mirror of
https://github.com/embassy-rs/embassy.git
synced 2024-11-22 06:42:32 +00:00
629 lines
19 KiB
Rust
629 lines
19 KiB
Rust
//! Serial Peripheral Interface
|
|
use core::marker::PhantomData;
|
|
|
|
use embassy_embedded_hal::SetConfig;
|
|
use embassy_futures::join::join;
|
|
use embassy_hal_internal::{into_ref, PeripheralRef};
|
|
pub use embedded_hal_02::spi::{Phase, Polarity};
|
|
|
|
use crate::dma::{AnyChannel, Channel};
|
|
use crate::gpio::{AnyPin, Pin as GpioPin, SealedPin as _};
|
|
use crate::{pac, peripherals, Peripheral};
|
|
|
|
/// SPI errors.
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
|
#[non_exhaustive]
|
|
pub enum Error {
|
|
// No errors for now
|
|
}
|
|
|
|
/// SPI configuration.
|
|
#[non_exhaustive]
|
|
#[derive(Clone)]
|
|
pub struct Config {
|
|
/// Frequency.
|
|
pub frequency: u32,
|
|
/// Phase.
|
|
pub phase: Phase,
|
|
/// Polarity.
|
|
pub polarity: Polarity,
|
|
}
|
|
|
|
impl Default for Config {
|
|
fn default() -> Self {
|
|
Self {
|
|
frequency: 1_000_000,
|
|
phase: Phase::CaptureOnFirstTransition,
|
|
polarity: Polarity::IdleLow,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// SPI driver.
|
|
pub struct Spi<'d, T: Instance, M: Mode> {
|
|
inner: PeripheralRef<'d, T>,
|
|
tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
|
|
rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
|
|
phantom: PhantomData<(&'d mut T, M)>,
|
|
}
|
|
|
|
fn div_roundup(a: u32, b: u32) -> u32 {
|
|
(a + b - 1) / b
|
|
}
|
|
|
|
fn calc_prescs(freq: u32) -> (u8, u8) {
|
|
let clk_peri = crate::clocks::clk_peri_freq();
|
|
|
|
// final SPI frequency: spi_freq = clk_peri / presc / postdiv
|
|
// presc must be in 2..=254, and must be even
|
|
// postdiv must be in 1..=256
|
|
|
|
// divide extra by 2, so we get rid of the "presc must be even" requirement
|
|
let ratio = div_roundup(clk_peri, freq * 2);
|
|
if ratio > 127 * 256 {
|
|
panic!("Requested too low SPI frequency");
|
|
}
|
|
|
|
let presc = div_roundup(ratio, 256);
|
|
let postdiv = if presc == 1 { ratio } else { div_roundup(ratio, presc) };
|
|
|
|
((presc * 2) as u8, (postdiv - 1) as u8)
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> Spi<'d, T, M> {
|
|
fn new_inner(
|
|
inner: impl Peripheral<P = T> + 'd,
|
|
clk: Option<PeripheralRef<'d, AnyPin>>,
|
|
mosi: Option<PeripheralRef<'d, AnyPin>>,
|
|
miso: Option<PeripheralRef<'d, AnyPin>>,
|
|
cs: Option<PeripheralRef<'d, AnyPin>>,
|
|
tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
|
|
rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(inner);
|
|
|
|
let p = inner.regs();
|
|
let (presc, postdiv) = calc_prescs(config.frequency);
|
|
|
|
p.cpsr().write(|w| w.set_cpsdvsr(presc));
|
|
p.cr0().write(|w| {
|
|
w.set_dss(0b0111); // 8bit
|
|
w.set_spo(config.polarity == Polarity::IdleHigh);
|
|
w.set_sph(config.phase == Phase::CaptureOnSecondTransition);
|
|
w.set_scr(postdiv);
|
|
});
|
|
|
|
// Always enable DREQ signals -- harmless if DMA is not listening
|
|
p.dmacr().write(|reg| {
|
|
reg.set_rxdmae(true);
|
|
reg.set_txdmae(true);
|
|
});
|
|
|
|
// finally, enable.
|
|
p.cr1().write(|w| w.set_sse(true));
|
|
|
|
if let Some(pin) = &clk {
|
|
pin.gpio().ctrl().write(|w| w.set_funcsel(1));
|
|
}
|
|
if let Some(pin) = &mosi {
|
|
pin.gpio().ctrl().write(|w| w.set_funcsel(1));
|
|
}
|
|
if let Some(pin) = &miso {
|
|
pin.gpio().ctrl().write(|w| w.set_funcsel(1));
|
|
}
|
|
if let Some(pin) = &cs {
|
|
pin.gpio().ctrl().write(|w| w.set_funcsel(1));
|
|
}
|
|
Self {
|
|
inner,
|
|
tx_dma,
|
|
rx_dma,
|
|
phantom: PhantomData,
|
|
}
|
|
}
|
|
|
|
/// Write data to SPI blocking execution until done.
|
|
pub fn blocking_write(&mut self, data: &[u8]) -> Result<(), Error> {
|
|
let p = self.inner.regs();
|
|
for &b in data {
|
|
while !p.sr().read().tnf() {}
|
|
p.dr().write(|w| w.set_data(b as _));
|
|
while !p.sr().read().rne() {}
|
|
let _ = p.dr().read();
|
|
}
|
|
self.flush()?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Transfer data in place to SPI blocking execution until done.
|
|
pub fn blocking_transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Error> {
|
|
let p = self.inner.regs();
|
|
for b in data {
|
|
while !p.sr().read().tnf() {}
|
|
p.dr().write(|w| w.set_data(*b as _));
|
|
while !p.sr().read().rne() {}
|
|
*b = p.dr().read().data() as u8;
|
|
}
|
|
self.flush()?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Read data from SPI blocking execution until done.
|
|
pub fn blocking_read(&mut self, data: &mut [u8]) -> Result<(), Error> {
|
|
let p = self.inner.regs();
|
|
for b in data {
|
|
while !p.sr().read().tnf() {}
|
|
p.dr().write(|w| w.set_data(0));
|
|
while !p.sr().read().rne() {}
|
|
*b = p.dr().read().data() as u8;
|
|
}
|
|
self.flush()?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Transfer data to SPI blocking execution until done.
|
|
pub fn blocking_transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> {
|
|
let p = self.inner.regs();
|
|
let len = read.len().max(write.len());
|
|
for i in 0..len {
|
|
let wb = write.get(i).copied().unwrap_or(0);
|
|
while !p.sr().read().tnf() {}
|
|
p.dr().write(|w| w.set_data(wb as _));
|
|
while !p.sr().read().rne() {}
|
|
let rb = p.dr().read().data() as u8;
|
|
if let Some(r) = read.get_mut(i) {
|
|
*r = rb;
|
|
}
|
|
}
|
|
self.flush()?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Block execution until SPI is done.
|
|
pub fn flush(&mut self) -> Result<(), Error> {
|
|
let p = self.inner.regs();
|
|
while p.sr().read().bsy() {}
|
|
Ok(())
|
|
}
|
|
|
|
/// Set SPI frequency.
|
|
pub fn set_frequency(&mut self, freq: u32) {
|
|
let (presc, postdiv) = calc_prescs(freq);
|
|
let p = self.inner.regs();
|
|
// disable
|
|
p.cr1().write(|w| w.set_sse(false));
|
|
|
|
// change stuff
|
|
p.cpsr().write(|w| w.set_cpsdvsr(presc));
|
|
p.cr0().modify(|w| {
|
|
w.set_scr(postdiv);
|
|
});
|
|
|
|
// enable
|
|
p.cr1().write(|w| w.set_sse(true));
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> Spi<'d, T, Blocking> {
|
|
/// Create an SPI driver in blocking mode.
|
|
pub fn new_blocking(
|
|
inner: impl Peripheral<P = T> + 'd,
|
|
clk: impl Peripheral<P = impl ClkPin<T> + 'd> + 'd,
|
|
mosi: impl Peripheral<P = impl MosiPin<T> + 'd> + 'd,
|
|
miso: impl Peripheral<P = impl MisoPin<T> + 'd> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(clk, mosi, miso);
|
|
Self::new_inner(
|
|
inner,
|
|
Some(clk.map_into()),
|
|
Some(mosi.map_into()),
|
|
Some(miso.map_into()),
|
|
None,
|
|
None,
|
|
None,
|
|
config,
|
|
)
|
|
}
|
|
|
|
/// Create an SPI driver in blocking mode supporting writes only.
|
|
pub fn new_blocking_txonly(
|
|
inner: impl Peripheral<P = T> + 'd,
|
|
clk: impl Peripheral<P = impl ClkPin<T> + 'd> + 'd,
|
|
mosi: impl Peripheral<P = impl MosiPin<T> + 'd> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(clk, mosi);
|
|
Self::new_inner(
|
|
inner,
|
|
Some(clk.map_into()),
|
|
Some(mosi.map_into()),
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
config,
|
|
)
|
|
}
|
|
|
|
/// Create an SPI driver in blocking mode supporting reads only.
|
|
pub fn new_blocking_rxonly(
|
|
inner: impl Peripheral<P = T> + 'd,
|
|
clk: impl Peripheral<P = impl ClkPin<T> + 'd> + 'd,
|
|
miso: impl Peripheral<P = impl MisoPin<T> + 'd> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(clk, miso);
|
|
Self::new_inner(
|
|
inner,
|
|
Some(clk.map_into()),
|
|
None,
|
|
Some(miso.map_into()),
|
|
None,
|
|
None,
|
|
None,
|
|
config,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> Spi<'d, T, Async> {
|
|
/// Create an SPI driver in async mode supporting DMA operations.
|
|
pub fn new(
|
|
inner: impl Peripheral<P = T> + 'd,
|
|
clk: impl Peripheral<P = impl ClkPin<T> + 'd> + 'd,
|
|
mosi: impl Peripheral<P = impl MosiPin<T> + 'd> + 'd,
|
|
miso: impl Peripheral<P = impl MisoPin<T> + 'd> + 'd,
|
|
tx_dma: impl Peripheral<P = impl Channel> + 'd,
|
|
rx_dma: impl Peripheral<P = impl Channel> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(tx_dma, rx_dma, clk, mosi, miso);
|
|
Self::new_inner(
|
|
inner,
|
|
Some(clk.map_into()),
|
|
Some(mosi.map_into()),
|
|
Some(miso.map_into()),
|
|
None,
|
|
Some(tx_dma.map_into()),
|
|
Some(rx_dma.map_into()),
|
|
config,
|
|
)
|
|
}
|
|
|
|
/// Create an SPI driver in async mode supporting DMA write operations only.
|
|
pub fn new_txonly(
|
|
inner: impl Peripheral<P = T> + 'd,
|
|
clk: impl Peripheral<P = impl ClkPin<T> + 'd> + 'd,
|
|
mosi: impl Peripheral<P = impl MosiPin<T> + 'd> + 'd,
|
|
tx_dma: impl Peripheral<P = impl Channel> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(tx_dma, clk, mosi);
|
|
Self::new_inner(
|
|
inner,
|
|
Some(clk.map_into()),
|
|
Some(mosi.map_into()),
|
|
None,
|
|
None,
|
|
Some(tx_dma.map_into()),
|
|
None,
|
|
config,
|
|
)
|
|
}
|
|
|
|
/// Create an SPI driver in async mode supporting DMA read operations only.
|
|
pub fn new_rxonly(
|
|
inner: impl Peripheral<P = T> + 'd,
|
|
clk: impl Peripheral<P = impl ClkPin<T> + 'd> + 'd,
|
|
miso: impl Peripheral<P = impl MisoPin<T> + 'd> + 'd,
|
|
rx_dma: impl Peripheral<P = impl Channel> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(rx_dma, clk, miso);
|
|
Self::new_inner(
|
|
inner,
|
|
Some(clk.map_into()),
|
|
None,
|
|
Some(miso.map_into()),
|
|
None,
|
|
None,
|
|
Some(rx_dma.map_into()),
|
|
config,
|
|
)
|
|
}
|
|
|
|
/// Write data to SPI using DMA.
|
|
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
|
|
let tx_ch = self.tx_dma.as_mut().unwrap();
|
|
let tx_transfer = unsafe {
|
|
// If we don't assign future to a variable, the data register pointer
|
|
// is held across an await and makes the future non-Send.
|
|
crate::dma::write(tx_ch, buffer, self.inner.regs().dr().as_ptr() as *mut _, T::TX_DREQ)
|
|
};
|
|
tx_transfer.await;
|
|
|
|
let p = self.inner.regs();
|
|
while p.sr().read().bsy() {}
|
|
|
|
// clear RX FIFO contents to prevent stale reads
|
|
while p.sr().read().rne() {
|
|
let _: u16 = p.dr().read().data();
|
|
}
|
|
// clear RX overrun interrupt
|
|
p.icr().write(|w| w.set_roric(true));
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Read data from SPI using DMA.
|
|
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
|
|
// Start RX first. Transfer starts when TX starts, if RX
|
|
// is not started yet we might lose bytes.
|
|
let rx_ch = self.rx_dma.as_mut().unwrap();
|
|
let rx_transfer = unsafe {
|
|
// If we don't assign future to a variable, the data register pointer
|
|
// is held across an await and makes the future non-Send.
|
|
crate::dma::read(rx_ch, self.inner.regs().dr().as_ptr() as *const _, buffer, T::RX_DREQ)
|
|
};
|
|
|
|
let tx_ch = self.tx_dma.as_mut().unwrap();
|
|
let tx_transfer = unsafe {
|
|
// If we don't assign future to a variable, the data register pointer
|
|
// is held across an await and makes the future non-Send.
|
|
crate::dma::write_repeated(
|
|
tx_ch,
|
|
self.inner.regs().dr().as_ptr() as *mut u8,
|
|
buffer.len(),
|
|
T::TX_DREQ,
|
|
)
|
|
};
|
|
join(tx_transfer, rx_transfer).await;
|
|
Ok(())
|
|
}
|
|
|
|
/// Transfer data to SPI using DMA.
|
|
pub async fn transfer(&mut self, rx_buffer: &mut [u8], tx_buffer: &[u8]) -> Result<(), Error> {
|
|
self.transfer_inner(rx_buffer, tx_buffer).await
|
|
}
|
|
|
|
/// Transfer data in place to SPI using DMA.
|
|
pub async fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Error> {
|
|
self.transfer_inner(words, words).await
|
|
}
|
|
|
|
async fn transfer_inner(&mut self, rx_ptr: *mut [u8], tx_ptr: *const [u8]) -> Result<(), Error> {
|
|
let (_, tx_len) = crate::dma::slice_ptr_parts(tx_ptr);
|
|
let (_, rx_len) = crate::dma::slice_ptr_parts_mut(rx_ptr);
|
|
|
|
// Start RX first. Transfer starts when TX starts, if RX
|
|
// is not started yet we might lose bytes.
|
|
let rx_ch = self.rx_dma.as_mut().unwrap();
|
|
let rx_transfer = unsafe {
|
|
// If we don't assign future to a variable, the data register pointer
|
|
// is held across an await and makes the future non-Send.
|
|
crate::dma::read(rx_ch, self.inner.regs().dr().as_ptr() as *const _, rx_ptr, T::RX_DREQ)
|
|
};
|
|
|
|
let mut tx_ch = self.tx_dma.as_mut().unwrap();
|
|
// If we don't assign future to a variable, the data register pointer
|
|
// is held across an await and makes the future non-Send.
|
|
let tx_transfer = async {
|
|
let p = self.inner.regs();
|
|
unsafe {
|
|
crate::dma::write(&mut tx_ch, tx_ptr, p.dr().as_ptr() as *mut _, T::TX_DREQ).await;
|
|
|
|
if rx_len > tx_len {
|
|
let write_bytes_len = rx_len - tx_len;
|
|
// write dummy data
|
|
// this will disable incrementation of the buffers
|
|
crate::dma::write_repeated(tx_ch, p.dr().as_ptr() as *mut u8, write_bytes_len, T::TX_DREQ).await
|
|
}
|
|
}
|
|
};
|
|
join(tx_transfer, rx_transfer).await;
|
|
|
|
// if tx > rx we should clear any overflow of the FIFO SPI buffer
|
|
if tx_len > rx_len {
|
|
let p = self.inner.regs();
|
|
while p.sr().read().bsy() {}
|
|
|
|
// clear RX FIFO contents to prevent stale reads
|
|
while p.sr().read().rne() {
|
|
let _: u16 = p.dr().read().data();
|
|
}
|
|
// clear RX overrun interrupt
|
|
p.icr().write(|w| w.set_roric(true));
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
trait SealedMode {}
|
|
|
|
trait SealedInstance {
|
|
const TX_DREQ: u8;
|
|
const RX_DREQ: u8;
|
|
|
|
fn regs(&self) -> pac::spi::Spi;
|
|
}
|
|
|
|
/// Mode.
|
|
#[allow(private_bounds)]
|
|
pub trait Mode: SealedMode {}
|
|
|
|
/// SPI instance trait.
|
|
#[allow(private_bounds)]
|
|
pub trait Instance: SealedInstance {}
|
|
|
|
macro_rules! impl_instance {
|
|
($type:ident, $irq:ident, $tx_dreq:expr, $rx_dreq:expr) => {
|
|
impl SealedInstance for peripherals::$type {
|
|
const TX_DREQ: u8 = $tx_dreq;
|
|
const RX_DREQ: u8 = $rx_dreq;
|
|
|
|
fn regs(&self) -> pac::spi::Spi {
|
|
pac::$type
|
|
}
|
|
}
|
|
impl Instance for peripherals::$type {}
|
|
};
|
|
}
|
|
|
|
impl_instance!(SPI0, Spi0, 16, 17);
|
|
impl_instance!(SPI1, Spi1, 18, 19);
|
|
|
|
/// CLK pin.
|
|
pub trait ClkPin<T: Instance>: GpioPin {}
|
|
/// CS pin.
|
|
pub trait CsPin<T: Instance>: GpioPin {}
|
|
/// MOSI pin.
|
|
pub trait MosiPin<T: Instance>: GpioPin {}
|
|
/// MISO pin.
|
|
pub trait MisoPin<T: Instance>: GpioPin {}
|
|
|
|
macro_rules! impl_pin {
|
|
($pin:ident, $instance:ident, $function:ident) => {
|
|
impl $function<peripherals::$instance> for peripherals::$pin {}
|
|
};
|
|
}
|
|
|
|
impl_pin!(PIN_0, SPI0, MisoPin);
|
|
impl_pin!(PIN_1, SPI0, CsPin);
|
|
impl_pin!(PIN_2, SPI0, ClkPin);
|
|
impl_pin!(PIN_3, SPI0, MosiPin);
|
|
impl_pin!(PIN_4, SPI0, MisoPin);
|
|
impl_pin!(PIN_5, SPI0, CsPin);
|
|
impl_pin!(PIN_6, SPI0, ClkPin);
|
|
impl_pin!(PIN_7, SPI0, MosiPin);
|
|
impl_pin!(PIN_8, SPI1, MisoPin);
|
|
impl_pin!(PIN_9, SPI1, CsPin);
|
|
impl_pin!(PIN_10, SPI1, ClkPin);
|
|
impl_pin!(PIN_11, SPI1, MosiPin);
|
|
impl_pin!(PIN_12, SPI1, MisoPin);
|
|
impl_pin!(PIN_13, SPI1, CsPin);
|
|
impl_pin!(PIN_14, SPI1, ClkPin);
|
|
impl_pin!(PIN_15, SPI1, MosiPin);
|
|
impl_pin!(PIN_16, SPI0, MisoPin);
|
|
impl_pin!(PIN_17, SPI0, CsPin);
|
|
impl_pin!(PIN_18, SPI0, ClkPin);
|
|
impl_pin!(PIN_19, SPI0, MosiPin);
|
|
impl_pin!(PIN_20, SPI0, MisoPin);
|
|
impl_pin!(PIN_21, SPI0, CsPin);
|
|
impl_pin!(PIN_22, SPI0, ClkPin);
|
|
impl_pin!(PIN_23, SPI0, MosiPin);
|
|
impl_pin!(PIN_24, SPI1, MisoPin);
|
|
impl_pin!(PIN_25, SPI1, CsPin);
|
|
impl_pin!(PIN_26, SPI1, ClkPin);
|
|
impl_pin!(PIN_27, SPI1, MosiPin);
|
|
impl_pin!(PIN_28, SPI1, MisoPin);
|
|
impl_pin!(PIN_29, SPI1, CsPin);
|
|
|
|
macro_rules! impl_mode {
|
|
($name:ident) => {
|
|
impl SealedMode for $name {}
|
|
impl Mode for $name {}
|
|
};
|
|
}
|
|
|
|
/// Blocking mode.
|
|
pub struct Blocking;
|
|
/// Async mode.
|
|
pub struct Async;
|
|
|
|
impl_mode!(Blocking);
|
|
impl_mode!(Async);
|
|
|
|
// ====================
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::spi::Transfer<u8> for Spi<'d, T, M> {
|
|
type Error = Error;
|
|
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
|
|
self.blocking_transfer_in_place(words)?;
|
|
Ok(words)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::spi::Write<u8> for Spi<'d, T, M> {
|
|
type Error = Error;
|
|
|
|
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(words)
|
|
}
|
|
}
|
|
|
|
impl embedded_hal_1::spi::Error for Error {
|
|
fn kind(&self) -> embedded_hal_1::spi::ErrorKind {
|
|
match *self {}
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_1::spi::ErrorType for Spi<'d, T, M> {
|
|
type Error = Error;
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> embedded_hal_1::spi::SpiBus<u8> for Spi<'d, T, M> {
|
|
fn flush(&mut self) -> Result<(), Self::Error> {
|
|
Ok(())
|
|
}
|
|
|
|
fn read(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.blocking_transfer(words, &[])
|
|
}
|
|
|
|
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_write(words)
|
|
}
|
|
|
|
fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Self::Error> {
|
|
self.blocking_transfer(read, write)
|
|
}
|
|
|
|
fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.blocking_transfer_in_place(words)
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance> embedded_hal_async::spi::SpiBus<u8> for Spi<'d, T, Async> {
|
|
async fn flush(&mut self) -> Result<(), Self::Error> {
|
|
Ok(())
|
|
}
|
|
|
|
async fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
|
|
self.write(words).await
|
|
}
|
|
|
|
async fn read(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.read(words).await
|
|
}
|
|
|
|
async fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Self::Error> {
|
|
self.transfer(read, write).await
|
|
}
|
|
|
|
async fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Self::Error> {
|
|
self.transfer_in_place(words).await
|
|
}
|
|
}
|
|
|
|
impl<'d, T: Instance, M: Mode> SetConfig for Spi<'d, T, M> {
|
|
type Config = Config;
|
|
type ConfigError = ();
|
|
fn set_config(&mut self, config: &Self::Config) -> Result<(), ()> {
|
|
let p = self.inner.regs();
|
|
let (presc, postdiv) = calc_prescs(config.frequency);
|
|
p.cpsr().write(|w| w.set_cpsdvsr(presc));
|
|
p.cr0().write(|w| {
|
|
w.set_dss(0b0111); // 8bit
|
|
w.set_spo(config.polarity == Polarity::IdleHigh);
|
|
w.set_sph(config.phase == Phase::CaptureOnSecondTransition);
|
|
w.set_scr(postdiv);
|
|
});
|
|
|
|
Ok(())
|
|
}
|
|
}
|