nixpkgs/doc/build-helpers/images/dockertools.section.md

780 lines
29 KiB
Markdown
Raw Normal View History

# pkgs.dockerTools {#sec-pkgs-dockerTools}
`pkgs.dockerTools` is a set of functions for creating and manipulating Docker images according to the [Docker Image Specification v1.3.0](https://github.com/moby/moby/blob/46f7ab808b9504d735d600e259ca0723f76fb164/image/spec/spec.md#image-json-field-descriptions).
Docker itself is not used to perform any of the operations done by these functions.
## buildImage {#ssec-pkgs-dockerTools-buildImage}
This function builds a Docker-compatible repository tarball containing a single image.
As such, the result is suitable for being loaded in Docker with `docker load` (see [](#ex-dockerTools-buildImage) for how to do this).
This function will create a single layer for all files (and dependencies) that are specified in its argument.
Only new dependencies that are not already in the existing layers will be copied.
If you prefer to create multiple layers for the files and dependencies you want to add to the image, see [](#ssec-pkgs-dockerTools-buildLayeredImage) or [](#ssec-pkgs-dockerTools-streamLayeredImage) instead.
`buildImage` allows scripts to be run during the layer generation process, allowing custom behaviour to affect the contents of the image (see the documentation of the `runAsRoot` and `extraCommands` attributes).
The resulting repository tarball will only list a single image as specified by the `name` and `tag` attributes.
By default, that image will use a static creation date (see documentation for the `created` attribute).
This allows `buildImage` to produce reproducible images.
:::{.tip}
When running an image built with `buildImage`, you might encounter certain errors depending on what you included in the image, especially if you did not start with any base image.
If you encounter errors similar to `getProtocolByName: does not exist (no such protocol name: tcp)`, you may need to add the contents of `pkgs.iana-etc` in the `copyToRoot` attribute.
Similarly, if you encounter errors similar to `Error_Protocol ("certificate has unknown CA",True,UnknownCa)`, you may need to add the contents of `pkgs.cacert` in the `copyToRoot` attribute.
:::
### Inputs {#ssec-pkgs-dockerTools-buildImage-inputs}
`buildImage` expects an argument with the following attributes:
`name` (String)
: The name of the generated image.
`tag` (String or Null; _optional_)
: Tag of the generated image.
If `null`, the hash of the nix derivation will be used as the tag.
_Default value:_ `null`.
`fromImage` (Path or Null; _optional_)
: The repository tarball of an image to be used as the base for the generated image.
It must be a valid Docker image, such as one exported by `docker save`, or another image built with the `dockerTools` utility functions.
This can be seen as an equivalent of `FROM fromImage` in a `Dockerfile`.
A value of `null` can be seen as an equivalent of `FROM scratch`.
If specified, the layer created by `buildImage` will be appended to the layers defined in the base image, resulting in an image with at least two layers (one or more layers from the base image, and the layer created by `buildImage`).
Otherwise, the resulting image with contain the single layer created by `buildImage`.
_Default value:_ `null`.
`fromImageName` (String or Null; _optional_)
: Used to specify the image within the repository tarball in case it contains multiple images.
A value of `null` means that `buildImage` will use the first image available in the repository.
:::{.note}
This must be used with `fromImageTag`. Using only `fromImageName` without `fromImageTag` will make `buildImage` use the first image available in the repository.
:::
_Default value:_ `null`.
`fromImageTag` (String or Null; _optional_)
: Used to specify the image within the repository tarball in case it contains multiple images.
A value of `null` means that `buildImage` will use the first image available in the repository.
:::{.note}
This must be used with `fromImageName`. Using only `fromImageTag` without `fromImageName` will make `buildImage` use the first image available in the repository
:::
_Default value:_ `null`.
`copyToRoot` (Path, List of Paths, or Null; _optional_)
: Files to add to the generated image.
This can be either a path or a list of paths.
Anything that coerces to a path (e.g. a derivation) can also be used.
This can be seen as an equivalent of `ADD contents/ /` in a `Dockerfile`.
_Default value:_ `null`.
`keepContentsDirlinks` (Boolean; _optional_)
: When adding files to the generated image (as specified by `copyToRoot`), this attribute controls whether to preserve symlinks to directories.
If `false`, the symlinks will be transformed into directories.
This behaves the same as `rsync -k` when `keepContentsDirlinks` is `false`, and the same as `rsync -K` when `keepContentsDirlinks` is `true`.
_Default value:_ `false`.
`runAsRoot` (String or Null; _optional_)
: A bash script that will run as root inside a VM that contains the existing layers of the base image and the new generated layer (including the files from `copyToRoot`).
The script will be run with a working directory of `/`.
This can be seen as an equivalent of `RUN ...` in a `Dockerfile`.
A value of `null` means that this step in the image generation process will be skipped.
See [](#ex-dockerTools-buildImage-runAsRoot) for how to work with this attribute.
:::{.caution}
Using this attribute requires the `kvm` device to be available, see [`system-features`](https://nixos.org/manual/nix/stable/command-ref/conf-file.html#conf-system-features).
If the `kvm` device isn't available, you should consider using [`buildLayeredImage`](#ssec-pkgs-dockerTools-buildLayeredImage) or [`streamLayeredImage`](#ssec-pkgs-dockerTools-streamLayeredImage) instead.
Those functions allow scripts to be run as root without access to the `kvm` device.
:::
:::{.note}
At the time the script in `runAsRoot` is run, the files specified directly in `copyToRoot` will be present in the VM, but their dependencies might not be there yet.
Copying their dependencies into the generated image is a step that happens after `runAsRoot` finishes running.
:::
_Default value:_ `null`.
`extraCommands` (String; _optional_)
: A bash script that will run before the layer created by `buildImage` is finalised.
The script will be run on some (opaque) working directory which will become `/` once the layer is created.
This is similar to `runAsRoot`, but the script specified in `extraCommands` is **not** run as root, and does not involve creating a VM.
It is simply run as part of building the derivation that outputs the layer created by `buildImage`.
See [](#ex-dockerTools-buildImage-extraCommands) for how to work with this attribute, and subtle differences compared to `runAsRoot`.
_Default value:_ `""`.
`config` (Attribute Set; _optional_)
: Used to specify the configuration of the containers that will be started off the generated image.
Must be an attribute set, with each attribute as listed in the [Docker Image Specification v1.3.0](https://github.com/moby/moby/blob/46f7ab808b9504d735d600e259ca0723f76fb164/image/spec/spec.md#image-json-field-descriptions).
_Default value:_ `null`.
`architecture` (String; _optional_)
: Used to specify the image architecture.
This is useful for multi-architecture builds that don't need cross compiling.
If specified, its value should follow the [OCI Image Configuration Specification](https://github.com/opencontainers/image-spec/blob/main/config.md#properties), which should still be compatible with Docker.
According to the linked specification, all possible values for `$GOARCH` in [the Go docs](https://go.dev/doc/install/source#environment) should be valid, but will commonly be one of `386`, `amd64`, `arm`, or `arm64`.
_Default value:_ the same value from `pkgs.go.GOARCH`.
`diskSize` (Number; _optional_)
: Controls the disk size (in megabytes) of the VM used to run the script specified in `runAsRoot`.
This attribute is ignored if `runAsRoot` is `null`.
_Default value:_ 1024.
`buildVMMemorySize` (Number; _optional_)
: Controls the amount of memory (in megabytes) provisioned for the VM used to run the script specified in `runAsRoot`.
This attribute is ignored if `runAsRoot` is `null`.
_Default value:_ 512.
`created` (String; _optional_)
: Specifies the time of creation of the generated image.
This should be either a date and time formatted according to [ISO-8601](https://en.wikipedia.org/wiki/ISO_8601) or `"now"`, in which case `buildImage` will use the current date.
See [](#ex-dockerTools-buildImage-creatednow) for how to use `"now"`.
:::{.caution}
Using `"now"` means that the generated image will not be reproducible anymore (because the date will always change whenever it's built).
:::
_Default value:_ `"1970-01-01T00:00:01Z"`.
`uid` (Number; _optional_)
: The uid of the user that will own the files packed in the new layer built by `buildImage`.
_Default value:_ 0.
`gid` (Number; _optional_)
: The gid of the group that will own the files packed in the new layer built by `buildImage`.
_Default value:_ 0.
`contents` **DEPRECATED**
: This attribute is deprecated, and users are encouraged to use `copyToRoot` instead.
### Passthru outputs {#ssec-pkgs-dockerTools-buildImage-passthru-outputs}
`buildImage` defines a few [`passthru`](#var-stdenv-passthru) attributes:
`buildArgs` (Attribute Set)
: The argument passed to `buildImage` itself.
This allows you to inspect all attributes specified in the argument, as described above.
`layer` (Attribute Set)
: The derivation with the layer created by `buildImage`.
This allows easier inspection of the contents added by `buildImage` in the generated image.
`imageTag` (String)
: The tag of the generated image.
This is useful if no tag was specified in the attributes of the argument to `buildImage`, because an automatic tag will be used instead.
`imageTag` allows you to retrieve the value of the tag used in this case.
### Examples {#ssec-pkgs-dockerTools-buildImage-examples}
:::{.example #ex-dockerTools-buildImage}
# Building a Docker image
The following package builds a Docker image that runs the `redis-server` executable from the `redis` package.
The Docker image will have name `redis` and tag `latest`.
```nix
{ dockerTools, buildEnv, redis }:
dockerTools.buildImage {
name = "redis";
tag = "latest";
copyToRoot = buildEnv {
name = "image-root";
paths = [ redis ];
pathsToLink = [ "/bin" ];
};
runAsRoot = ''
mkdir -p /data
'';
config = {
Cmd = [ "/bin/redis-server" ];
WorkingDir = "/data";
Volumes = { "/data" = { }; };
};
}
```
The result of building this package is a `.tar.gz` file that can be loaded into Docker:
```shell
$ nix-build
(some output removed for clarity)
building '/nix/store/yw0adm4wpsw1w6j4fb5hy25b3arr9s1v-docker-image-redis.tar.gz.drv'...
Adding layer...
tar: Removing leading `/' from member names
Adding meta...
Cooking the image...
Finished.
/nix/store/p4dsg62inh9d2ksy3c7bv58xa851dasr-docker-image-redis.tar.gz
$ docker load -i /nix/store/p4dsg62inh9d2ksy3c7bv58xa851dasr-docker-image-redis.tar.gz
(some output removed for clarity)
Loaded image: redis:latest
```
:::
:::{.example #ex-dockerTools-buildImage-runAsRoot}
# Building a Docker image with `runAsRoot`
The following package builds a Docker image with the `hello` executable from the `hello` package.
It uses `runAsRoot` to create a directory and a file inside the image.
This works the same as [](#ex-dockerTools-buildImage-extraCommands), but uses `runAsRoot` instead of `extraCommands`.
```nix
{ dockerTools, buildEnv, hello }:
dockerTools.buildImage {
name = "hello";
tag = "latest";
copyToRoot = buildEnv {
name = "image-root";
paths = [ hello ];
pathsToLink = [ "/bin" ];
};
runAsRoot = ''
mkdir -p /data
echo "some content" > my-file
'';
config = {
Cmd = [ "/bin/hello" ];
WorkingDir = "/data";
};
}
```
:::
:::{.example #ex-dockerTools-buildImage-extraCommands}
# Building a Docker image with `extraCommands`
The following package builds a Docker image with the `hello` executable from the `hello` package.
It uses `extraCommands` to create a directory and a file inside the image.
This works the same as [](#ex-dockerTools-buildImage-runAsRoot), but uses `extraCommands` instead of `runAsRoot`.
Note that with `extraCommands`, we can't directly reference `/` and must create files and directories as if we were already on `/`.
```nix
{ dockerTools, buildEnv, hello }:
dockerTools.buildImage {
name = "hello";
tag = "latest";
copyToRoot = buildEnv {
name = "image-root";
paths = [ hello ];
pathsToLink = [ "/bin" ];
};
extraCommands = ''
mkdir -p data
echo "some content" > my-file
'';
config = {
Cmd = [ "/bin/hello" ];
WorkingDir = "/data";
};
}
```
:::
:::{.example #ex-dockerTools-buildImage-creatednow}
# Building a Docker image with a creation date set to the current time
Note that using a value of `"now"` in the `created` attribute will break reproducibility.
```nix
{ dockerTools, buildEnv, hello }:
dockerTools.buildImage {
name = "hello";
tag = "latest";
created = "now";
copyToRoot = buildEnv {
name = "image-root";
paths = [ hello ];
pathsToLink = [ "/bin" ];
};
config.Cmd = [ "/bin/hello" ];
}
```
After importing the generated repository tarball with Docker, its CLI will display a reasonable date and sort the images as expected:
```ShellSession
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello latest de2bf4786de6 About a minute ago 25.2MB
```
:::
## buildLayeredImage {#ssec-pkgs-dockerTools-buildLayeredImage}
Create a Docker image with many of the store paths being on their own layer to improve sharing between images. The image is realized into the Nix store as a gzipped tarball. Depending on the intended usage, many users might prefer to use `streamLayeredImage` instead, which this function uses internally.
`name`
: The name of the resulting image.
`tag` _optional_
: Tag of the generated image.
*Default:* the output path's hash
`fromImage` _optional_
: The repository tarball containing the base image. It must be a valid Docker image, such as one exported by `docker save`.
*Default:* `null`, which can be seen as equivalent to `FROM scratch` of a `Dockerfile`.
`contents` _optional_
2022-03-10 19:43:29 +00:00
: Top-level paths in the container. Either a single derivation, or a list of derivations.
*Default:* `[]`
`config` _optional_
`architecture` is _optional_ and used to specify the image architecture, this is useful for multi-architecture builds that don't need cross compiling. If not specified it will default to `hostPlatform`.
2023-01-26 23:45:59 +00:00
: Run-time configuration of the container. A full list of the options available is in the [Docker Image Specification v1.2.0](https://github.com/moby/moby/blob/master/image/spec/v1.2.md#image-json-field-descriptions).
*Default:* `{}`
`created` _optional_
: Date and time the layers were created. Follows the same `now` exception supported by `buildImage`.
*Default:* `1970-01-01T00:00:01Z`
`maxLayers` _optional_
: Maximum number of layers to create.
*Default:* `100`
*Maximum:* `125`
`extraCommands` _optional_
: Shell commands to run while building the final layer, without access to most of the layer contents. Changes to this layer are "on top" of all the other layers, so can create additional directories and files.
`fakeRootCommands` _optional_
: Shell commands to run while creating the archive for the final layer in a fakeroot environment. Unlike `extraCommands`, you can run `chown` to change the owners of the files in the archive, changing fakeroot's state instead of the real filesystem. The latter would require privileges that the build user does not have. Static binaries do not interact with the fakeroot environment. By default all files in the archive will be owned by root.
`enableFakechroot` _optional_
: Whether to run in `fakeRootCommands` in `fakechroot`, making programs behave as though `/` is the root of the image being created, while files in the Nix store are available as usual. This allows scripts that perform installation in `/` to work as expected. Considering that `fakechroot` is implemented via the same mechanism as `fakeroot`, the same caveats apply.
*Default:* `false`
### Behavior of `contents` in the final image {#dockerTools-buildLayeredImage-arg-contents}
Each path directly listed in `contents` will have a symlink in the root of the image.
For example:
```nix
pkgs.dockerTools.buildLayeredImage {
name = "hello";
contents = [ pkgs.hello ];
}
```
will create symlinks for all the paths in the `hello` package:
```ShellSession
/bin/hello -> /nix/store/h1zb1padqbbb7jicsvkmrym3r6snphxg-hello-2.10/bin/hello
/share/info/hello.info -> /nix/store/h1zb1padqbbb7jicsvkmrym3r6snphxg-hello-2.10/share/info/hello.info
/share/locale/bg/LC_MESSAGES/hello.mo -> /nix/store/h1zb1padqbbb7jicsvkmrym3r6snphxg-hello-2.10/share/locale/bg/LC_MESSAGES/hello.mo
```
### Automatic inclusion of `config` references {#dockerTools-buildLayeredImage-arg-config}
The closure of `config` is automatically included in the closure of the final image.
This allows you to make very simple Docker images with very little code. This container will start up and run `hello`:
```nix
pkgs.dockerTools.buildLayeredImage {
name = "hello";
config.Cmd = [ "${pkgs.hello}/bin/hello" ];
}
```
### Adjusting `maxLayers` {#dockerTools-buildLayeredImage-arg-maxLayers}
Increasing the `maxLayers` increases the number of layers which have a chance to be shared between different images.
2022-03-10 19:43:29 +00:00
Modern Docker installations support up to 128 layers, but older versions support as few as 42.
2022-03-10 19:43:29 +00:00
If the produced image will not be extended by other Docker builds, it is safe to set `maxLayers` to `128`. However, it will be impossible to extend the image further.
The first (`maxLayers-2`) most "popular" paths will have their own individual layers, then layer \#`maxLayers-1` will contain all the remaining "unpopular" paths, and finally layer \#`maxLayers` will contain the Image configuration.
Docker's Layers are not inherently ordered, they are content-addressable and are not explicitly layered until they are composed in to an Image.
## streamLayeredImage {#ssec-pkgs-dockerTools-streamLayeredImage}
Builds a script which, when run, will stream an uncompressed tarball of a Docker image to stdout. The arguments to this function are as for `buildLayeredImage`. This method of constructing an image does not realize the image into the Nix store, so it saves on IO and disk/cache space, particularly with large images.
The image produced by running the output script can be piped directly into `docker load`, to load it into the local docker daemon:
```ShellSession
$(nix-build) | docker load
```
2022-03-10 19:43:29 +00:00
Alternatively, the image be piped via `gzip` into `skopeo`, e.g., to copy it into a registry:
```ShellSession
$(nix-build) | gzip --fast | skopeo copy docker-archive:/dev/stdin docker://some_docker_registry/myimage:tag
```
## pullImage {#ssec-pkgs-dockerTools-fetchFromRegistry}
This function is analogous to the `docker pull` command, in that it can be used to pull a Docker image from a Docker registry. By default [Docker Hub](https://hub.docker.com/) is used to pull images.
Its parameters are described in the example below:
```nix
pullImage {
imageName = "nixos/nix";
imageDigest =
"sha256:473a2b527958665554806aea24d0131bacec46d23af09fef4598eeab331850fa";
finalImageName = "nix";
finalImageTag = "2.11.1";
sha256 = "sha256-qvhj+Hlmviz+KEBVmsyPIzTB3QlVAFzwAY1zDPIBGxc=";
os = "linux";
arch = "x86_64";
}
```
- `imageName` specifies the name of the image to be downloaded, which can also include the registry namespace (e.g. `nixos`). This argument is required.
- `imageDigest` specifies the digest of the image to be downloaded. This argument is required.
- `finalImageName`, if specified, this is the name of the image to be created. Note it is never used to fetch the image since we prefer to rely on the immutable digest ID. By default it's equal to `imageName`.
- `finalImageTag`, if specified, this is the tag of the image to be created. Note it is never used to fetch the image since we prefer to rely on the immutable digest ID. By default it's `latest`.
- `sha256` is the checksum of the whole fetched image. This argument is required.
- `os`, if specified, is the operating system of the fetched image. By default it's `linux`.
- `arch`, if specified, is the cpu architecture of the fetched image. By default it's `x86_64`.
`nix-prefetch-docker` command can be used to get required image parameters:
```ShellSession
$ nix run nixpkgs#nix-prefetch-docker -- --image-name mysql --image-tag 5
```
Since a given `imageName` may transparently refer to a manifest list of images which support multiple architectures and/or operating systems, you can supply the `--os` and `--arch` arguments to specify exactly which image you want. By default it will match the OS and architecture of the host the command is run on.
```ShellSession
$ nix-prefetch-docker --image-name mysql --image-tag 5 --arch x86_64 --os linux
```
Desired image name and tag can be set using `--final-image-name` and `--final-image-tag` arguments:
```ShellSession
$ nix-prefetch-docker --image-name mysql --image-tag 5 --final-image-name eu.gcr.io/my-project/mysql --final-image-tag prod
```
## exportImage {#ssec-pkgs-dockerTools-exportImage}
This function is analogous to the `docker export` command, in that it can be used to flatten a Docker image that contains multiple layers. It is in fact the result of the merge of all the layers of the image. As such, the result is suitable for being imported in Docker with `docker import`.
> **_NOTE:_** Using this function requires the `kvm` device to be available.
The parameters of `exportImage` are the following:
```nix
exportImage {
fromImage = someLayeredImage;
fromImageName = null;
fromImageTag = null;
name = someLayeredImage.name;
}
```
The parameters relative to the base image have the same synopsis as described in [buildImage](#ssec-pkgs-dockerTools-buildImage), except that `fromImage` is the only required argument in this case.
The `name` argument is the name of the derivation output, which defaults to `fromImage.name`.
## Environment Helpers {#ssec-pkgs-dockerTools-helpers}
Some packages expect certain files to be available globally.
When building an image from scratch (i.e. without `fromImage`), these files are missing.
`pkgs.dockerTools` provides some helpers to set up an environment with the necessary files.
You can include them in `copyToRoot` like this:
```nix
buildImage {
name = "environment-example";
copyToRoot = with pkgs.dockerTools; [
usrBinEnv
binSh
caCertificates
fakeNss
];
}
```
### usrBinEnv {#sssec-pkgs-dockerTools-helpers-usrBinEnv}
This provides the `env` utility at `/usr/bin/env`.
### binSh {#sssec-pkgs-dockerTools-helpers-binSh}
This provides `bashInteractive` at `/bin/sh`.
### caCertificates {#sssec-pkgs-dockerTools-helpers-caCertificates}
This sets up `/etc/ssl/certs/ca-certificates.crt`.
### fakeNss {#sssec-pkgs-dockerTools-helpers-fakeNss}
Provides `/etc/passwd` and `/etc/group` that contain root and nobody.
Useful when packaging binaries that insist on using nss to look up
username/groups (like nginx).
### shadowSetup {#ssec-pkgs-dockerTools-shadowSetup}
This constant string is a helper for setting up the base files for managing users and groups, only if such files don't exist already. It is suitable for being used in a [`buildImage` `runAsRoot`](#ex-dockerTools-buildImage-runAsRoot) script for cases like in the example below:
```nix
buildImage {
name = "shadow-basic";
runAsRoot = ''
#!${pkgs.runtimeShell}
${pkgs.dockerTools.shadowSetup}
groupadd -r redis
useradd -r -g redis redis
mkdir /data
chown redis:redis /data
'';
}
```
Creating base files like `/etc/passwd` or `/etc/login.defs` is necessary for shadow-utils to manipulate users and groups.
2022-05-23 10:04:04 +00:00
## fakeNss {#ssec-pkgs-dockerTools-fakeNss}
If your primary goal is providing a basic skeleton for user lookups to work,
and/or a lesser privileged user, adding `pkgs.fakeNss` to
the container image root might be the better choice than a custom script
running `useradd` and friends.
2022-05-23 10:04:04 +00:00
It provides a `/etc/passwd` and `/etc/group`, containing `root` and `nobody`
users and groups.
It also provides a `/etc/nsswitch.conf`, configuring NSS host resolution to
first check `/etc/hosts`, before checking DNS, as the default in the absence of
a config file (`dns [!UNAVAIL=return] files`) is quite unexpected.
You can pair it with `binSh`, which provides `bin/sh` as a symlink
2022-05-23 10:04:04 +00:00
to `bashInteractive` (as `/bin/sh` is configured as a shell).
```nix
buildImage {
name = "shadow-basic";
copyToRoot = pkgs.buildEnv {
name = "image-root";
paths = [ binSh pkgs.fakeNss ];
pathsToLink = [ "/bin" "/etc" "/var" ];
};
2022-05-23 10:04:04 +00:00
}
```
## buildNixShellImage {#ssec-pkgs-dockerTools-buildNixShellImage}
Create a Docker image that sets up an environment similar to that of running `nix-shell` on a derivation.
When run in Docker, this environment somewhat resembles the Nix sandbox typically used by `nix-build`, with a major difference being that access to the internet is allowed.
It additionally also behaves like an interactive `nix-shell`, running things like `shellHook` and setting an interactive prompt.
If the derivation is fully buildable (i.e. `nix-build` can be used on it), running `buildDerivation` inside such a Docker image will build the derivation, with all its outputs being available in the correct `/nix/store` paths, pointed to by the respective environment variables like `$out`, etc.
::: {.warning}
The behavior doesn't match `nix-shell` or `nix-build` exactly and this function is known not to work correctly for e.g. fixed-output derivations, content-addressed derivations, impure derivations and other special types of derivations.
:::
### Arguments {#ssec-pkgs-dockerTools-buildNixShellImage-arguments}
`drv`
: The derivation on which to base the Docker image.
Adding packages to the Docker image is possible by e.g. extending the list of `nativeBuildInputs` of this derivation like
```nix
buildNixShellImage {
drv = someDrv.overrideAttrs (old: {
nativeBuildInputs = old.nativeBuildInputs or [] ++ [
somethingExtra
];
});
# ...
}
```
Similarly, you can extend the image initialization script by extending `shellHook`
`name` _optional_
: The name of the resulting image.
*Default:* `drv.name + "-env"`
`tag` _optional_
: Tag of the generated image.
*Default:* the resulting image derivation output path's hash
`uid`/`gid` _optional_
: The user/group ID to run the container as. This is like a `nixbld` build user.
*Default:* 1000/1000
`homeDirectory` _optional_
: The home directory of the user the container is running as
*Default:* `/build`
`shell` _optional_
: The path to the `bash` binary to use as the shell. This shell is started when running the image.
*Default:* `pkgs.bashInteractive + "/bin/bash"`
`command` _optional_
: Run this command in the environment of the derivation, in an interactive shell. See the `--command` option in the [`nix-shell` documentation](https://nixos.org/manual/nix/stable/command-ref/nix-shell.html?highlight=nix-shell#options).
*Default:* (none)
`run` _optional_
: Same as `command`, but runs the command in a non-interactive shell instead. See the `--run` option in the [`nix-shell` documentation](https://nixos.org/manual/nix/stable/command-ref/nix-shell.html?highlight=nix-shell#options).
*Default:* (none)
### Example {#ssec-pkgs-dockerTools-buildNixShellImage-example}
The following shows how to build the `pkgs.hello` package inside a Docker container built with `buildNixShellImage`.
```nix
with import <nixpkgs> {};
dockerTools.buildNixShellImage {
drv = hello;
}
```
Build the derivation:
```console
nix-build hello.nix
```
these 8 derivations will be built:
/nix/store/xmw3a5ln29rdalavcxk1w3m4zb2n7kk6-nix-shell-rc.drv
...
Creating layer 56 from paths: ['/nix/store/crpnj8ssz0va2q0p5ibv9i6k6n52gcya-stdenv-linux']
Creating layer 57 with customisation...
Adding manifests...
Done.
/nix/store/cpyn1lc897ghx0rhr2xy49jvyn52bazv-hello-2.12-env.tar.gz
Load the image:
```console
docker load -i result
```
0d9f4c4cd109: Loading layer [==================================================>] 2.56MB/2.56MB
...
ab1d897c0697: Loading layer [==================================================>] 10.24kB/10.24kB
Loaded image: hello-2.12-env:pgj9h98nal555415faa43vsydg161bdz
Run the container:
```console
docker run -it hello-2.12-env:pgj9h98nal555415faa43vsydg161bdz
```
[nix-shell:/build]$
In the running container, run the build:
```console
buildDerivation
```
unpacking sources
unpacking source archive /nix/store/8nqv6kshb3vs5q5bs2k600xpj5bkavkc-hello-2.12.tar.gz
...
patching script interpreter paths in /nix/store/z5wwy5nagzy15gag42vv61c2agdpz2f2-hello-2.12
checking for references to /build/ in /nix/store/z5wwy5nagzy15gag42vv61c2agdpz2f2-hello-2.12...
Check the build result:
```console
$out/bin/hello
```
Hello, world!