embassy/embassy-nrf/src/uarte.rs
2024-11-04 00:47:31 +01:00

1050 lines
32 KiB
Rust

//! Universal Asynchronous Receiver Transmitter (UART) driver.
//!
//! The UART driver is provided in two flavors - this one and also [crate::buffered_uarte::BufferedUarte].
//! The [Uarte] here is useful for those use-cases where reading the UARTE peripheral is
//! exclusively awaited on. If the [Uarte] is required to be awaited on with some other future,
//! for example when using `futures_util::future::select`, then you should consider
//! [crate::buffered_uarte::BufferedUarte] so that reads may continue while processing these
//! other futures. If you do not then you may lose data between reads.
//!
//! An advantage of the [Uarte] has over [crate::buffered_uarte::BufferedUarte] is that less
//! memory may be used given that buffers are passed in directly to its read and write
//! methods.
#![macro_use]
use core::future::poll_fn;
use core::marker::PhantomData;
use core::sync::atomic::{compiler_fence, AtomicU8, Ordering};
use core::task::Poll;
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
// Re-export SVD variants to allow user to directly set values.
pub use pac::uarte::vals::{Baudrate, ConfigParity as Parity};
use crate::chip::{EASY_DMA_SIZE, FORCE_COPY_BUFFER_SIZE};
use crate::gpio::{self, AnyPin, Pin as GpioPin, PselBits, SealedPin as _, DISCONNECTED};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::gpio::vals as gpiovals;
use crate::pac::uarte::vals;
use crate::ppi::{AnyConfigurableChannel, ConfigurableChannel, Event, Ppi, Task};
use crate::timer::{Frequency, Instance as TimerInstance, Timer};
use crate::util::slice_in_ram_or;
use crate::{interrupt, pac, Peripheral};
/// UARTE config.
#[derive(Clone)]
#[non_exhaustive]
pub struct Config {
/// Parity bit.
pub parity: Parity,
/// Baud rate.
pub baudrate: Baudrate,
}
impl Default for Config {
fn default() -> Self {
Self {
parity: Parity::EXCLUDED,
baudrate: Baudrate::BAUD115200,
}
}
}
bitflags::bitflags! {
/// Error source flags
pub(crate) struct ErrorSource: u32 {
/// Buffer overrun
const OVERRUN = 0x01;
/// Parity error
const PARITY = 0x02;
/// Framing error
const FRAMING = 0x04;
/// Break condition
const BREAK = 0x08;
}
}
impl ErrorSource {
#[inline]
fn check(self) -> Result<(), Error> {
if self.contains(ErrorSource::OVERRUN) {
Err(Error::Overrun)
} else if self.contains(ErrorSource::PARITY) {
Err(Error::Parity)
} else if self.contains(ErrorSource::FRAMING) {
Err(Error::Framing)
} else if self.contains(ErrorSource::BREAK) {
Err(Error::Break)
} else {
Ok(())
}
}
}
/// UART error.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
/// Buffer was too long.
BufferTooLong,
/// The buffer is not in data RAM. It's most likely in flash, and nRF's DMA cannot access flash.
BufferNotInRAM,
/// Framing Error
Framing,
/// Parity Error
Parity,
/// Buffer Overrun
Overrun,
/// Break condition
Break,
}
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::regs();
let s = T::state();
let endrx = r.events_endrx().read();
let error = r.events_error().read();
if endrx != 0 || error != 0 {
s.rx_waker.wake();
if endrx != 0 {
r.intenclr().write(|w| w.set_endrx(true));
}
if error != 0 {
r.intenclr().write(|w| w.set_error(true));
}
}
if r.events_endtx().read() != 0 {
s.tx_waker.wake();
r.intenclr().write(|w| w.set_endtx(true));
}
}
}
/// UARTE driver.
pub struct Uarte<'d, T: Instance> {
tx: UarteTx<'d, T>,
rx: UarteRx<'d, T>,
}
/// Transmitter part of the UARTE driver.
///
/// This can be obtained via [`Uarte::split`], or created directly.
pub struct UarteTx<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
/// Receiver part of the UARTE driver.
///
/// This can be obtained via [`Uarte::split`], or created directly.
pub struct UarteRx<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Uarte<'d, T> {
/// Create a new UARTE without hardware flow control
pub fn new(
uarte: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
rxd: impl Peripheral<P = impl GpioPin> + 'd,
txd: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(uarte, rxd, txd);
Self::new_inner(uarte, rxd.map_into(), txd.map_into(), None, None, config)
}
/// Create a new UARTE with hardware flow control (RTS/CTS)
pub fn new_with_rtscts(
uarte: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
rxd: impl Peripheral<P = impl GpioPin> + 'd,
txd: impl Peripheral<P = impl GpioPin> + 'd,
cts: impl Peripheral<P = impl GpioPin> + 'd,
rts: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(uarte, rxd, txd, cts, rts);
Self::new_inner(
uarte,
rxd.map_into(),
txd.map_into(),
Some(cts.map_into()),
Some(rts.map_into()),
config,
)
}
fn new_inner(
uarte: PeripheralRef<'d, T>,
rxd: PeripheralRef<'d, AnyPin>,
txd: PeripheralRef<'d, AnyPin>,
cts: Option<PeripheralRef<'d, AnyPin>>,
rts: Option<PeripheralRef<'d, AnyPin>>,
config: Config,
) -> Self {
let r = T::regs();
let hardware_flow_control = match (rts.is_some(), cts.is_some()) {
(false, false) => false,
(true, true) => true,
_ => panic!("RTS and CTS pins must be either both set or none set."),
};
configure(r, config, hardware_flow_control);
configure_rx_pins(r, rxd, rts);
configure_tx_pins(r, txd, cts);
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
r.enable().write(|w| w.set_enable(vals::Enable::ENABLED));
let s = T::state();
s.tx_rx_refcount.store(2, Ordering::Relaxed);
Self {
tx: UarteTx {
_p: unsafe { uarte.clone_unchecked() },
},
rx: UarteRx { _p: uarte },
}
}
/// Split the Uarte into the transmitter and receiver parts.
///
/// This is useful to concurrently transmit and receive from independent tasks.
pub fn split(self) -> (UarteTx<'d, T>, UarteRx<'d, T>) {
(self.tx, self.rx)
}
/// Split the UART in reader and writer parts, by reference.
///
/// The returned halves borrow from `self`, so you can drop them and go back to using
/// the "un-split" `self`. This allows temporarily splitting the UART.
pub fn split_by_ref(&mut self) -> (&mut UarteTx<'d, T>, &mut UarteRx<'d, T>) {
(&mut self.tx, &mut self.rx)
}
/// Split the Uarte into the transmitter and receiver with idle support parts.
///
/// This is useful to concurrently transmit and receive from independent tasks.
pub fn split_with_idle<U: TimerInstance>(
self,
timer: impl Peripheral<P = U> + 'd,
ppi_ch1: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd,
ppi_ch2: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd,
) -> (UarteTx<'d, T>, UarteRxWithIdle<'d, T, U>) {
(self.tx, self.rx.with_idle(timer, ppi_ch1, ppi_ch2))
}
/// Return the endtx event for use with PPI
pub fn event_endtx(&self) -> Event {
let r = T::regs();
Event::from_reg(r.events_endtx())
}
/// Read bytes until the buffer is filled.
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.read(buffer).await
}
/// Write all bytes in the buffer.
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.write(buffer).await
}
/// Same as [`write`](Uarte::write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub async fn write_from_ram(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.write_from_ram(buffer).await
}
/// Read bytes until the buffer is filled.
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.blocking_read(buffer)
}
/// Write all bytes in the buffer.
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.blocking_write(buffer)
}
/// Same as [`blocking_write`](Uarte::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub fn blocking_write_from_ram(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.blocking_write_from_ram(buffer)
}
}
pub(crate) fn configure_tx_pins(
r: pac::uarte::Uarte,
txd: PeripheralRef<'_, AnyPin>,
cts: Option<PeripheralRef<'_, AnyPin>>,
) {
txd.set_high();
txd.conf().write(|w| {
w.set_dir(gpiovals::Dir::OUTPUT);
w.set_input(gpiovals::Input::DISCONNECT);
w.set_drive(gpiovals::Drive::H0H1);
});
r.psel().txd().write_value(txd.psel_bits());
if let Some(pin) = &cts {
pin.conf().write(|w| {
w.set_dir(gpiovals::Dir::INPUT);
w.set_input(gpiovals::Input::CONNECT);
w.set_drive(gpiovals::Drive::H0H1);
});
}
r.psel().cts().write_value(cts.psel_bits());
}
pub(crate) fn configure_rx_pins(
r: pac::uarte::Uarte,
rxd: PeripheralRef<'_, AnyPin>,
rts: Option<PeripheralRef<'_, AnyPin>>,
) {
rxd.conf().write(|w| {
w.set_dir(gpiovals::Dir::INPUT);
w.set_input(gpiovals::Input::CONNECT);
w.set_drive(gpiovals::Drive::H0H1);
});
r.psel().rxd().write_value(rxd.psel_bits());
if let Some(pin) = &rts {
pin.set_high();
pin.conf().write(|w| {
w.set_dir(gpiovals::Dir::OUTPUT);
w.set_input(gpiovals::Input::DISCONNECT);
w.set_drive(gpiovals::Drive::H0H1);
});
}
r.psel().rts().write_value(rts.psel_bits());
}
pub(crate) fn configure(r: pac::uarte::Uarte, config: Config, hardware_flow_control: bool) {
r.config().write(|w| {
w.set_hwfc(hardware_flow_control);
w.set_parity(config.parity);
});
r.baudrate().write(|w| w.set_baudrate(config.baudrate));
// Disable all interrupts
r.intenclr().write(|w| w.0 = 0xFFFF_FFFF);
// Reset rxstarted, txstarted. These are used by drop to know whether a transfer was
// stopped midway or not.
r.events_rxstarted().write_value(0);
r.events_txstarted().write_value(0);
// reset all pins
r.psel().txd().write_value(DISCONNECTED);
r.psel().rxd().write_value(DISCONNECTED);
r.psel().cts().write_value(DISCONNECTED);
r.psel().rts().write_value(DISCONNECTED);
apply_workaround_for_enable_anomaly(r);
}
impl<'d, T: Instance> UarteTx<'d, T> {
/// Create a new tx-only UARTE without hardware flow control
pub fn new(
uarte: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
txd: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(uarte, txd);
Self::new_inner(uarte, txd.map_into(), None, config)
}
/// Create a new tx-only UARTE with hardware flow control (RTS/CTS)
pub fn new_with_rtscts(
uarte: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
txd: impl Peripheral<P = impl GpioPin> + 'd,
cts: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(uarte, txd, cts);
Self::new_inner(uarte, txd.map_into(), Some(cts.map_into()), config)
}
fn new_inner(
uarte: PeripheralRef<'d, T>,
txd: PeripheralRef<'d, AnyPin>,
cts: Option<PeripheralRef<'d, AnyPin>>,
config: Config,
) -> Self {
let r = T::regs();
configure(r, config, cts.is_some());
configure_tx_pins(r, txd, cts);
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
r.enable().write(|w| w.set_enable(vals::Enable::ENABLED));
let s = T::state();
s.tx_rx_refcount.store(1, Ordering::Relaxed);
Self { _p: uarte }
}
/// Write all bytes in the buffer.
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
match self.write_from_ram(buffer).await {
Ok(_) => Ok(()),
Err(Error::BufferNotInRAM) => {
trace!("Copying UARTE tx buffer into RAM for DMA");
let ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..buffer.len()];
ram_buf.copy_from_slice(buffer);
self.write_from_ram(ram_buf).await
}
Err(error) => Err(error),
}
}
/// Same as [`write`](Self::write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub async fn write_from_ram(&mut self, buffer: &[u8]) -> Result<(), Error> {
if buffer.is_empty() {
return Ok(());
}
slice_in_ram_or(buffer, Error::BufferNotInRAM)?;
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let ptr = buffer.as_ptr();
let len = buffer.len();
let r = T::regs();
let s = T::state();
let drop = OnDrop::new(move || {
trace!("write drop: stopping");
r.intenclr().write(|w| w.set_endtx(true));
r.events_txstopped().write_value(0);
r.tasks_stoptx().write_value(1);
// TX is stopped almost instantly, spinning is fine.
while r.events_endtx().read() == 0 {}
trace!("write drop: stopped");
});
r.txd().ptr().write_value(ptr as u32);
r.txd().maxcnt().write(|w| w.set_maxcnt(len as _));
r.events_endtx().write_value(0);
r.intenset().write(|w| w.set_endtx(true));
compiler_fence(Ordering::SeqCst);
trace!("starttx");
r.tasks_starttx().write_value(1);
poll_fn(|cx| {
s.tx_waker.register(cx.waker());
if r.events_endtx().read() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
r.events_txstarted().write_value(0);
drop.defuse();
Ok(())
}
/// Write all bytes in the buffer.
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
match self.blocking_write_from_ram(buffer) {
Ok(_) => Ok(()),
Err(Error::BufferNotInRAM) => {
trace!("Copying UARTE tx buffer into RAM for DMA");
let ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..buffer.len()];
ram_buf.copy_from_slice(buffer);
self.blocking_write_from_ram(ram_buf)
}
Err(error) => Err(error),
}
}
/// Same as [`write_from_ram`](Self::write_from_ram) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
pub fn blocking_write_from_ram(&mut self, buffer: &[u8]) -> Result<(), Error> {
if buffer.is_empty() {
return Ok(());
}
slice_in_ram_or(buffer, Error::BufferNotInRAM)?;
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let ptr = buffer.as_ptr();
let len = buffer.len();
let r = T::regs();
r.txd().ptr().write_value(ptr as u32);
r.txd().maxcnt().write(|w| w.set_maxcnt(len as _));
r.events_endtx().write_value(0);
r.intenclr().write(|w| w.set_endtx(true));
compiler_fence(Ordering::SeqCst);
trace!("starttx");
r.tasks_starttx().write_value(1);
while r.events_endtx().read() == 0 {}
compiler_fence(Ordering::SeqCst);
r.events_txstarted().write_value(0);
Ok(())
}
}
impl<'a, T: Instance> Drop for UarteTx<'a, T> {
fn drop(&mut self) {
trace!("uarte tx drop");
let r = T::regs();
let did_stoptx = r.events_txstarted().read() != 0;
trace!("did_stoptx {}", did_stoptx);
// Wait for txstopped, if needed.
while did_stoptx && r.events_txstopped().read() == 0 {}
let s = T::state();
drop_tx_rx(r, s);
}
}
impl<'d, T: Instance> UarteRx<'d, T> {
/// Create a new rx-only UARTE without hardware flow control
pub fn new(
uarte: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
rxd: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(uarte, rxd);
Self::new_inner(uarte, rxd.map_into(), None, config)
}
/// Create a new rx-only UARTE with hardware flow control (RTS/CTS)
pub fn new_with_rtscts(
uarte: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
rxd: impl Peripheral<P = impl GpioPin> + 'd,
rts: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(uarte, rxd, rts);
Self::new_inner(uarte, rxd.map_into(), Some(rts.map_into()), config)
}
/// Check for errors and clear the error register if an error occured.
fn check_and_clear_errors(&mut self) -> Result<(), Error> {
let r = T::regs();
let err_bits = r.errorsrc().read();
r.errorsrc().write_value(err_bits);
ErrorSource::from_bits_truncate(err_bits.0).check()
}
fn new_inner(
uarte: PeripheralRef<'d, T>,
rxd: PeripheralRef<'d, AnyPin>,
rts: Option<PeripheralRef<'d, AnyPin>>,
config: Config,
) -> Self {
let r = T::regs();
configure(r, config, rts.is_some());
configure_rx_pins(r, rxd, rts);
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
r.enable().write(|w| w.set_enable(vals::Enable::ENABLED));
let s = T::state();
s.tx_rx_refcount.store(1, Ordering::Relaxed);
Self { _p: uarte }
}
/// Upgrade to an instance that supports idle line detection.
pub fn with_idle<U: TimerInstance>(
self,
timer: impl Peripheral<P = U> + 'd,
ppi_ch1: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd,
ppi_ch2: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd,
) -> UarteRxWithIdle<'d, T, U> {
let timer = Timer::new(timer);
into_ref!(ppi_ch1, ppi_ch2);
let r = T::regs();
// BAUDRATE register values are `baudrate * 2^32 / 16000000`
// source: https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values
//
// We want to stop RX if line is idle for 2 bytes worth of time
// That is 20 bits (each byte is 1 start bit + 8 data bits + 1 stop bit)
// This gives us the amount of 16M ticks for 20 bits.
let baudrate = r.baudrate().read().baudrate();
let timeout = 0x8000_0000 / (baudrate.to_bits() / 40);
timer.set_frequency(Frequency::F16MHz);
timer.cc(0).write(timeout);
timer.cc(0).short_compare_clear();
timer.cc(0).short_compare_stop();
let mut ppi_ch1 = Ppi::new_one_to_two(
ppi_ch1.map_into(),
Event::from_reg(r.events_rxdrdy()),
timer.task_clear(),
timer.task_start(),
);
ppi_ch1.enable();
let mut ppi_ch2 = Ppi::new_one_to_one(
ppi_ch2.map_into(),
timer.cc(0).event_compare(),
Task::from_reg(r.tasks_stoprx()),
);
ppi_ch2.enable();
UarteRxWithIdle {
rx: self,
timer,
ppi_ch1,
_ppi_ch2: ppi_ch2,
}
}
/// Read bytes until the buffer is filled.
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
if buffer.is_empty() {
return Ok(());
}
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let ptr = buffer.as_ptr();
let len = buffer.len();
let r = T::regs();
let s = T::state();
let drop = OnDrop::new(move || {
trace!("read drop: stopping");
r.intenclr().write(|w| {
w.set_endrx(true);
w.set_error(true);
});
r.events_rxto().write_value(0);
r.events_error().write_value(0);
r.tasks_stoprx().write_value(1);
while r.events_endrx().read() == 0 {}
trace!("read drop: stopped");
});
r.rxd().ptr().write_value(ptr as u32);
r.rxd().maxcnt().write(|w| w.set_maxcnt(len as _));
r.events_endrx().write_value(0);
r.events_error().write_value(0);
r.intenset().write(|w| {
w.set_endrx(true);
w.set_error(true);
});
compiler_fence(Ordering::SeqCst);
trace!("startrx");
r.tasks_startrx().write_value(1);
let result = poll_fn(|cx| {
s.rx_waker.register(cx.waker());
if let Err(e) = self.check_and_clear_errors() {
r.tasks_stoprx().write_value(1);
return Poll::Ready(Err(e));
}
if r.events_endrx().read() != 0 {
return Poll::Ready(Ok(()));
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
r.events_rxstarted().write_value(0);
drop.defuse();
result
}
/// Read bytes until the buffer is filled.
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
if buffer.is_empty() {
return Ok(());
}
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let ptr = buffer.as_ptr();
let len = buffer.len();
let r = T::regs();
r.rxd().ptr().write_value(ptr as u32);
r.rxd().maxcnt().write(|w| w.set_maxcnt(len as _));
r.events_endrx().write_value(0);
r.events_error().write_value(0);
r.intenclr().write(|w| {
w.set_endrx(true);
w.set_error(true);
});
compiler_fence(Ordering::SeqCst);
trace!("startrx");
r.tasks_startrx().write_value(1);
while r.events_endrx().read() == 0 && r.events_error().read() == 0 {}
compiler_fence(Ordering::SeqCst);
r.events_rxstarted().write_value(0);
self.check_and_clear_errors()
}
}
impl<'a, T: Instance> Drop for UarteRx<'a, T> {
fn drop(&mut self) {
trace!("uarte rx drop");
let r = T::regs();
let did_stoprx = r.events_rxstarted().read() != 0;
trace!("did_stoprx {}", did_stoprx);
// Wait for rxto, if needed.
while did_stoprx && r.events_rxto().read() == 0 {}
let s = T::state();
drop_tx_rx(r, s);
}
}
/// Receiver part of the UARTE driver, with `read_until_idle` support.
///
/// This can be obtained via [`Uarte::split_with_idle`].
pub struct UarteRxWithIdle<'d, T: Instance, U: TimerInstance> {
rx: UarteRx<'d, T>,
timer: Timer<'d, U>,
ppi_ch1: Ppi<'d, AnyConfigurableChannel, 1, 2>,
_ppi_ch2: Ppi<'d, AnyConfigurableChannel, 1, 1>,
}
impl<'d, T: Instance, U: TimerInstance> UarteRxWithIdle<'d, T, U> {
/// Read bytes until the buffer is filled.
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.ppi_ch1.disable();
self.rx.read(buffer).await
}
/// Read bytes until the buffer is filled.
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.ppi_ch1.disable();
self.rx.blocking_read(buffer)
}
/// Read bytes until the buffer is filled, or the line becomes idle.
///
/// Returns the amount of bytes read.
pub async fn read_until_idle(&mut self, buffer: &mut [u8]) -> Result<usize, Error> {
if buffer.is_empty() {
return Ok(0);
}
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let ptr = buffer.as_ptr();
let len = buffer.len();
let r = T::regs();
let s = T::state();
self.ppi_ch1.enable();
let drop = OnDrop::new(|| {
self.timer.stop();
r.intenclr().write(|w| {
w.set_endrx(true);
w.set_error(true);
});
r.events_rxto().write_value(0);
r.events_error().write_value(0);
r.tasks_stoprx().write_value(1);
while r.events_endrx().read() == 0 {}
});
r.rxd().ptr().write_value(ptr as u32);
r.rxd().maxcnt().write(|w| w.set_maxcnt(len as _));
r.events_endrx().write_value(0);
r.events_error().write_value(0);
r.intenset().write(|w| {
w.set_endrx(true);
w.set_error(true);
});
compiler_fence(Ordering::SeqCst);
r.tasks_startrx().write_value(1);
let result = poll_fn(|cx| {
s.rx_waker.register(cx.waker());
if let Err(e) = self.rx.check_and_clear_errors() {
r.tasks_stoprx().write_value(1);
return Poll::Ready(Err(e));
}
if r.events_endrx().read() != 0 {
return Poll::Ready(Ok(()));
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
let n = r.rxd().amount().read().0 as usize;
self.timer.stop();
r.events_rxstarted().write_value(0);
drop.defuse();
result.map(|_| n)
}
/// Read bytes until the buffer is filled, or the line becomes idle.
///
/// Returns the amount of bytes read.
pub fn blocking_read_until_idle(&mut self, buffer: &mut [u8]) -> Result<usize, Error> {
if buffer.is_empty() {
return Ok(0);
}
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let ptr = buffer.as_ptr();
let len = buffer.len();
let r = T::regs();
self.ppi_ch1.enable();
r.rxd().ptr().write_value(ptr as u32);
r.rxd().maxcnt().write(|w| w.set_maxcnt(len as _));
r.events_endrx().write_value(0);
r.events_error().write_value(0);
r.intenclr().write(|w| {
w.set_endrx(true);
w.set_error(true);
});
compiler_fence(Ordering::SeqCst);
r.tasks_startrx().write_value(1);
while r.events_endrx().read() == 0 && r.events_error().read() == 0 {}
compiler_fence(Ordering::SeqCst);
let n = r.rxd().amount().read().0 as usize;
self.timer.stop();
r.events_rxstarted().write_value(0);
self.rx.check_and_clear_errors().map(|_| n)
}
}
#[cfg(not(any(feature = "_nrf9160", feature = "_nrf5340")))]
pub(crate) fn apply_workaround_for_enable_anomaly(_r: pac::uarte::Uarte) {
// Do nothing
}
#[cfg(any(feature = "_nrf9160", feature = "_nrf5340"))]
pub(crate) fn apply_workaround_for_enable_anomaly(r: pac::uarte::Uarte) {
// Apply workaround for anomalies:
// - nRF9160 - anomaly 23
// - nRF5340 - anomaly 44
let rp = r.as_ptr() as *mut u32;
let rxenable_reg = unsafe { rp.add(0x564 / 4) };
let txenable_reg = unsafe { rp.add(0x568 / 4) };
// NB Safety: This is taken from Nordic's driver -
// https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197
if unsafe { core::ptr::read_volatile(txenable_reg) } == 1 {
r.tasks_stoptx().write_value(1);
}
// NB Safety: This is taken from Nordic's driver -
// https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197
if unsafe { core::ptr::read_volatile(rxenable_reg) } == 1 {
r.enable().write(|w| w.set_enable(vals::Enable::ENABLED));
r.tasks_stoprx().write_value(1);
let mut workaround_succeded = false;
// The UARTE is able to receive up to four bytes after the STOPRX task has been triggered.
// On lowest supported baud rate (1200 baud), with parity bit and two stop bits configured
// (resulting in 12 bits per data byte sent), this may take up to 40 ms.
for _ in 0..40000 {
// NB Safety: This is taken from Nordic's driver -
// https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197
if unsafe { core::ptr::read_volatile(rxenable_reg) } == 0 {
workaround_succeded = true;
break;
} else {
// Need to sleep for 1us here
}
}
if !workaround_succeded {
panic!("Failed to apply workaround for UART");
}
// write back the bits we just read to clear them
let errors = r.errorsrc().read();
r.errorsrc().write_value(errors);
r.enable().write(|w| w.set_enable(vals::Enable::DISABLED));
}
}
pub(crate) fn drop_tx_rx(r: pac::uarte::Uarte, s: &State) {
if s.tx_rx_refcount.fetch_sub(1, Ordering::Relaxed) == 1 {
// Finally we can disable, and we do so for the peripheral
// i.e. not just rx concerns.
r.enable().write(|w| w.set_enable(vals::Enable::DISABLED));
gpio::deconfigure_pin(r.psel().rxd().read());
gpio::deconfigure_pin(r.psel().txd().read());
gpio::deconfigure_pin(r.psel().rts().read());
gpio::deconfigure_pin(r.psel().cts().read());
trace!("uarte tx and rx drop: done");
}
}
pub(crate) struct State {
pub(crate) rx_waker: AtomicWaker,
pub(crate) tx_waker: AtomicWaker,
pub(crate) tx_rx_refcount: AtomicU8,
}
impl State {
pub(crate) const fn new() -> Self {
Self {
rx_waker: AtomicWaker::new(),
tx_waker: AtomicWaker::new(),
tx_rx_refcount: AtomicU8::new(0),
}
}
}
pub(crate) trait SealedInstance {
fn regs() -> pac::uarte::Uarte;
fn state() -> &'static State;
fn buffered_state() -> &'static crate::buffered_uarte::State;
}
/// UARTE peripheral instance.
#[allow(private_bounds)]
pub trait Instance: Peripheral<P = Self> + SealedInstance + 'static + Send {
/// Interrupt for this peripheral.
type Interrupt: interrupt::typelevel::Interrupt;
}
macro_rules! impl_uarte {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::uarte::SealedInstance for peripherals::$type {
fn regs() -> pac::uarte::Uarte {
pac::$pac_type
}
fn state() -> &'static crate::uarte::State {
static STATE: crate::uarte::State = crate::uarte::State::new();
&STATE
}
fn buffered_state() -> &'static crate::buffered_uarte::State {
static STATE: crate::buffered_uarte::State = crate::buffered_uarte::State::new();
&STATE
}
}
impl crate::uarte::Instance for peripherals::$type {
type Interrupt = crate::interrupt::typelevel::$irq;
}
};
}
// ====================
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for Uarte<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
Ok(())
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for UarteTx<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
Ok(())
}
}
}