like to thank @Infinisil, @edolstra and @danbst for their
reviews.
[1]: https://github.com/NixOS/nixpkgs/pull/57519#issuecomment-477322127
[2]: https://github.com/NixOS/nixpkgs/pull/57519#issuecomment-477548395
* WIP: Run Docker containers as declarative systemd services
* PR feedback round 1
* docker-containers: add environment, ports, user, workdir options
* docker-containers: log-driver, string->str, line wrapping
* ExecStart instead of script wrapper, %n for container name
* PR feedback: better description and example formatting
* Fix docbook formatting (oops)
* Use a list of strings for ports, expand documentation
* docker-continers: add a simple nixos test
* waitUntilSucceeds to avoid potential weird async issues
* Don't enable docker daemon unless we actually need it
* PR feedback: leave ExecReload undefined
acpilight package and module have been added to nixpkgs, but the
module hasn't been added to module-list.nix, so using it results in
the following error.
```
The option `hardware.acpilight' defined in `/etc/nixos/configuration.nix' does not exist.
```
Add the module to module-list.nix.
Quoting @edolstra from [1]:
I don't really like the name "chroot", something like "confine[ment]"
or "restrict" seems better. Conceptually we're not providing a
completely different filesystem tree but a restricted view of the same
tree.
I already used "confinement" as a sub-option and I do agree that
"chroot" sounds a bit too specific (especially because not *only* chroot
is involved).
So this changes the module name and its option to use "confinement"
instead of "chroot" and also renames the "chroot.confinement" to
"confinement.mode".
[1]: https://github.com/NixOS/nixpkgs/pull/57519#issuecomment-472855704
Signed-off-by: aszlig <aszlig@nix.build>
Currently, if you want to properly chroot a systemd service, you could
do it using BindReadOnlyPaths=/nix/store (which is not what I'd call
"properly", because the whole store is still accessible) or use a
separate derivation that gathers the runtime closure of the service you
want to chroot. The former is the easier method and there is also a
method directly offered by systemd, called ProtectSystem, which still
leaves the whole store accessible. The latter however is a bit more
involved, because you need to bind-mount each store path of the runtime
closure of the service you want to chroot.
This can be achieved using pkgs.closureInfo and a small derivation that
packs everything into a systemd unit, which later can be added to
systemd.packages. That's also what I did several times[1][2] in the
past.
However, this process got a bit tedious, so I decided that it would be
generally useful for NixOS, so this very implementation was born.
Now if you want to chroot a systemd service, all you need to do is:
{
systemd.services.yourservice = {
description = "My Shiny Service";
wantedBy = [ "multi-user.target" ];
chroot.enable = true;
serviceConfig.ExecStart = "${pkgs.myservice}/bin/myservice";
};
}
If more than the dependencies for the ExecStart* and ExecStop* (which
btw. also includes "script" and {pre,post}Start) need to be in the
chroot, it can be specified using the chroot.packages option. By
default (which uses the "full-apivfs"[3] confinement mode), a user
namespace is set up as well and /proc, /sys and /dev are mounted
appropriately.
In addition - and by default - a /bin/sh executable is provided as well,
which is useful for most programs that use the system() C library call
to execute commands via shell. The shell providing /bin/sh is dash
instead of the default in NixOS (which is bash), because it's way more
lightweight and after all we're chrooting because we want to lower the
attack surface and it should be only used for "/bin/sh -c something".
Prior to submitting this here, I did a first implementation of this
outside[4] of nixpkgs, which duplicated the "pathSafeName" functionality
from systemd-lib.nix, just because it's only a single line.
However, I decided to just re-use the one from systemd here and
subsequently made it available when importing systemd-lib.nix, so that
the systemd-chroot implementation also benefits from fixes to that
functionality (which is now a proper function).
Unfortunately, we do have a few limitations as well. The first being
that DynamicUser doesn't work in conjunction with tmpfs, because it
already sets up a tmpfs in a different path and simply ignores the one
we define. We could probably solve this by detecting it and try to
bind-mount our paths to that different path whenever DynamicUser is
enabled.
The second limitation/issue is that RootDirectoryStartOnly doesn't work
right now, because it only affects the RootDirectory option and not the
individual bind mounts or our tmpfs. It would be helpful if systemd
would have a way to disable specific bind mounts as well or at least
have some way to ignore failures for the bind mounts/tmpfs setup.
Another quirk we do have right now is that systemd tries to create a
/usr directory within the chroot, which subsequently fails. Fortunately,
this is just an ugly error and not a hard failure.
[1]: https://github.com/headcounter/shabitica/blob/3bb01728a0237ad5e7/default.nix#L43-L62
[2]: https://github.com/aszlig/avonc/blob/dedf29e092481a33dc/nextcloud.nix#L103-L124
[3]: The reason this is called "full-apivfs" instead of just "full" is
to make room for a *real* "full" confinement mode, which is more
restrictive even.
[4]: https://github.com/aszlig/avonc/blob/92a20bece4df54625e/systemd-chroot.nix
Signed-off-by: aszlig <aszlig@nix.build>
This is the result of executing:
git mv -f pkgs/applications/window-managers/sway/beta.nix pkgs/applications/window-managers/sway/default.nix
git mv -f nixos/modules/programs/sway-beta.nix nixos/modules/programs/sway.nix
And removing sway-beta from the following files:
pkgs/top-level/all-packages.nix
nixos/modules/module-list.nix
A nixos module for configuring the server side of pkgs.snapcast.
The module is named "snapserver" following upstream convention.
This commit does not provide module for the corresponding client.
Fix handling of port and controlPort
Fix stream uri generation & address review
Remove unused streams options & add description
Add missing description & Remove default fs path
Use types.port for ports & formatting improvements
Force mpd and mopidy to wait for snapserver
PlexPy was renamed to Tautulli.
This renames the module as well as the application accordingly.
Aliases are kept for backwards compatibility.
# Conflicts:
# nixos/modules/services/misc/tautulli.nix
- All kubernetes components have been seperated into different files
- All TLS-enabled ports have been deprecated and disabled by default
- EasyCert option added to support automatic cluster PKI-bootstrap
- RBAC has been enforced for all cluster components by default
- NixOS kubernetes test cases make use of easyCerts to setup PKI
This round is without the systemd CVE,
as we don't have binaries for that yet.
BTW, I just ignore darwin binaries these days,
as I'd have to wait for weeks for them.
The module is indeed very large but allows configuring every aspect of
icingaweb2. The built-in monitoring module is in an own file because
there are actually more (third-party) modules and this structure means
every module can get an own file.
The OS Login package enables the following components:
AuthorizedKeysCommand to query valid SSH keys from the user's OS Login
profile during ssh authentication phase.
NSS Module to provide user and group information
PAM Module for the sshd service, providing authorization and
authentication support, allowing the system to use data stored in
Google Cloud IAM permissions to control both, the ability to log into
an instance, and to perform operations as root (sudo).
The `iotop` program can't be started by an unprivileged user because of
missing root privileges. The issue can be fixed by creating a
setcap wrapper for `iotop` which contains `cap_net_admin`.
Allow switching out kerberos server implementation.
Sharing config is probably sensible, but implementation is different enough to
be worth splitting into two files. Not sure this is the correct way to split an
implementation, but it works for now.
Uses the switch from config.krb5 to select implementation.
This also includes a full end-to-end CockroachDB clustering test to
ensure everything basically works. However, this test is not currently
enabled by default, though it can be run manually. See the included
comments in the test for more information.
Closes#51306. Closes#38665.
Co-authored-by: Austin Seipp <aseipp@pobox.com>
Signed-off-by: Austin Seipp <aseipp@pobox.com>
Mininet (https://github.com/mininet/mininet) is a popular network emulator that
glues several components such as network namespaces, traffic control
commands into a set of python bindings. It is then "easy" to describe a
topology and run experiments on it.
Imports the `journaldriver` module into the top-level NixOS module
list to make it usable without extra work.
This went unnoticed in #42134 (mostly because my setup imports modules
explicitly from pinned versions).
Fixes#50390
Rootston is just a reference compositor so it doesn't make that much
sense to have a module for it. Upstream doesn't really like it as well:
"Rootston will never be intended for downstream packages, it's an
internal thing we use for testing." - SirCmpwn [0]
Removing the package and the module shouldn't cause much problems
because it was marked as broken until
886131c243. If required the package can
still be accessed via wlroots.bin (could be useful for testing
purposes).
[0]: https://github.com/NixOS/nixpkgs/issues/38344#issuecomment-378449256
A module for security options that are too small to warrant their own module.
The impetus for adding this module is to make it more convenient to override
the behavior of the hardened profile wrt user namespaces.
Without a dedicated option for user namespaces, the user needs to
1) know which sysctl knob controls userns
2) know how large a value the sysctl knob needs to allow e.g.,
Nix sandbox builds to work
In the future, other mitigations currently enabled by the hardened profile may
be promoted to options in this module.
Dummy display manager that allows running X as a normal user.
The X server is started manually from a vt using `startx`.
Session startup commands must be provided by the user
in ~/.xinitrc, which is NOT automatically generated.