nixpkgs/pkgs/applications/networking/browsers/chromium/common.nix

377 lines
14 KiB
Nix
Raw Normal View History

{ stdenv, lib, llvmPackages, gnChromium, ninja, which, nodejs, fetchpatch, fetchurl
# default dependencies
, gnutar, bzip2, flac, speex, libopus
, libevent, expat, libjpeg, snappy
, libpng, libcap
2021-02-01 08:05:09 +00:00
, xdg-utils, yasm, nasm, minizip, libwebp
chromium: use official build settings (#101467) LLD: https://lld.llvm.org/ When you link a large program on a multicore machine, you can expect that LLD runs more than twice as fast as the GNU gold linker. Your mileage may vary, though. Link-time optimization (LTO) is supported by default. Some default settings have been tuned for the 21st century. For example, the stack is marked as non-executable by default to tighten security. LTO & ThinLTO: https://clang.llvm.org/docs/ThinLTO.html LTO (Link Time Optimization) achieves better runtime performance through whole-program analysis and cross-module optimization. However, monolithic LTO implements this by merging all input into a single module, which is not scalable in time or memory, and also prevents fast incremental compiles. ThinLTO is a new approach that is designed to scale like a non-LTO build, while retaining most of the performance achievement of full LTO. PGO: https://llvm.org/docs/HowToBuildWithPGO.html https://blog.chromium.org/2020/08/chrome-just-got-faster-with-profile.html Allows your compiler to better optimize code for how it actually runs. Users report that applying this to Clang and LLVM can decrease overall compile time by 20%. Because PGO uses real usage scenarios that match the workflows of Chrome users around the world, the most common tasks get prioritized and made faster. Delivers up to 10% faster page loads. CFI: https://clang.llvm.org/docs/ControlFlowIntegrity.html https://www.chromium.org/developers/testing/control-flow-integrity Aborts the program upon detecting certain forms of undefined behavior that can potentially allow attackers to subvert the program’s control flow. These schemes have been optimized for performance, allowing developers to enable them in release builds. By default, a program compiled with CFI will crash with SIGILL if it detects a CFI violation. Additionally: Use minizip instead of zlib. Chromium says zlib but actually uses minizip. Remove old unused workarounds. Make shell scripts POSIX compliant. Update documentation URLs. Prepare for using system libraries.
2020-10-24 10:27:40 +00:00
, libusb1, pciutils, nss, re2
, python2, python3, perl, pkg-config
2021-03-14 16:11:48 +00:00
, nspr, systemd, libkrb5
, util-linux, alsa-lib
, bison, gperf
, glib, gtk3, dbus-glib
, glibc
, libXScrnSaver, libXcursor, libXtst, libxshmfence, libGLU, libGL
2014-12-07 13:52:36 +00:00
, protobuf, speechd, libXdamage, cups
, ffmpeg, libxslt, libxml2, at-spi2-core
2020-09-19 11:41:44 +00:00
, jre8
, pipewire
, libva
, libdrm, wayland, mesa, libxkbcommon # Ozone
, curl
# optional dependencies
, libgcrypt ? null # gnomeSupport || cupsSupport
# package customization
, gnomeSupport ? false, gnome2 ? null
, gnomeKeyringSupport ? false, libgnome-keyring3 ? null
, proprietaryCodecs ? true
2014-12-07 13:52:36 +00:00
, cupsSupport ? true
, pulseSupport ? false, libpulseaudio ? null
, ungoogled ? false, ungoogled-chromium
, channel
, upstream-info
}:
buildFun:
2021-01-15 13:21:58 +00:00
with lib;
let
2020-09-19 11:41:44 +00:00
jre = jre8; # TODO: remove override https://github.com/NixOS/nixpkgs/pull/89731
python2WithPackages = python2.withPackages(ps: with ps; [
ply jinja2 setuptools
]);
python3WithPackages = python3.withPackages(ps: with ps; [
ply jinja2 setuptools
]);
2020-09-19 11:41:44 +00:00
# The additional attributes for creating derivations based on the chromium
# source tree.
extraAttrs = buildFun base;
githubPatch = { commit, sha256, revert ? false }: fetchpatch {
url = "https://github.com/chromium/chromium/commit/${commit}.patch";
inherit sha256 revert;
};
mkGnFlags =
let
# Serialize Nix types into GN types according to this document:
chromium: use official build settings (#101467) LLD: https://lld.llvm.org/ When you link a large program on a multicore machine, you can expect that LLD runs more than twice as fast as the GNU gold linker. Your mileage may vary, though. Link-time optimization (LTO) is supported by default. Some default settings have been tuned for the 21st century. For example, the stack is marked as non-executable by default to tighten security. LTO & ThinLTO: https://clang.llvm.org/docs/ThinLTO.html LTO (Link Time Optimization) achieves better runtime performance through whole-program analysis and cross-module optimization. However, monolithic LTO implements this by merging all input into a single module, which is not scalable in time or memory, and also prevents fast incremental compiles. ThinLTO is a new approach that is designed to scale like a non-LTO build, while retaining most of the performance achievement of full LTO. PGO: https://llvm.org/docs/HowToBuildWithPGO.html https://blog.chromium.org/2020/08/chrome-just-got-faster-with-profile.html Allows your compiler to better optimize code for how it actually runs. Users report that applying this to Clang and LLVM can decrease overall compile time by 20%. Because PGO uses real usage scenarios that match the workflows of Chrome users around the world, the most common tasks get prioritized and made faster. Delivers up to 10% faster page loads. CFI: https://clang.llvm.org/docs/ControlFlowIntegrity.html https://www.chromium.org/developers/testing/control-flow-integrity Aborts the program upon detecting certain forms of undefined behavior that can potentially allow attackers to subvert the program’s control flow. These schemes have been optimized for performance, allowing developers to enable them in release builds. By default, a program compiled with CFI will crash with SIGILL if it detects a CFI violation. Additionally: Use minizip instead of zlib. Chromium says zlib but actually uses minizip. Remove old unused workarounds. Make shell scripts POSIX compliant. Update documentation URLs. Prepare for using system libraries.
2020-10-24 10:27:40 +00:00
# https://source.chromium.org/gn/gn/+/master:docs/language.md
mkGnString = value: "\"${escape ["\"" "$" "\\"] value}\"";
sanitize = value:
if value == true then "true"
else if value == false then "false"
else if isList value then "[${concatMapStringsSep ", " sanitize value}]"
else if isInt value then toString value
else if isString value then mkGnString value
else throw "Unsupported type for GN value `${value}'.";
toFlag = key: value: "${key}=${sanitize value}";
in attrs: concatStringsSep " " (attrValues (mapAttrs toFlag attrs));
chromium: use official build settings (#101467) LLD: https://lld.llvm.org/ When you link a large program on a multicore machine, you can expect that LLD runs more than twice as fast as the GNU gold linker. Your mileage may vary, though. Link-time optimization (LTO) is supported by default. Some default settings have been tuned for the 21st century. For example, the stack is marked as non-executable by default to tighten security. LTO & ThinLTO: https://clang.llvm.org/docs/ThinLTO.html LTO (Link Time Optimization) achieves better runtime performance through whole-program analysis and cross-module optimization. However, monolithic LTO implements this by merging all input into a single module, which is not scalable in time or memory, and also prevents fast incremental compiles. ThinLTO is a new approach that is designed to scale like a non-LTO build, while retaining most of the performance achievement of full LTO. PGO: https://llvm.org/docs/HowToBuildWithPGO.html https://blog.chromium.org/2020/08/chrome-just-got-faster-with-profile.html Allows your compiler to better optimize code for how it actually runs. Users report that applying this to Clang and LLVM can decrease overall compile time by 20%. Because PGO uses real usage scenarios that match the workflows of Chrome users around the world, the most common tasks get prioritized and made faster. Delivers up to 10% faster page loads. CFI: https://clang.llvm.org/docs/ControlFlowIntegrity.html https://www.chromium.org/developers/testing/control-flow-integrity Aborts the program upon detecting certain forms of undefined behavior that can potentially allow attackers to subvert the program’s control flow. These schemes have been optimized for performance, allowing developers to enable them in release builds. By default, a program compiled with CFI will crash with SIGILL if it detects a CFI violation. Additionally: Use minizip instead of zlib. Chromium says zlib but actually uses minizip. Remove old unused workarounds. Make shell scripts POSIX compliant. Update documentation URLs. Prepare for using system libraries.
2020-10-24 10:27:40 +00:00
# https://source.chromium.org/chromium/chromium/src/+/master:build/linux/unbundle/replace_gn_files.py
gnSystemLibraries = [
"ffmpeg"
"flac"
"libjpeg"
"libpng"
"libwebp"
"libxslt"
"opus"
"snappy"
"zlib"
];
opusWithCustomModes = libopus.override {
withCustomModes = true;
};
defaultDependencies = [
(libpng.override { apngSupport = false; }) # https://bugs.chromium.org/p/chromium/issues/detail?id=752403
bzip2 flac speex opusWithCustomModes
libevent expat libjpeg snappy
libcap
2021-02-01 08:05:09 +00:00
xdg-utils minizip libwebp
chromium: use official build settings (#101467) LLD: https://lld.llvm.org/ When you link a large program on a multicore machine, you can expect that LLD runs more than twice as fast as the GNU gold linker. Your mileage may vary, though. Link-time optimization (LTO) is supported by default. Some default settings have been tuned for the 21st century. For example, the stack is marked as non-executable by default to tighten security. LTO & ThinLTO: https://clang.llvm.org/docs/ThinLTO.html LTO (Link Time Optimization) achieves better runtime performance through whole-program analysis and cross-module optimization. However, monolithic LTO implements this by merging all input into a single module, which is not scalable in time or memory, and also prevents fast incremental compiles. ThinLTO is a new approach that is designed to scale like a non-LTO build, while retaining most of the performance achievement of full LTO. PGO: https://llvm.org/docs/HowToBuildWithPGO.html https://blog.chromium.org/2020/08/chrome-just-got-faster-with-profile.html Allows your compiler to better optimize code for how it actually runs. Users report that applying this to Clang and LLVM can decrease overall compile time by 20%. Because PGO uses real usage scenarios that match the workflows of Chrome users around the world, the most common tasks get prioritized and made faster. Delivers up to 10% faster page loads. CFI: https://clang.llvm.org/docs/ControlFlowIntegrity.html https://www.chromium.org/developers/testing/control-flow-integrity Aborts the program upon detecting certain forms of undefined behavior that can potentially allow attackers to subvert the program’s control flow. These schemes have been optimized for performance, allowing developers to enable them in release builds. By default, a program compiled with CFI will crash with SIGILL if it detects a CFI violation. Additionally: Use minizip instead of zlib. Chromium says zlib but actually uses minizip. Remove old unused workarounds. Make shell scripts POSIX compliant. Update documentation URLs. Prepare for using system libraries.
2020-10-24 10:27:40 +00:00
libusb1 re2
ffmpeg libxslt libxml2
nasm
];
# build paths and release info
packageName = extraAttrs.packageName or extraAttrs.name;
buildType = "Release";
buildPath = "out/${buildType}";
libExecPath = "$out/libexec/${packageName}";
warnObsoleteVersionConditional = min-version: result:
let ungoogled-version = (importJSON ./upstream-info.json).ungoogled-chromium.version;
in warnIf (versionAtLeast ungoogled-version min-version) "chromium: ungoogled version ${ungoogled-version} is newer than a conditional bounded at ${min-version}. You can safely delete it."
result;
chromiumVersionAtLeast = min-version:
let result = versionAtLeast upstream-info.version min-version;
in warnObsoleteVersionConditional min-version result;
versionRange = min-version: upto-version:
let inherit (upstream-info) version;
result = versionAtLeast version min-version && versionOlder version upto-version;
in warnObsoleteVersionConditional upto-version result;
ungoogler = ungoogled-chromium {
inherit (upstream-info.deps.ungoogled-patches) rev sha256;
};
base = rec {
name = "${packageName}-unwrapped-${version}";
inherit (upstream-info) version;
inherit packageName buildType buildPath;
src = fetchurl {
url = "https://commondatastorage.googleapis.com/chromium-browser-official/chromium-${version}.tar.xz";
inherit (upstream-info) sha256;
};
nativeBuildInputs = [
ninja pkg-config
python2WithPackages perl nodejs
gnutar which
llvmPackages.bintools
] ++ lib.optionals (chromiumVersionAtLeast "92") [
python3WithPackages
];
buildInputs = defaultDependencies ++ [
nspr nss systemd
util-linux alsa-lib
2021-03-14 16:11:48 +00:00
bison gperf libkrb5
glib gtk3 dbus-glib
libXScrnSaver libXcursor libXtst libxshmfence libGLU libGL
2021-04-04 17:17:49 +00:00
mesa # required for libgbm
pciutils protobuf speechd libXdamage at-spi2-core
2019-12-10 12:12:58 +00:00
jre
pipewire
libva
libdrm wayland mesa.drivers libxkbcommon
curl
] ++ optional gnomeKeyringSupport libgnome-keyring3
++ optionals gnomeSupport [ gnome2.GConf libgcrypt ]
2014-12-07 13:52:36 +00:00
++ optionals cupsSupport [ libgcrypt cups ]
++ optional pulseSupport libpulseaudio;
patches = [
./patches/no-build-timestamps.patch # Optional patch to use SOURCE_DATE_EPOCH in compute_build_timestamp.py (should be upstreamed)
./patches/widevine-79.patch # For bundling Widevine (DRM), might be replaceable via bundle_widevine_cdm=true in gnFlags
# Fix the build by adding a missing dependency (s. https://crbug.com/1197837):
./patches/fix-missing-atspi2-dependency.patch
./patches/closure_compiler-Use-the-Java-binary-from-the-system.patch
] ++ lib.optionals (chromiumVersionAtLeast "93") [
# We need to revert this patch to build M93 with LLVM 12.
(githubPatch {
# Reland "Replace 'blacklist' with 'ignorelist' in ./tools/msan/."
commit = "9d080c0934b848ee4a05013c78641e612fcc1e03";
sha256 = "1bxdhxmiy6h4acq26lq43x2mxx6rawmfmlgsh5j7w8kyhkw5af0c";
revert = true;
})
# To fix build errors with the older system FFmpeg:
(githubPatch {
# unbundle: add libavcodec/packet.h to shim headers
commit = "e4d228ec30607b06bf3fed77497abef89c29966a";
sha256 = "02jg2bdmgjcpmk6alb72jc93wy3nf2fpa72hb4aarq337i2mwn4v";
})
(githubPatch {
# Roll src/third_party/ffmpeg/ 7e1d53a09..cf7ee6598 (1000 commits)
commit = "3ec3b2992238d4b4764f99f04605e154688c7990";
sha256 = "1fwb154s5qcis490rvcvm14zrmaj59g5lg9zg8ada36vw9hycbrf";
revert = true;
})
];
2018-10-24 21:25:36 +00:00
postPatch = ''
chromium: use official build settings (#101467) LLD: https://lld.llvm.org/ When you link a large program on a multicore machine, you can expect that LLD runs more than twice as fast as the GNU gold linker. Your mileage may vary, though. Link-time optimization (LTO) is supported by default. Some default settings have been tuned for the 21st century. For example, the stack is marked as non-executable by default to tighten security. LTO & ThinLTO: https://clang.llvm.org/docs/ThinLTO.html LTO (Link Time Optimization) achieves better runtime performance through whole-program analysis and cross-module optimization. However, monolithic LTO implements this by merging all input into a single module, which is not scalable in time or memory, and also prevents fast incremental compiles. ThinLTO is a new approach that is designed to scale like a non-LTO build, while retaining most of the performance achievement of full LTO. PGO: https://llvm.org/docs/HowToBuildWithPGO.html https://blog.chromium.org/2020/08/chrome-just-got-faster-with-profile.html Allows your compiler to better optimize code for how it actually runs. Users report that applying this to Clang and LLVM can decrease overall compile time by 20%. Because PGO uses real usage scenarios that match the workflows of Chrome users around the world, the most common tasks get prioritized and made faster. Delivers up to 10% faster page loads. CFI: https://clang.llvm.org/docs/ControlFlowIntegrity.html https://www.chromium.org/developers/testing/control-flow-integrity Aborts the program upon detecting certain forms of undefined behavior that can potentially allow attackers to subvert the program’s control flow. These schemes have been optimized for performance, allowing developers to enable them in release builds. By default, a program compiled with CFI will crash with SIGILL if it detects a CFI violation. Additionally: Use minizip instead of zlib. Chromium says zlib but actually uses minizip. Remove old unused workarounds. Make shell scripts POSIX compliant. Update documentation URLs. Prepare for using system libraries.
2020-10-24 10:27:40 +00:00
# remove unused third-party
for lib in ${toString gnSystemLibraries}; do
if [ -d "third_party/$lib" ]; then
find "third_party/$lib" -type f \
\! -path "third_party/$lib/chromium/*" \
\! -path "third_party/$lib/google/*" \
\! -path "third_party/harfbuzz-ng/utils/hb_scoped.h" \
\! -regex '.*\.\(gn\|gni\|isolate\)' \
-delete
fi
done
# Required for patchShebangs (unsupported interpreter directive, basename: invalid option -- '*', etc.):
chromium: use official build settings (#101467) LLD: https://lld.llvm.org/ When you link a large program on a multicore machine, you can expect that LLD runs more than twice as fast as the GNU gold linker. Your mileage may vary, though. Link-time optimization (LTO) is supported by default. Some default settings have been tuned for the 21st century. For example, the stack is marked as non-executable by default to tighten security. LTO & ThinLTO: https://clang.llvm.org/docs/ThinLTO.html LTO (Link Time Optimization) achieves better runtime performance through whole-program analysis and cross-module optimization. However, monolithic LTO implements this by merging all input into a single module, which is not scalable in time or memory, and also prevents fast incremental compiles. ThinLTO is a new approach that is designed to scale like a non-LTO build, while retaining most of the performance achievement of full LTO. PGO: https://llvm.org/docs/HowToBuildWithPGO.html https://blog.chromium.org/2020/08/chrome-just-got-faster-with-profile.html Allows your compiler to better optimize code for how it actually runs. Users report that applying this to Clang and LLVM can decrease overall compile time by 20%. Because PGO uses real usage scenarios that match the workflows of Chrome users around the world, the most common tasks get prioritized and made faster. Delivers up to 10% faster page loads. CFI: https://clang.llvm.org/docs/ControlFlowIntegrity.html https://www.chromium.org/developers/testing/control-flow-integrity Aborts the program upon detecting certain forms of undefined behavior that can potentially allow attackers to subvert the program’s control flow. These schemes have been optimized for performance, allowing developers to enable them in release builds. By default, a program compiled with CFI will crash with SIGILL if it detects a CFI violation. Additionally: Use minizip instead of zlib. Chromium says zlib but actually uses minizip. Remove old unused workarounds. Make shell scripts POSIX compliant. Update documentation URLs. Prepare for using system libraries.
2020-10-24 10:27:40 +00:00
substituteInPlace native_client/SConstruct --replace "#! -*- python -*-" ""
if [ -e third_party/harfbuzz-ng/src/src/update-unicode-tables.make ]; then
substituteInPlace third_party/harfbuzz-ng/src/src/update-unicode-tables.make \
--replace "/usr/bin/env -S make -f" "/usr/bin/make -f"
fi
chmod -x third_party/webgpu-cts/src/tools/deno
# We want to be able to specify where the sandbox is via CHROME_DEVEL_SANDBOX
substituteInPlace sandbox/linux/suid/client/setuid_sandbox_host.cc \
--replace \
'return sandbox_binary;' \
'return base::FilePath(GetDevelSandboxPath());'
substituteInPlace services/audio/audio_sandbox_hook_linux.cc \
--replace \
'/usr/share/alsa/' \
'${alsa-lib}/share/alsa/' \
--replace \
'/usr/lib/x86_64-linux-gnu/gconv/' \
'${glibc}/lib/gconv/' \
--replace \
'/usr/share/locale/' \
'${glibc}/share/locale/'
2021-02-01 08:05:09 +00:00
sed -i -e 's@"\(#!\)\?.*xdg-@"\1${xdg-utils}/bin/xdg-@' \
chrome/browser/shell_integration_linux.cc
sed -i -e '/lib_loader.*Load/s!"\(libudev\.so\)!"${lib.getLib systemd}/lib/\1!' \
device/udev_linux/udev?_loader.cc
sed -i -e '/libpci_loader.*Load/s!"\(libpci\.so\)!"${pciutils}/lib/\1!' \
gpu/config/gpu_info_collector_linux.cc
# Allow to put extensions into the system-path.
sed -i -e 's,/usr,/run/current-system/sw,' chrome/common/chrome_paths.cc
patchShebangs .
# use our own nodejs
mkdir -p third_party/node/linux/node-linux-x64/bin
chromium: use official build settings (#101467) LLD: https://lld.llvm.org/ When you link a large program on a multicore machine, you can expect that LLD runs more than twice as fast as the GNU gold linker. Your mileage may vary, though. Link-time optimization (LTO) is supported by default. Some default settings have been tuned for the 21st century. For example, the stack is marked as non-executable by default to tighten security. LTO & ThinLTO: https://clang.llvm.org/docs/ThinLTO.html LTO (Link Time Optimization) achieves better runtime performance through whole-program analysis and cross-module optimization. However, monolithic LTO implements this by merging all input into a single module, which is not scalable in time or memory, and also prevents fast incremental compiles. ThinLTO is a new approach that is designed to scale like a non-LTO build, while retaining most of the performance achievement of full LTO. PGO: https://llvm.org/docs/HowToBuildWithPGO.html https://blog.chromium.org/2020/08/chrome-just-got-faster-with-profile.html Allows your compiler to better optimize code for how it actually runs. Users report that applying this to Clang and LLVM can decrease overall compile time by 20%. Because PGO uses real usage scenarios that match the workflows of Chrome users around the world, the most common tasks get prioritized and made faster. Delivers up to 10% faster page loads. CFI: https://clang.llvm.org/docs/ControlFlowIntegrity.html https://www.chromium.org/developers/testing/control-flow-integrity Aborts the program upon detecting certain forms of undefined behavior that can potentially allow attackers to subvert the program’s control flow. These schemes have been optimized for performance, allowing developers to enable them in release builds. By default, a program compiled with CFI will crash with SIGILL if it detects a CFI violation. Additionally: Use minizip instead of zlib. Chromium says zlib but actually uses minizip. Remove old unused workarounds. Make shell scripts POSIX compliant. Update documentation URLs. Prepare for using system libraries.
2020-10-24 10:27:40 +00:00
ln -s "$(command -v node)" third_party/node/linux/node-linux-x64/bin/node
# Allow building against system libraries in official builds
sed -i 's/OFFICIAL_BUILD/GOOGLE_CHROME_BUILD/' tools/generate_shim_headers/generate_shim_headers.py
2018-01-21 13:31:54 +00:00
'' + optionalString stdenv.isAarch64 ''
substituteInPlace build/toolchain/linux/BUILD.gn \
--replace 'toolprefix = "aarch64-linux-gnu-"' 'toolprefix = ""'
'' + optionalString ungoogled ''
${ungoogler}/utils/prune_binaries.py . ${ungoogler}/pruning.list || echo "some errors"
${ungoogler}/utils/patches.py . ${ungoogler}/patches
${ungoogler}/utils/domain_substitution.py apply -r ${ungoogler}/domain_regex.list -f ${ungoogler}/domain_substitution.list -c ./ungoogled-domsubcache.tar.gz .
'';
gnFlags = mkGnFlags ({
is_official_build = true;
chromium: use official build settings (#101467) LLD: https://lld.llvm.org/ When you link a large program on a multicore machine, you can expect that LLD runs more than twice as fast as the GNU gold linker. Your mileage may vary, though. Link-time optimization (LTO) is supported by default. Some default settings have been tuned for the 21st century. For example, the stack is marked as non-executable by default to tighten security. LTO & ThinLTO: https://clang.llvm.org/docs/ThinLTO.html LTO (Link Time Optimization) achieves better runtime performance through whole-program analysis and cross-module optimization. However, monolithic LTO implements this by merging all input into a single module, which is not scalable in time or memory, and also prevents fast incremental compiles. ThinLTO is a new approach that is designed to scale like a non-LTO build, while retaining most of the performance achievement of full LTO. PGO: https://llvm.org/docs/HowToBuildWithPGO.html https://blog.chromium.org/2020/08/chrome-just-got-faster-with-profile.html Allows your compiler to better optimize code for how it actually runs. Users report that applying this to Clang and LLVM can decrease overall compile time by 20%. Because PGO uses real usage scenarios that match the workflows of Chrome users around the world, the most common tasks get prioritized and made faster. Delivers up to 10% faster page loads. CFI: https://clang.llvm.org/docs/ControlFlowIntegrity.html https://www.chromium.org/developers/testing/control-flow-integrity Aborts the program upon detecting certain forms of undefined behavior that can potentially allow attackers to subvert the program’s control flow. These schemes have been optimized for performance, allowing developers to enable them in release builds. By default, a program compiled with CFI will crash with SIGILL if it detects a CFI violation. Additionally: Use minizip instead of zlib. Chromium says zlib but actually uses minizip. Remove old unused workarounds. Make shell scripts POSIX compliant. Update documentation URLs. Prepare for using system libraries.
2020-10-24 10:27:40 +00:00
custom_toolchain = "//build/toolchain/linux/unbundle:default";
host_toolchain = "//build/toolchain/linux/unbundle:default";
system_wayland_scanner_path = "${wayland}/bin/wayland-scanner";
2015-12-29 18:32:30 +00:00
use_sysroot = false;
use_gnome_keyring = gnomeKeyringSupport;
use_gio = gnomeSupport;
# ninja: error: '../../native_client/toolchain/linux_x86/pnacl_newlib/bin/x86_64-nacl-objcopy',
# needed by 'nacl_irt_x86_64.nexe', missing and no known rule to make it
enable_nacl = false;
# Enabling the Widevine component here doesn't affect whether we can
# redistribute the chromium package; the Widevine component is either
# added later in the wrapped -wv build or downloaded from Google.
enable_widevine = true;
use_cups = cupsSupport;
# Provides the enable-webrtc-pipewire-capturer flag to support Wayland screen capture.
rtc_use_pipewire = true;
treat_warnings_as_errors = false;
clang_use_chrome_plugins = false;
blink_symbol_level = 0;
symbol_level = 0;
fieldtrial_testing_like_official_build = true;
# Google API key, see: https://www.chromium.org/developers/how-tos/api-keys
# Note: The API key is for NixOS/nixpkgs use ONLY.
# For your own distribution, please get your own set of keys.
google_api_key = "AIzaSyDGi15Zwl11UNe6Y-5XW_upsfyw31qwZPI";
} // optionalAttrs proprietaryCodecs {
# enable support for the H.264 codec
proprietary_codecs = true;
enable_hangout_services_extension = true;
ffmpeg_branding = "Chrome";
} // optionalAttrs pulseSupport {
use_pulseaudio = true;
link_pulseaudio = true;
# Disable PGO (defaults to 2 since M89) because it fails without additional changes:
# error: Could not read profile ../../chrome/build/pgo_profiles/chrome-linux-master-1610647094-405a32bcf15e5a84949640f99f84a5b9f61e2f2e.profdata: Unsupported instrumentation profile format version
chrome_pgo_phase = 0;
# Disable build with TFLite library because it fails without additional changes:
# ninja: error: '../../chrome/test/data/simple_test.tflite', needed by 'test_data/simple_test.tflite', missing and no known rule to make it
# Note: chrome/test/data/simple_test.tflite is in the Git repository but not in chromium-90.0.4400.8.tar.xz
# See also chrome/services/machine_learning/README.md
build_with_tflite_lib = false;
} // optionalAttrs ungoogled {
chrome_pgo_phase = 0;
enable_hangout_services_extension = false;
enable_js_type_check = false;
enable_mdns = false;
enable_nacl_nonsfi = false;
enable_one_click_signin = false;
enable_reading_list = false;
enable_remoting = false;
enable_reporting = false;
enable_service_discovery = false;
exclude_unwind_tables = true;
google_api_key = "";
google_default_client_id = "";
google_default_client_secret = "";
safe_browsing_mode = 0;
use_official_google_api_keys = false;
use_unofficial_version_number = false;
} // (extraAttrs.gnFlags or {}));
configurePhase = ''
runHook preConfigure
# This is to ensure expansion of $out.
libExecPath="${libExecPath}"
${python2}/bin/python2 build/linux/unbundle/replace_gn_files.py --system-libraries ${toString gnSystemLibraries}
${gnChromium}/bin/gn gen --args=${escapeShellArg gnFlags} out/Release | tee gn-gen-outputs.txt
# Fail if `gn gen` contains a WARNING.
grep -o WARNING gn-gen-outputs.txt && echo "Found gn WARNING, exiting nix build" && exit 1
runHook postConfigure
'';
# Don't spam warnings about unknown warning options. This is useful because
# our Clang is always older than Chromium's and the build logs have a size
# of approx. 25 MB without this option (and this saves e.g. 66 %).
NIX_CFLAGS_COMPILE = "-Wno-unknown-warning-option";
buildPhase = let
buildCommand = target: ''
2020-10-16 12:54:34 +00:00
ninja -C "${buildPath}" -j$NIX_BUILD_CORES -l$NIX_BUILD_CORES "${target}"
(
source chrome/installer/linux/common/installer.include
PACKAGE=$packageName
MENUNAME="Chromium"
process_template chrome/app/resources/manpage.1.in "${buildPath}/chrome.1"
)
2014-04-25 01:58:33 +00:00
'';
targets = extraAttrs.buildTargets or [];
commands = map buildCommand targets;
in concatStringsSep "\n" commands;
postFixup = ''
# Make sure that libGLESv2 is found by dlopen (if using EGL).
chromiumBinary="$libExecPath/$packageName"
origRpath="$(patchelf --print-rpath "$chromiumBinary")"
patchelf --set-rpath "${libGL}/lib:$origRpath" "$chromiumBinary"
'';
passthru = {
updateScript = ./update.py;
chromiumDeps = {
gn = gnChromium;
};
};
};
# Remove some extraAttrs we supplied to the base attributes already.
in stdenv.mkDerivation (base // removeAttrs extraAttrs [
"name" "gnFlags" "buildTargets"
] // { passthru = base.passthru // (extraAttrs.passthru or {}); })