embassy/examples/stm32l4/src/bin/dac_dma.rs
2024-03-23 01:38:51 +01:00

130 lines
3.8 KiB
Rust

#![no_std]
#![no_main]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::dac::{DacCh1, DacCh2, ValueArray};
use embassy_stm32::pac::timer::vals::Mms;
use embassy_stm32::peripherals::{DAC1, DMA1_CH3, DMA1_CH4, TIM6, TIM7};
use embassy_stm32::rcc::frequency;
use embassy_stm32::time::Hertz;
use embassy_stm32::timer::low_level::Timer;
use micromath::F32Ext;
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let config = embassy_stm32::Config::default();
// Initialize the board and obtain a Peripherals instance
let p: embassy_stm32::Peripherals = embassy_stm32::init(config);
// Obtain two independent channels (p.DAC1 can only be consumed once, though!)
let (dac_ch1, dac_ch2) = embassy_stm32::dac::Dac::new(p.DAC1, p.DMA1_CH3, p.DMA1_CH4, p.PA4, p.PA5).split();
spawner.spawn(dac_task1(p.TIM6, dac_ch1)).ok();
spawner.spawn(dac_task2(p.TIM7, dac_ch2)).ok();
}
#[embassy_executor::task]
async fn dac_task1(tim: TIM6, mut dac: DacCh1<'static, DAC1, DMA1_CH3>) {
let data: &[u8; 256] = &calculate_array::<256>();
info!("TIM6 frequency is {}", frequency::<TIM6>());
const FREQUENCY: Hertz = Hertz::hz(200);
// Compute the reload value such that we obtain the FREQUENCY for the sine
let reload: u32 = (frequency::<TIM6>().0 / FREQUENCY.0) / data.len() as u32;
// Depends on your clock and on the specific chip used, you may need higher or lower values here
if reload < 10 {
error!("Reload value {} below threshold!", reload);
}
dac.set_trigger(embassy_stm32::dac::TriggerSel::Tim6);
dac.set_triggering(true);
dac.enable();
let tim = Timer::new(tim);
tim.regs_basic().arr().modify(|w| w.set_arr(reload as u16 - 1));
tim.regs_basic().cr2().modify(|w| w.set_mms(Mms::UPDATE));
tim.regs_basic().cr1().modify(|w| {
w.set_opm(false);
w.set_cen(true);
});
debug!(
"TIM6 Frequency {}, Target Frequency {}, Reload {}, Reload as u16 {}, Samples {}",
frequency::<TIM6>(),
FREQUENCY,
reload,
reload as u16,
data.len()
);
// Loop technically not necessary if DMA circular mode is enabled
loop {
info!("Loop DAC1");
dac.write(ValueArray::Bit8(data), true).await;
}
}
#[embassy_executor::task]
async fn dac_task2(tim: TIM7, mut dac: DacCh2<'static, DAC1, DMA1_CH4>) {
let data: &[u8; 256] = &calculate_array::<256>();
info!("TIM7 frequency is {}", frequency::<TIM7>());
const FREQUENCY: Hertz = Hertz::hz(600);
let reload: u32 = (frequency::<TIM7>().0 / FREQUENCY.0) / data.len() as u32;
if reload < 10 {
error!("Reload value {} below threshold!", reload);
}
let tim = Timer::new(tim);
tim.regs_basic().arr().modify(|w| w.set_arr(reload as u16 - 1));
tim.regs_basic().cr2().modify(|w| w.set_mms(Mms::UPDATE));
tim.regs_basic().cr1().modify(|w| {
w.set_opm(false);
w.set_cen(true);
});
dac.set_trigger(embassy_stm32::dac::TriggerSel::Tim7);
dac.set_triggering(true);
dac.enable();
debug!(
"TIM7 Frequency {}, Target Frequency {}, Reload {}, Reload as u16 {}, Samples {}",
frequency::<TIM7>(),
FREQUENCY,
reload,
reload as u16,
data.len()
);
dac.write(ValueArray::Bit8(data), true).await;
}
fn to_sine_wave(v: u8) -> u8 {
if v >= 128 {
// top half
let r = 3.14 * ((v - 128) as f32 / 128.0);
(r.sin() * 128.0 + 127.0) as u8
} else {
// bottom half
let r = 3.14 + 3.14 * (v as f32 / 128.0);
(r.sin() * 128.0 + 127.0) as u8
}
}
fn calculate_array<const N: usize>() -> [u8; N] {
let mut res = [0; N];
let mut i = 0;
while i < N {
res[i] = to_sine_wave(i as u8);
i += 1;
}
res
}