nix/doc/manual/build-farm.xml
Eelco Dolstra 59a26360c7 Support mandatory system features in the build hook
Mandatory features are features that MUST be present in a derivation's
requiredSystemFeatures attribute.  One application is performance
testing, where we have a dedicated machine to run performance tests
(and nothing else).  Then we would add the label "perf" to the
machine's mandatory features and to the performance testing
derivations.
2012-04-30 17:22:45 -04:00

114 lines
5.4 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<chapter xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xml:id='chap-distributed-builds'>
<title>Setting Up Distributed Builds</title>
<para>Nix supports distributed builds: a local Nix installation can
forward Nix builds to other machines over the network. This allows
multiple builds to be performed in parallel (thus improving
performance) and allows Nix to perform multi-platform builds in a
semi-transparent way. For instance, if you perform a build for a
<literal>powerpc-darwin</literal> on an <literal>i686-linux</literal>
machine, Nix can automatically forward the build to a
<literal>powerpc-darwin</literal> machine, if available.</para>
<para>You can enable distributed builds by setting the environment
variable <envar>NIX_BUILD_HOOK</envar> to point to a program that Nix
will call whenever it wants to build a derivation. The build hook
(typically a shell or Perl script) can decline the build, in which Nix
will perform it in the usual way if possible, or it can accept it, in
which case it is responsible for somehow getting the inputs of the
build to another machine, doing the build there, and getting the
results back. The details of the build hook protocol are described in
the documentation of the <link
linkend="envar-build-hook"><envar>NIX_BUILD_HOOK</envar>
variable</link>.</para>
<example xml:id='ex-remote-systems'><title>Remote machine configuration:
<filename>remote-systems.conf</filename></title>
<programlisting>
nix@mcflurry.labs.cs.uu.nl powerpc-darwin /home/nix/.ssh/id_quarterpounder_auto 2
nix@scratchy.labs.cs.uu.nl i686-linux /home/nix/.ssh/id_scratchy_auto 8 1 kvm
nix@itchy.labs.cs.uu.nl i686-linux /home/nix/.ssh/id_scratchy_auto 8 2
nix@poochie.labs.cs.uu.nl i686-linux /home/nix/.ssh/id_scratchy_auto 8 2 kvm perf
</programlisting>
</example>
<para>Nix ships with a build hook that should be suitable for most
purposes. It uses <command>ssh</command> and
<command>nix-copy-closure</command> to copy the build inputs and
outputs and perform the remote build. To use it, you should set
<envar>NIX_BUILD_HOOK</envar> to
<filename><replaceable>prefix</replaceable>/libexec/nix/build-remote.pl</filename>.
You should also define a list of available build machines and point
the environment variable <envar>NIX_REMOTE_SYSTEMS</envar> to it. An
example configuration is shown in <xref linkend='ex-remote-systems'
/>. Each line in the file specifies a machine, with the following
bits of information:
<orderedlist>
<listitem><para>The name of the remote machine, with optionally the
user under which the remote build should be performed. This is
actually passed as an argument to <command>ssh</command>, so it can
be an alias defined in your
<filename>~/.ssh/config</filename>.</para></listitem>
<listitem><para>A comma-separated list of Nix platform type
identifiers, such as <literal>powerpc-darwin</literal>. It is
possible for a machine to support multiple platform types, e.g.,
<literal>i686-linux,x86_64-linux</literal>.</para></listitem>
<listitem><para>The SSH private key to be used to log in to the
remote machine. Since builds should be non-interactive, this key
should not have a passphrase!</para></listitem>
<listitem><para>The maximum number of builds that
<filename>build-remote.pl</filename> will execute in parallel on the
machine. Typically this should be equal to the number of CPU cores.
For instance, the machine <literal>itchy</literal> in the example
will execute up to 8 builds in parallel.</para></listitem>
<listitem><para>The “speed factor”, indicating the relative speed of
the machine. If there are multiple machines of the right type, Nix
will prefer the fastest, taking load into account.</para></listitem>
<listitem><para>A comma-separated list of <emphasis>supported
features</emphasis>. If a derivation has the
<varname>requiredSystemFeatures</varname> attribute, then
<filename>build-remote.pl</filename> will only perform the
derivation on a machine that has the specified features. For
instance, the attribute
<programlisting>
requiredSystemFeatures = [ "kvm" ];
</programlisting>
will cause the build to be performed on a machine that has the
<literal>kvm</literal> feature (i.e., <literal>scratchy</literal> in
the example above).</para></listitem>
<listitem><para>A comma-separated list of <emphasis>mandatory
features</emphasis>. A machine will only be used to build a
derivation if all of the machines mandatory features appear in the
derivations <varname>requiredSystemFeatures</varname> attribute.
Thus, in the example, the machine <literal>poochie</literal> will
only do derivations that have
<varname>requiredSystemFeatures</varname> set to <literal>["kvm"
"perf"]</literal> or <literal>["perf"]</literal>.</para></listitem>
</orderedlist>
You should also set up the environment variable
<envar>NIX_CURRENT_LOAD</envar> to point at a directory (e.g.,
<filename>/var/run/nix/current-load</filename>) that
<filename>build-remote.pl</filename> uses to remember how many builds
it is currently executing remotely. It doesn't look at the actual
load on the remote machine, so if you have multiple instances of Nix
running, they should use the same <envar>NIX_CURRENT_LOAD</envar>
file. Maybe in the future <filename>build-remote.pl</filename> will
look at the actual remote load.</para>
</chapter>