... binutils and gcc add it already anyway.
Without this it's easy to get cross-toolchain paths longer than 256
chars and nix-daemon will then fail to commit them to /nix/store on XFS.
Factor a bintools (i.e. binutils / cctools) wrapper out of cc-wrapper. While
only LD is wrapped, the setup hook defines environment variables on behalf of
other utilites.
On non-GNU (gcc) compilers, there is no "/lib/gcc/..."
so when this is eventually expanded this is empty
resulting in an incomplete "-idirafter " that
eats the next argument:
-idirafter -B/nix/store/wamjwwdvkmhbf4f2902nhw8jxxzv0hy3-clang-wrapper-4.0.1/bin/
Certain tools, e.g. compilers, are customarily prefixed with the name of
their target platform so that multiple builds can be used at once
without clobbering each other on the PATH. I was using identifiers named
`prefix` for this purpose, but that conflicts with the standard use of
`prefix` to mean the directory where something is installed. To avoid
conflict and confusion, I renamed those to `targetPrefix`.
If a dynamic linker for target is not found the generated script fails
due to unbound variable error (due to "set -u"). Correct by specifying
default value with dynamicLinker:- and not generating ldflagsBefore if
no linker is found.
This problem was found when cross compiling to mingw32 targets
cc-wrapper may wrap a cc-compiler, but it doesn't need one to build
itself. (c.f. expand-response-params is a separate derivation.) This
helps avoid cycles on the cross stuff, in addition to removing a
useless dependency edge.
I could have been super careful with overrides in the stdenv to avoid
the mass rebuild, but I don't think it's worth it.
1. `crossDrv` is now the default so we don't need to worry about that in
build != host builds.
2. shell is the build time shell, so `wrapCCCross` doesn't need to
worry, as build == host.
3. `shell.shellPath` will always be appended where useful.
4. Complicated `shell == ""` logic served no purpose.
ccPath is only defined below, so this condition would never be true.
Worse, that's not quite true: what if somebody happend to have `/clang`
and no sandboxing. Boy, wouldn't that be annoying to debug!
Having multiple compilers in the build environment would result in an
invalid LD_DYLD_PATH like /usr/lib/dyld/usr/lib/dyld.
Since the path is hardcoded in XNU it can't be anything but
/usr/lib/dyld anyway.
This is an ugly temp hack for cross compilation, but now we have something better on the way.
Bind `infixSalt` as an environment variable as it will be used in it.
As described in https://github.com/NixOS/nixpkgs/issues/18461, MacOS no
longer accepts dylibs which only reexport other dylibs, because their
symbol tables are empty. To get around this, we define an object file
with a single "private extern" symbol, which hopefully won't clobber
anything.
As @oxij points out in [1], this breakage is especially serious because
it changes the contents of built environments without a corresonding
change in their hashes. Also, the revert is easier than I thought.
This reverts commit 3cb745d5a6.
[1]: https://github.com/NixOS/nixpkgs/pull/27427#issuecomment-317293040
Besides deduplicating overlapping logic, clear warning messages were
added for:
- No glob/path for dynamic linker provided (use default glob)
- Glob did not expand to anything (don't append flag)
- glob expanded to multiple things (take first, like before)
This makes those files a bit easier to read. Also, for what it's worth,
it brings us one baby step closer to handling spaces in store paths.
Also, I optimized handling of many transitive deps with read. Probably,
not very beneficial, but nice to enforce the pkg-per-line structure.
Doing so let me find much dubious code and fix it.
Two misc notes:
- `propagated-user-env-packages` also needed to be adjusted as
sometimes it is copied to/from the propagated input files.
- `local fd` should ensure that file descriptors aren't clobbered
during recursion.