The primary motivating example is openssl:
Before the change full package build took 1m54s minutes.
After the change full package build takes 59s.
About a 2x speedup.
The difference is visible because openssl builds hundreds of manpages
spawning a perl process per manual in `install` phase. Such a workload
is very easy to parallelize.
Another example would be `autotools`+`libtool` based build system where
install step requires relinking. The more binaries there are to relink
the more gain it will be to do it in parallel.
The change enables parallel installs by default only for buiilds that
already have parallel builds enabled. There is a high chance those build
systems already handle parallelism well but some packages will fail.
Consistently propagated the enableParallelBuilding to:
- cmake (enabled by default, similar to builds)
- ninja (set parallelism explicitly, don't rely on default)
- bmake (enable when requested)
- scons (enable when requested)
- meson (set parallelism explicitly, don't rely on default)
- waf (set parallelism explicitly, don't rely on default)
- qmake-4/5/6 (enable by default, similar to builds)
- xorg (always enable, similar to builds)
This continues #23374, which always kept around both attributes, by
always including both propagated files: `propgated-native-build-inputs`
and `propagated-build-inputs`. `nativePkgs` and `crossPkgs` are still
defined as before, however, so this change should only barely
observable.
This is an incremental step to fully keeping the dependencies separate
in all cases.
inputs did not get in)
Updating the xorg builder script to support cross building (in fact, support
for propagating the required build inputs).
svn path=/nixpkgs/branches/stdenv-updates/; revision=18569